2-Propenoic acid
- Formula: C3H4O2
- Molecular weight: 72.0627
- IUPAC Standard InChIKey: NIXOWILDQLNWCW-UHFFFAOYSA-N
- CAS Registry Number: 79-10-7
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Acrylic acid; Acroleic acid; Ethylenecarboxylic acid; Propenoic acid; Vinylformic acid; CH2=CHCOOH; Propene acid; Kyselina akrylova; Rcra waste number U008; Glacial acrylic acid; NSC 4765
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Condensed phase thermochemistry data
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -91.73 ± 0.48 | kcal/mol | Ccb | Van-chin-syan, Kochubei, et al., 1996 | ALS |
ΔfH°liquid | -90.3 ± 2.2 | kcal/mol | Ccb | Vilcu and Perisanu, 1980 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -327.15 ± 0.43 | kcal/mol | Ccb | Van-chin-syan, Kochubei, et al., 1996 | Corresponding ΔfHºliquid = -91.63 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -328.5 ± 2.6 | kcal/mol | Ccb | Vilcu and Perisanu, 1980 | Corresponding ΔfHºliquid = -90.29 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -328.1 ± 1.2 | kcal/mol | Ccb | Moureu and Boutaric, 1920 | Corresponding ΔfHºliquid = -90.7 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
Constant pressure heat capacity of liquid
Cp,liquid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
34.46 | 298.15 | Karabaev, Saidov, et al., 1985 | T = 90 to 350 K. Cp(c) = 313.44 + 3.99T J/kg*K (103 to 252 K); Cp(liq) = 695.42 + 4.38T J/kg*K (285.7 to 350 K). Cp data calculated from equation.; DH |
34.823 | 300. | Karabaev, Abduzhaminov, et al., 1983 | T = 290 to 344 K. Cp given as 2021.8 J/kg*K.; DH |
Reaction thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
C3H3O2- + =
By formula: C3H3O2- + H+ = C3H4O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 344.2 ± 2.9 | kcal/mol | G+TS | Graul, Schnute, et al., 1990 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 337.2 ± 2.8 | kcal/mol | CIDC | Graul, Schnute, et al., 1990 | gas phase; B |
By formula: C4H10O + C3H4O2 = C7H12O2 + H2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 3.9 | kcal/mol | Eqk | Selyakova, Vytnov, et al., 1976 | liquid phase; Heat of esterification 60-180 C; ALS |
By formula: H2 + C3H4O2 = C3H6O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -30.4 ± 0.2 | kcal/mol | Chyd | Skinner and Snelson, 1959 | liquid phase; solvent: Acetic acid; ALS |
Gas phase ion energetics data
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
L - Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 10.60 | eV | N/A | N/A | L |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
10.6 | PE | Van Dam and Oskam, 1978 | LLK |
10.60 | PE | Katrib and Rabalais, 1973 | LLK |
10.78 | PE | Van Dam and Oskam, 1978 | Vertical value; LLK |
De-protonation reactions
C3H3O2- + =
By formula: C3H3O2- + H+ = C3H4O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 344.2 ± 2.9 | kcal/mol | G+TS | Graul, Schnute, et al., 1990 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 337.2 ± 2.8 | kcal/mol | CIDC | Graul, Schnute, et al., 1990 | gas phase; B |
References
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Van-chin-syan, Kochubei, et al., 1996
Van-chin-syan, Yu.Ya.; Kochubei, V.V.; Sergeev, V.V.; Raevskii, Yu.A.; Gerasimchuk, S.I.; Kotovich, Kh.Z.,
Thermodynamic properties of some acids and aldehydes of the acrylic series,
Sov. J. Chem. Phys. (Engl. Transl.), 1996, 70, 1789-1794, In original 1932. [all data]
Vilcu and Perisanu, 1980
Vilcu, R.; Perisanu, S.,
The ideal gas state enthalpies of formation of some monomers,
Rev. Roum. Chim., 1980, 25, 619-624. [all data]
Moureu and Boutaric, 1920
Moureu, C.; Boutaric, A.,
Some physico-chemical constants of acrylic acid,
J. Chim. Phys., 1920, 18, 348-352. [all data]
Karabaev, Saidov, et al., 1985
Karabaev, M.; Saidov, A.A.; Abduzhaminov, T.P.; Kenisarin, M.M.,
Heat capacity and molecular kinetic processes of condensed phase acrylates and methacrylates, Izv. Akad. Nauk UzSSR,
Ser. Fiz.-Math., 1985, (6), 51-54. [all data]
Karabaev, Abduzhaminov, et al., 1983
Karabaev, M.K.; Abduzhaminov, T.P.; Tursunov, Sh.O.; Igamberdyev, Kh.T.,
Temperature dependence of the thermophysical parameters of liquid acrylic acid, Izv. Akad. Nauk Uzb. SSR,
Ser. Fiz.-Mat. Nauk, 1983, (6), 57-58. [all data]
Graul, Schnute, et al., 1990
Graul, S.T.; Schnute, M.E.; Squires, R.R.,
Gas-Phase Acidities of Carboxylic Acids and Alcohols from Collision-Induced Dissociation of Dimer Cluster Ions,
Int. J. Mass Spectrom. Ion Proc., 1990, 96, 2, 181, https://doi.org/10.1016/0168-1176(90)87028-F
. [all data]
Selyakova, Vytnov, et al., 1976
Selyakova, V.A.; Vytnov, G.F.; Sineokov, A.P.,
Study of the esterification of acrylic acid by butyl alcohol,
Russ. J. Phys. Chem. (Engl. Transl.), 1976, 50, 1692-1694. [all data]
Skinner and Snelson, 1959
Skinner, H.A.; Snelson, A.,
Heats of hydrogenation Part 3.,
Trans. Faraday Soc., 1959, 55, 405-407. [all data]
Van Dam and Oskam, 1978
Van Dam, H.; Oskam, A.,
He(I) and He(II) photoelectron spectra of some substituted ethylenes,
J. Electron Spectrosc. Relat. Phenom., 1978, 13, 273. [all data]
Katrib and Rabalais, 1973
Katrib, A.; Rabalais, J.W.,
Electronic interaction between the vinyl group and its substituents,
J. Phys. Chem., 1973, 77, 2358. [all data]
Notes
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References
- Symbols used in this document:
Cp,liquid Constant pressure heat capacity of liquid IE (evaluated) Recommended ionization energy ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.