Acetic acid, methyl ester
- Formula: C3H6O2
- Molecular weight: 74.0785
- IUPAC Standard InChIKey: KXKVLQRXCPHEJC-UHFFFAOYSA-N
- CAS Registry Number: 79-20-9
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Methyl acetate; Devoton; Tereton; CH3COOCH3; Methyl ethanoate; Acetate de methyle; Methyl acetic ester; Methylacetaat; Methylacetat; Methyle (acetate de); Methylester kiseliny octove; Metile (acetato di); Ethyl ester of monoacetic acid; UN 1231; Methyl ester of acetic acid; NSC 405071
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Gas phase ion energetics data, IR Spectrum, Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -410.0 | kJ/mol | Ccr | Hall and Baldt, 1971 | ALS |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
55.78 | 100. | Chao J., 1986 | p=1 bar. Recommended Cp(T) values are in close agreement with those calculated by [ Vay P.-M., 1971]. S(T) values calculated by [ Vay P.-M., 1971] are 4.6-4.8 J/mol*K lower than those of [ Chao J., 1986].; GT |
63.27 | 150. | ||
70.02 | 200. | ||
81.56 | 273.15 | ||
86.03 ± 0.12 | 298.15 | ||
86.37 | 300. | ||
105.31 | 400. | ||
123.40 | 500. | ||
139.25 | 600. | ||
152.84 | 700. | ||
164.47 | 800. | ||
174.46 | 900. | ||
183.06 | 1000. | ||
190.47 | 1100. | ||
196.87 | 1200. | ||
202.39 | 1300. | ||
207.18 | 1400. | ||
211.34 | 1500. |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
92.58 | 335.0 | Connett J.E., 1976 | GT |
95.46 | 350.0 | ||
100.39 | 375.0 | ||
105.31 | 400.0 | ||
109.98 | 425.0 | ||
114.63 | 450.0 |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, IR Spectrum, Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
View reactions leading to C3H6O2+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 10.25 ± 0.02 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 821.6 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 790.7 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
10.2 | PE | Cannington and Ham, 1985 | LBLHLM |
10.25 | PI | Traeger, McLouglin, et al., 1982 | LBLHLM |
10.25 ± 0.05 | PE | Benoit, Harrison, et al., 1977 | LLK |
10.33 | PE | Sweigart and Turner, 1972 | LLK |
10.27 ± 0.02 | PI | Watanabe, Nakayama, et al., 1962 | RDSH |
10.5 | PE | Cannington and Ham, 1985 | Vertical value; LBLHLM |
10.25 | PE | Benoit and Harrison, 1977 | Vertical value; LLK |
11.0 | PE | Rao, 1975 | Vertical value; LLK |
10.59 | PE | Sustmann and Trill, 1972 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
CHO+ | 13.95 ± 0.08 | ? | EI | Brion and Dunning, 1963 | RDSH |
CH2+ | 20.8 | ? | EI | King and Long, 1958 | RDSH |
CH3+ | 13.07 ± 0.10 | ? | EI | Brion and Dunning, 1963 | RDSH |
CH3O+ | 12.52 ± 0.10 | ? | EI | Brion and Dunning, 1963 | RDSH |
C2H2O+ | 11.81 ± 0.15 | ? | EI | Friedland and Strakna, 1956 | RDSH |
C2H3O+ | 11.05 | CH3O | PI | Traeger, McLouglin, et al., 1982 | LBLHLM |
C2H3O+ | 10.9 ± 0.1 | CH3O | EI | Burgers and Holmes, 1982 | LBLHLM |
C2H3O+ | 10.94 | ? | EI | Holmes and Lossing, 1979 | LLK |
C2H3O+ | 11.37 ± 0.05 | CH3O | EI | Haney and Franklin, 1969 | RDSH |
C2H3O2+ | 11.32 ± 0.05 | CH3 | EI | Blanchette, Holmes, et al., 1986 | LBLHLM |
C2H3O2+ | 12.35 ± 0.03 | CH3 | EI | Briggs and Shannon, 1969 | RDSH |
De-protonation reactions
C3H5O2- + =
By formula: C3H5O2- + H+ = C3H6O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1556. ± 8.8 | kJ/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrH° | 1556. ± 15. | kJ/mol | D-EA | Zimmerman, Reed, et al., 1977 | gas phase; B |
ΔrH° | 1573. ± 15. | kJ/mol | EIAE | Pariat and Allan, 1991 | gas phase; From CH3CO2Me; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1528. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Vibrational and/or electronic energy levels, References, Notes
Data compiled by: Coblentz Society, Inc.
- GAS (6.2 mmHg, N2 ADDED, TOTAL PRESSURE 600 mmHg); BECKMAN IR-9 (GRATING); DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 2 cm-1 resolution
- GAS (62 mmHg, N2 ADDED, TOTAL PRESSURE 600 mmHg) $$ SEE ALSO SPECTRUM NO. 10504; BECKMAN IR-9 (GRATING); DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 2 cm-1 resolution
- GAS (VAPOR, NO DILUENT); PERKIN-ELMER 21 (GRATING); DIGITIZED BY NIST FROM HARD COPY; 4 cm-1 resolution
- SOLUTION (10% IN CCl4 FOR 3800-1330, 10% IN CS2 FOR 1330-460 CM-1); DOW KBr FOREPRISM-GRATING; DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 4 cm-1 resolution
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Vibrational and/or electronic energy levels
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Takehiko Shimanouchi
Symmetry: Cs Symmetry Number σ = 1
Sym. | No | Approximate | Selected Freq. | Infrared | Raman | Comments | ||||
---|---|---|---|---|---|---|---|---|---|---|
Species | type of mode | Value | Rating | Value | Phase | Value | Phase | |||
a' | 1 | CH3(O) d-str | 3035 | D | 3035 M | gas | 3028 | liq. | ||
a' | 2 | CH3(C) d-str | 3031 | E | SF(ν2 )of 3OCD3 | |||||
a' | 3 | CH3(O) s-str | 2966 | D | 2966 S | gas | 2954 p | liq. | ||
a' | 4 | CH3(C) s-str | 2964 | E | 2942 p | liq. | SF(ν4 )of 3OCD3 | |||
a' | 5 | C=O str | 1771 | C | 1771 VS | gas | 1738 p | liq. | ||
a' | 6 | CH3(O) d-deform | 1460 | E | 1460 W sh | solid solid | OV(ν20) | |||
a' | 7 | CH3(O) s-deform | 1440 | D | 1440 M | gas | ||||
a' | 8 | CH3(C) d-deform | 1430 | E | SF(ν8 )of 3OCD3 | |||||
a' | 9 | CH3(C) s-deform | 1375 | D | 1375 S | gas | 1372 p | liq. | ||
a' | 10 | C-O str | 1248 | C | 1248 VS | gas | 1254 | liq. | ||
a' | 11 | CH3(O) rock | 1159 | E | 1159 VW | liq. | ||||
a' | 12 | O-CH3 str | 1060 | C | 1060 S | gas | 1044 | liq. | ||
a' | 13 | CH3(C) rock | 980 | C | 980 W | gas | 980 p | liq. | ||
a' | 14 | CC str | 844 | C | 844 M | gas | 844 p | liq. | ||
a' | 15 | C=O ip-bend | 639 | C | 639 M | gas | 640 p | liq. | ||
a' | 16 | CCO deform | 429 | C | 429 M | gas | 433 p | liq. | ||
a | 17 | COC deform | 303 | D | 303 M | gas | 303 p | liq. | ||
a | 18 | CH3(O) d-str | 3005 | D | 3005 M | gas | 3002 | liq. | ||
a | 19 | CH3(C) d-str | 2994 | D | 2994 W | gas | ||||
a | 20 | CH3(O) d-deform | 1460 | E | 1460 W sh | solid solid | 1449 dp | liq. | OV(ν6) | |
a | 21 | CH3(C) d-deform | 1430 | E | 1430 W | gas | ||||
a | 22 | CH3(O) rock | 1187 | D | 1187 W | gas | 1187 | liq. | ||
a | 23 | CH3(C) rock | 1036 | E | 1036 W | sln. | ||||
a | 24 | C=O op-bend | 607 | D | 607 M | gas | 610 dp | liq. | ||
a | 25 | C-O torsion | 187 | D | 187 W | gas | ||||
a | 26 | C-C torsion | 136 | E | 136 VW | liq. | ||||
a | 27 | O-CH3 torsion | 110 | E | 110 VW | liq. | ||||
Source: Shimanouchi, 1972
Notes
VS | Very strong |
S | Strong |
M | Medium |
W | Weak |
VW | Very weak |
sh | Shoulder |
p | Polarized |
dp | Depolarized |
OC | Frequency estimated from an overtone or a combination tone indicated in the parentheses. |
SF | Calculation shows that the frequency approximately equals that of the vibration indicated in the parentheses. |
OV | Overlapped by band indicated in parentheses. |
C | 3~6 cm-1 uncertainty |
D | 6~15 cm-1 uncertainty |
E | 15~30 cm-1 uncertainty |
References
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, IR Spectrum, Vibrational and/or electronic energy levels, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Hall and Baldt, 1971
Hall, H.K., Jr.; Baldt, J.H.,
Thermochemistry of strained-ring bridgehead nitriles and esters,
J. Am. Chem. Soc., 1971, 93, 140-145. [all data]
Chao J., 1986
Chao J.,
Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties,
J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]
Vay P.-M., 1971
Vay P.-M.,
Tables of thermodynamic functions for gaseous methyl formate and methyl acetate,
J. Chim. Phys. Physico-Chim. Biol., 1971, 68, 1757-1758. [all data]
Connett J.E., 1976
Connett J.E.,
Thermodynamic properties of organic oxygen compounds. XLIV. Vapor heat capacities and enthalpies of vaporization of methyl acetate, ethyl acetate, and propyl acetate,
J. Chem. Thermodyn., 1976, 8, 1199-1203. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Cannington and Ham, 1985
Cannington, P.H.; Ham, N.S.,
He(II) photoelectron spectra of esters,
J. Electron Spectrosc. Relat. Phenom., 1985, 36, 203. [all data]
Traeger, McLouglin, et al., 1982
Traeger, J.C.; McLouglin, R.G.; Nicholson, A.J.C.,
Heat of formation for acetyl cation in the gas phase,
J. Am. Chem. Soc., 1982, 104, 5318. [all data]
Benoit, Harrison, et al., 1977
Benoit, F.M.; Harrison, A.G.; Lossing, F.P.,
Hydrogen migrations in mass spectrometry III-Energetics of formation of [R'CO2H2]+ in the mass spectra of R'CO2R,
Org. Mass Spectrom., 1977, 12, 78. [all data]
Sweigart and Turner, 1972
Sweigart, D.A.; Turner, D.W.,
Lone pair orbitals and their interactions studied by photoelectron spectroscopy. I. Carboxylic acids and their derivatives,
J. Am. Chem. Soc., 1972, 94, 5592. [all data]
Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J.,
Ionization potentials of some molecules,
J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]
Benoit and Harrison, 1977
Benoit, F.M.; Harrison, A.G.,
Predictive value of proton affinity. Ionization energy correlations involving oxygenated molecules,
J. Am. Chem. Soc., 1977, 99, 3980. [all data]
Rao, 1975
Rao, C.N.R.,
Lone-pair ionization bands of chromophores in the photoelectron spectra of organic molecules,
Indian J. Chem., 1975, 13, 950. [all data]
Sustmann and Trill, 1972
Sustmann, R.; Trill, H.,
Photoelektronenspektroskopische Bestimmung von Substituenten-Effekten. II. α,β-ungesattigte Carbonester,
Tetrahedron Lett., 1972, 42, 4271. [all data]
Brion and Dunning, 1963
Brion, C.E.; Dunning, W.J.,
Electron impact studies of simple carboxylic esters,
J. Chem. Soc. Faraday Trans., 1963, 59, 647. [all data]
King and Long, 1958
King, A.B.; Long, F.A.,
Mass spectra of some simple esters and their interpretation by quasi-equilibrium theory,
J. Chem. Phys., 1958, 29, 374. [all data]
Friedland and Strakna, 1956
Friedland, S.S.; Strakna, R.E.,
Appearance potential studies. I,
J. Phys. Chem., 1956, 60, 815. [all data]
Burgers and Holmes, 1982
Burgers, P.C.; Holmes, J.L.,
Metastable ion studies. XIII. The measurement of appearance energies of metastable peaks,
Org. Mass Spectrom., 1982, 17, 123. [all data]
Holmes and Lossing, 1979
Holmes, J.L.; Lossing, F.P.,
Keto and enol forms of methyl acetate molecular ions, their stability and interconvertibility prior to fragmentation in the gas phase,
Org. Mass Spectrom., 1979, 14, 512. [all data]
Haney and Franklin, 1969
Haney, M.A.; Franklin, J.L.,
Excess energies in mass spectra of some oxygen-containing organic compounds,
J. Chem. Soc. Faraday Trans., 1969, 65, 1794. [all data]
Blanchette, Holmes, et al., 1986
Blanchette, M.C.; Holmes, J.L.; Hop, C.E.C.A.; Lossing, F.P.; Postma, R.; Ruttink, P.J.A.; Terlouw, J.K.,
Theory and experiment in concert; the CH3O-C=O+ ion and its isomers,
J. Am. Chem. Soc., 1986, 108, 7589. [all data]
Briggs and Shannon, 1969
Briggs, P.R.; Shannon, T.W.,
The heat of formation of the methoxycarbonyl ion,
J. Am. Chem. Soc., 1969, 91, 4307. [all data]
Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr.,
The gas phase acidity scale from methanol to phenol,
J. Am. Chem. Soc., 1979, 101, 6047. [all data]
Zimmerman, Reed, et al., 1977
Zimmerman, A.H.; Reed, K.J.; Brauman, J.I.,
Photodetachment of electrons from enolate anions. Gas phase electron affinities of enolate radicals,
J. Am. Chem. Soc., 1977, 99, 7203. [all data]
Pariat and Allan, 1991
Pariat, Y.; Allan, M.,
Dissociative Attachment to Methyl Acetate: Evidence for Ion/Molecule Complexes as Intermediates,
Int. J. Mass Spectrom. Ion Proc., 1991, 103, 2-3, 181, https://doi.org/10.1016/0168-1176(91)80088-5
. [all data]
Shimanouchi, 1972
Shimanouchi, T.,
Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, IR Spectrum, Vibrational and/or electronic energy levels, References
- Symbols used in this document:
AE Appearance energy Cp,gas Constant pressure heat capacity of gas IE (evaluated) Recommended ionization energy ΔfH°gas Enthalpy of formation of gas at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.