2-Butanol
- Formula: C4H10O
- Molecular weight: 74.1216
- IUPAC Standard InChIKey: BTANRVKWQNVYAZ-UHFFFAOYSA-N
- CAS Registry Number: 78-92-2
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Species with the same structure:
- Stereoisomers:
- Other names: sec-Butyl Alcohol; sec-Butanol; CCS 301; Ethyl methyl carbinol; Methyl ethyl carbinol; 1-Methyl-1-propanol; 1-Methylpropyl alcohol; 2-Hydroxybutane; sec-C4H9OH; Butane, 2-hydroxy-; Butanol-2; Butan-2-ol; 2-Butyl alcohol; s-Butyl alcohol; Butylene hydrate; DL-sec-Butanol; DL-2-Butanol; Alcool butylique secondaire; Butanol secondaire; s-Butanol; 1-Methyl propanol; n-Butan-2-ol; NSC 25499
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Phase change data
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 372. ± 1. | K | AVG | N/A | Average of 69 out of 71 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 184.73 | K | N/A | Wilhoit, Chao, et al., 1985 | Uncertainty assigned by TRC = 0.1 K; TRC |
Ttriple | 184.70 | K | N/A | Andon, Connett, et al., 1971 | Uncertainty assigned by TRC = 0.02 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 536. ± 1. | K | AVG | N/A | Average of 8 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 42.0 ± 0.2 | bar | AVG | N/A | Average of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Vc | 0.269 | l/mol | N/A | Gude and Teja, 1995 | |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 3.72 ± 0.02 | mol/l | N/A | Gude and Teja, 1995 | |
ρc | 3.72 | mol/l | N/A | Teja, Lee, et al., 1989 | TRC |
ρc | 3.717 | mol/l | N/A | Ambrose and Townsend, 1963 | TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 48. ± 5. | kJ/mol | AVG | N/A | Average of 9 values; Individual data points |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
40.75 | 372.7 | N/A | Majer and Svoboda, 1985 | |
48.8 | 330. | EB | Gierycz, Kosowski, et al., 2009 | Based on data from 315. to 371. K.; AC |
46.2 | 335. | N/A | Martínez, Lladosa, et al., 2009 | Based on data from 320. to 379. K.; AC |
47.7 | 321. | N/A | Dejoz, Cruz Burguet, et al., 1995 | Based on data from 306. to 373. K.; AC |
49.3 | 318. | A | Stephenson and Malanowski, 1987 | Based on data from 303. to 403. K.; AC |
43.2 | 370. | A | Stephenson and Malanowski, 1987 | Based on data from 359. to 381. K.; AC |
47.9 | 387. | A | Stephenson and Malanowski, 1987 | Based on data from 372. to 524. K.; AC |
57.5 | 225. | A | Stephenson and Malanowski, 1987 | Based on data from 210. to 303. K.; AC |
43.2 | 369. | A | Stephenson and Malanowski, 1987 | Based on data from 359. to 380. K.; AC |
42. | 383. | A | Stephenson and Malanowski, 1987 | Based on data from 368. to 404. K.; AC |
39.6 | 410. | A | Stephenson and Malanowski, 1987 | Based on data from 395. to 485. K.; AC |
35. | 491. | A | Stephenson and Malanowski, 1987 | Based on data from 476. to 536. K.; AC |
44.7 | 355. | EB | Stephenson and Malanowski, 1987 | Based on data from 340. to 379. K. See also Berman and McKetta, 1962 and Ambrose, Counsell, et al., 1970.; AC |
47.8 | 322. | N/A | Sachek, Peshchenko, et al., 1982 | Based on data from 307. to 373. K.; AC |
53.2 | 308. | N/A | Di Cave, Chianese, et al., 1978 | Based on data from 293. to 380. K.; AC |
44.1 | 334. | N/A | Brazhnikov, Andreevskii, et al., 1975 | Based on data from 319. to 372. K.; AC |
50.2 | 295. | N/A | Cabani, Conti, et al., 1975 | Based on data from 280. to 314. K.; AC |
48.1 | 313. | N/A | Wilhoit and Zwolinski, 1973 | Based on data from 298. to 393. K.; AC |
46.3 | 338. | N/A | Brown, Fock, et al., 1969 | Based on data from 323. to 373. K. See also Boublik, Fried, et al., 1984.; AC |
44.1 | 360. | EB | Biddiscombe, Collerson, et al., 1963 | Based on data from 345. to 381. K.; AC |
45.3 ± 0.1 | 340. | C | Berman and McKetta, 1962 | AC |
43.3 ± 0.1 | 355. | C | Berman and McKetta, 1962 | AC |
41.9 ± 0.1 | 365. | C | Berman and McKetta, 1962 | AC |
40.8 ± 0.1 | 372. | C | Berman and McKetta, 1962 | AC |
Enthalpy of vaporization
ΔvapH = A exp(-αTr)
(1 − Tr)β
ΔvapH =
Enthalpy of vaporization (at saturation pressure)
(kJ/mol)
Tr = reduced temperature (T / Tc)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 372. |
---|---|
A (kJ/mol) | 52.6 |
α | -1.462 |
β | 1.0701 |
Tc (K) | 536. |
Reference | Majer and Svoboda, 1985 |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
422.11 to 535.9 | 4.19827 | 1094.254 | -111.603 | Ambrose and Townsend, 1963, 2 | Coefficents calculated by NIST from author's data. |
345.54 to 380.30 | 4.32943 | 1158.672 | -104.683 | Biddiscombe, Collerson, et al., 1963, 2 | Coefficents calculated by NIST from author's data. |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
6.000 | 177.38 | Andon, Connett, et al., 1971, 2 | DH |
5.970 | 184.70 | Andon, Connett, et al., 1971, 2 | DH |
5.97 | 184.7 | Andon, Connett, et al., 1971, 3 | AC |
Entropy of fusion
ΔfusS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
33.83 | 177.38 | Andon, Connett, et al., 1971, 2 | DH |
32.32 | 184.70 | Andon, Connett, et al., 1971, 2 | DH |
Reaction thermochemistry data
Go To: Top, Phase change data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
RCD - Robert C. Dunbar
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
C4H9O- + =
By formula: C4H9O- + H+ = C4H10O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1565. ± 8.4 | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
ΔrH° | 1566. ± 8.8 | kJ/mol | G+TS | Taft, 1987 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrH° | 1565. ± 12. | kJ/mol | G+TS | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1538. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
ΔrG° | 1538. ± 8.4 | kJ/mol | IMRE | Taft, 1987 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrG° | 1538. ± 11. | kJ/mol | CIDC | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale; B |
By formula: H2 + C4H8O = C4H10O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -54.18 | kJ/mol | Eqk | Buckley and Herington, 1965 | gas phase; ALS |
ΔrH° | -54.3 ± 0.4 | kJ/mol | Chyd | Dolliver, Gresham, et al., 1938 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -55.2 ± 0.4 kJ/mol; At 355 °K; ALS |
By formula: C4H10O = H2 + C4H8O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 54.22 | kJ/mol | Eqk | Cubberley and Mueller, 1946 | gas phase; ALS |
ΔrH° | 57.170 | kJ/mol | Eqk | Kolb and Burwell, 1945 | gas phase; ALS |
By formula: C4H8 + C4H10O = C8H18O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -37.7 ± 2.4 | kJ/mol | Eqk | Sharonov, Mishentseva, et al., 1991 | liquid phase; ALS |
By formula: C2H2O + C4H10O = C6H12O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -144.5 | kJ/mol | Cm | Rice and Greenberg, 1934 | liquid phase; ALS |
By formula: Na+ + C4H10O = (Na+ • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 117. ± 5.0 | kJ/mol | CIDT | Rodgers and Armentrout, 1999 | RCD |
By formula: Li+ + C4H10O = (Li+ • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 174. ± 9.2 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
Gas phase ion energetics data
Go To: Top, Phase change data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 9.88 ± 0.03 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 815. | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 784.6 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
9.88 ± 0.03 | PIPECO | Shao, Baer, et al., 1988 | LL |
9.88 ± 0.07 | EI | Bowen and Maccoll, 1984 | LBLHLM |
9.88 | EI | Holmes, Burgers, et al., 1982 | LBLHLM |
9.88 | EI | Holmes, Fingas, et al., 1981 | LLK |
10.23 | PE | Benoit and Harrison, 1977 | Vertical value; LLK |
10.35 ± 0.03 | PE | Peel and Willett, 1975 | Vertical value; LLK |
Appearance energy determinations
De-protonation reactions
C4H9O- + =
By formula: C4H9O- + H+ = C4H10O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1565. ± 8.4 | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
ΔrH° | 1566. ± 8.8 | kJ/mol | G+TS | Taft, 1987 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrH° | 1565. ± 12. | kJ/mol | G+TS | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1538. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
ΔrG° | 1538. ± 8.4 | kJ/mol | IMRE | Taft, 1987 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrG° | 1538. ± 11. | kJ/mol | CIDC | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale; B |
References
Go To: Top, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Wilhoit, Chao, et al., 1985
Wilhoit, R.C.; Chao, J.; Hall, K.R.,
Thermodynamic Properties of Key Organic Compounds in the Carbon Range C1 to C4. Part 1. Properties of Condensed Phases,
J. Phys. Chem. Ref. Data, 1985, 14, 1. [all data]
Andon, Connett, et al., 1971
Andon, R.J.L.; Connett, J.E.; Counsell, J.F.; Lees, E.B.; Martin, J.F.,
Thermodynamic properties of organic oxygen compounds: xxvii racemate of - butan-2-ol and (+)-butan-2-ol,
J. Chem. Soc. A, 1971, 1971, 661-4. [all data]
Gude and Teja, 1995
Gude, M.; Teja, A.S.,
Vapor-Liquid Critical Properties of Elements and Compounds. 4. Aliphatic Alkanols,
J. Chem. Eng. Data, 1995, 40, 1025-1036. [all data]
Teja, Lee, et al., 1989
Teja, A.S.; Lee, R.J.; Rosenthal, D.J.; Anselme, M.J.,
Correlation of the Critical Properties of Alkanes and Alkanols
in 5th IUPAC Conference on Alkanes and AlkanolsGradisca, 1989. [all data]
Ambrose and Townsend, 1963
Ambrose, D.; Townsend, R.,
Thermodynamic Properties of Organic Oxygen Compounds IX. The Critical Properties and Vapor Pressures Above Five Atmospheres of Six Aliphatic Alcohols,
J. Chem. Soc., 1963, 54, 3614-25. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Gierycz, Kosowski, et al., 2009
Gierycz, Pawel; Kosowski, Andrzej; Swietlik, Ryszard,
Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols,
J. Chem. Eng. Data, 2009, 54, 11, 2996-3001, https://doi.org/10.1021/je900050z
. [all data]
Martínez, Lladosa, et al., 2009
Martínez, Nelson F.; Lladosa, Estela; Burguet, MªCruz; Montón, Juan B.; Yazimon, Marlen,
Isobaric vapour--liquid equilibria for the binary systems 4-methyl-2-pentanone+1-butanol and+2-butanol at 20 and 101.3kPa,
Fluid Phase Equilibria, 2009, 277, 1, 49-54, https://doi.org/10.1016/j.fluid.2008.11.012
. [all data]
Dejoz, Cruz Burguet, et al., 1995
Dejoz, Ana; Cruz Burguet, M.; Munoz, Rosa; Sanchotello, Margarita,
Isobaric Vapor-Liquid Equilibria of Tetrachloroethylene with 1-Butanol and 2-Butanol at 6 and 20 kPa,
J. Chem. Eng. Data, 1995, 40, 1, 290-292, https://doi.org/10.1021/je00017a064
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Berman and McKetta, 1962
Berman, Neil S.; McKetta, John J.,
THE THERMODYNAMIC PROPERTIES OF 2-BUTANOL,
J. Phys. Chem., 1962, 66, 8, 1444-1448, https://doi.org/10.1021/j100814a016
. [all data]
Ambrose, Counsell, et al., 1970
Ambrose, D.; Counsell, J.F.; Davenport, A.J.,
The use of Chebyshev polynomials for the representation of vapour pressures between the triple point and the critical point,
The Journal of Chemical Thermodynamics, 1970, 2, 2, 283-294, https://doi.org/10.1016/0021-9614(70)90093-5
. [all data]
Sachek, Peshchenko, et al., 1982
Sachek, A.I.; Peshchenko, A.D.; Markovnik, V.S.; Ral'ko, O.V.; Andreevskii, D.N.; Leont'eva, A.A.,
Termodin. Org. Soedin., 1982, 94. [all data]
Di Cave, Chianese, et al., 1978
Di Cave, Sergio; Chianese, Angelo; Prantera, Antonio,
Vapor-liquid equilibrium of the system methylethylketone-sec-butyl alcohol,
J. Chem. Eng. Data, 1978, 23, 4, 279-281, https://doi.org/10.1021/je60079a013
. [all data]
Brazhnikov, Andreevskii, et al., 1975
Brazhnikov, M.M.; Andreevskii, D.N.; Sachek, A.I.; Peshchenko, A.D.,
Zh. Prikl. Khim. (Leningrad), 1975, 48, 10, 2181. [all data]
Cabani, Conti, et al., 1975
Cabani, Sergio; Conti, G.; Mollica, V.; Lepori, L.,
Thermodynamic study of dilute aqueous solutions of organic compounds. Part 4.---Cyclic and straight chain secondary alcohols,
J. Chem. Soc., Faraday Trans. 1, 1975, 71, 0, 1943, https://doi.org/10.1039/f19757101943
. [all data]
Wilhoit and Zwolinski, 1973
Wilhoit, R.C.; Zwolinski, B.J.,
Physical and thermodynamic properties of aliphatic alcohols,
J. Phys. Chem. Ref. Data Suppl., 1973, 1, 2, 1. [all data]
Brown, Fock, et al., 1969
Brown, I.; Fock, W.; Smith, F.,
The thermodynamic properties of solutions of normal and branched alcohols in benzene and n-hexane,
The Journal of Chemical Thermodynamics, 1969, 1, 3, 273-291, https://doi.org/10.1016/0021-9614(69)90047-0
. [all data]
Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E.,
The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]
Biddiscombe, Collerson, et al., 1963
Biddiscombe, D.P.; Collerson, R.R.; Handley, R.; Herington, E.F.G.; Martin, J.F.; Sprake, C.H.S.,
364. Thermodynamic properties of organic oxygen compounds. Part VIII. Purification and vapour pressures of the propyl and butyl alcohols,
J. Chem. Soc., 1963, 1954, https://doi.org/10.1039/jr9630001954
. [all data]
Ambrose and Townsend, 1963, 2
Ambrose, D.; Townsend, R.,
Thermodynamic Properties of Organic Oxygen Compounds. Part 9. The Critical Properties and Vapour Pressures, above Five Atmospheres, of Six Aliphatic Alcohols,
J. Chem. Soc., 1963, 3614-3625, https://doi.org/10.1039/jr9630003614
. [all data]
Biddiscombe, Collerson, et al., 1963, 2
Biddiscombe, D.P.; Collerson, R.R.; Handley, R.; Herington, E.F.G.; Martin, J.F.; Sprake, C.H.S.,
Thermodynamic Properties of Organic Oxygen Compounds. Part 8. Purification and Vapor Pressures of the Propyl and Butyl Alcohols,
J. Chem. Soc., 1963, 1954-1957, https://doi.org/10.1039/jr9630001954
. [all data]
Andon, Connett, et al., 1971, 2
Andon, R.J.; Connett, J.E.; Counsell, J.F.; Lees, E.B.; Martin, J.F.,
Thermodynamic properties of organic oxygen compounds. Part XXVII. (±)-Butan-2-ol and (+)-Butan-2-ol, 1971, J. [all data]
Andon, Connett, et al., 1971, 3
Andon, R.J.L.; Connett, J.E.; Counsell, J.F.; Lees, E.B.; Martin, J.F.,
Thermodynamic properties of organic oxygen compounds. Part XXVII. («65533»)-Butan-2-ol and (+)-butan-2-ol,
J. Chem. Soc., A, 1971, 661, https://doi.org/10.1039/j19710000661
. [all data]
Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G.,
The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols,
Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W
. [all data]
Taft, 1987
Taft, R.W.,
The Nature and Analysis of Substitutent Electronic Effects,
Personal communication. See also Prog. Phys. Org. Chem., 1987, 16, 1. [all data]
Boand, Houriet, et al., 1983
Boand, G.; Houriet, R.; Baumann, T.,
The gas phase acidity of aliphatic alcohols,
J. Am. Chem. Soc., 1983, 105, 2203. [all data]
Buckley and Herington, 1965
Buckley, E.; Herington, E.F.G.,
Equilibria in some secondary alcohol + hydrogen + ketone systems,
Trans. Faraday Soc., 1965, 61, 1618-1625. [all data]
Dolliver, Gresham, et al., 1938
Dolliver, M.A.; Gresham, T.L.; Kistiakowsky, G.B.; Smith, E.A.; Vaughan, W.E.,
Heats of organic reactions. VI. Heats of hydrogenation of some oxygen-containing compounds,
J. Am. Chem. Soc., 1938, 60, 440-450. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Cubberley and Mueller, 1946
Cubberley, A.H.; Mueller, M.B.,
Equilibrium studies on the dehydrogenation of primary and secondary alcohols. I. 2-Butanol, 2-octanol, cyclopentanol and benzyl alcohol,
J. Am. Chem. Soc., 1946, 68, 1149-1151. [all data]
Kolb and Burwell, 1945
Kolb, H.J.; Burwell, R.L., Jr.,
Equilibrium in the dehydrogenation of secondary propyl and butyl alcohols,
J. Am. Chem. Soc., 1945, 67, 1084-1088. [all data]
Sharonov, Mishentseva, et al., 1991
Sharonov, K.G.; Mishentseva, Y.B.; Rozhnov, A.M.; Miroshnichenko, E.A.; Korchatova, L.I.,
Molar enthalpies of formation and vaporizqation of t-butoxybutanes and thermodynamics of their synthesis from a butanol and 2-methylpropene I. Equilibria of synthesis reactions of t-butoxybutanes in the liquid phase,
J. Chem. Thermodyn., 1991, 23, 141-145. [all data]
Rice and Greenberg, 1934
Rice, F.O.; Greenberg, J.,
Ketene. III. Heat of formation and heat of reaction with alcohols,
J. Am. Chem. Soc., 1934, 38, 2268-2270. [all data]
Rodgers and Armentrout, 1999
Rodgers, M.T.; Armentrout, P.B.,
Absolute Binding Energies of Sodium Ions to Short-Chain Alcohols, CnH2n+2O, n=1-4, Determined by Threshold Collision-Induced Dissociation Experiments and Ab Initio Theory, 1999, 4955. [all data]
Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B.,
Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation,
Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X
. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Shao, Baer, et al., 1988
Shao, J.D.; Baer, T.; Lewis, D.K.,
Dissociation dynamics of energy-selected ion-dipole complexes. 2. Butyl alcohol ions,
J. Phys. Chem., 1988, 92, 5123. [all data]
Bowen and Maccoll, 1984
Bowen, R.D.; Maccoll, A.,
Low energy, low temperature mass spectra,
Org. Mass Spectrom., 1984, 19, 379. [all data]
Holmes, Burgers, et al., 1982
Holmes, J.L.; Burgers, P.C.; Mollah, Y.A.,
Alkane elimination from ionized alkanols,
Org. Mass Spectrom., 1982, 17, 127. [all data]
Holmes, Fingas, et al., 1981
Holmes, J.L.; Fingas, M.; Lossing, F.P.,
Towards a general scheme for estimating the heats of formation of organic ions in the gas phase. Part I. Odd-electron cations,
Can. J. Chem., 1981, 59, 80. [all data]
Benoit and Harrison, 1977
Benoit, F.M.; Harrison, A.G.,
Predictive value of proton affinity. Ionization energy correlations involving oxygenated molecules,
J. Am. Chem. Soc., 1977, 99, 3980. [all data]
Peel and Willett, 1975
Peel, J.B.; Willett, G.D.,
Photoelectron spectroscopic studies of the higher alcohols,
Aust. J. Chem., 1975, 28, 2357. [all data]
Burgers and Holmes, 1982
Burgers, P.C.; Holmes, J.L.,
Metastable ion studies. XIII. The measurement of appearance energies of metastable peaks,
Org. Mass Spectrom., 1982, 17, 123. [all data]
Holmes, Rye, et al., 1979
Holmes, J.L.; Rye, R.T.B.; Terlouw, J.K.,
On the loss of ethylene from [C3H7O]+ ions of structure CH3CH2CHOH,
Org. Mass Spectrom., 1979, 14, 606. [all data]
Harrison, Ivko, et al., 1966
Harrison, A.G.; Ivko, A.; Van Raalte, D.,
Energetics of formation of some oxygenated ions and the proton affinities of carbonyl compounds,
Can. J. Chem., 1966, 44, 1625. [all data]
Holmes, Lossing, et al., 1988
Holmes, J.L.; Lossing, F.P.; Maccoll, A.,
Heats of formation of alkyl radicals from appearance energies,
J. Am. Chem. Soc., 1988, 110, 7339. [all data]
Lossing, 1977
Lossing, F.P.,
Heats of formation of some isomeric [CnH2n+1]+ ions. Substitutional effects on ion stability,
J. Am. Chem. Soc., 1977, 99, 7526. [all data]
Notes
Go To: Top, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, References
- Symbols used in this document:
AE Appearance energy IE (evaluated) Recommended ionization energy Pc Critical pressure Tboil Boiling point Tc Critical temperature Ttriple Triple point temperature Vc Critical volume ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.