magnesium bromide
- Formula: Br2Mg
- Molecular weight: 184.113
- CAS Registry Number: 7789-48-2
- Information on this page:
- Options:
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -72.400 | kcal/mol | Review | Chase, 1998 | Data last reviewed in June, 1974 |
Quantity | Value | Units | Method | Reference | Comment |
S°gas,1 bar | 71.948 | cal/mol*K | Review | Chase, 1998 | Data last reviewed in June, 1974 |
Gas Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (cal/mol*K)
H° = standard enthalpy (kcal/mol)
S° = standard entropy (cal/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 2000. to 6000. |
---|---|
A | 14.82150 |
B | 0.070295 |
C | -0.019036 |
D | 0.001624 |
E | -0.073111 |
F | -77.06740 |
G | 89.45179 |
H | -72.40019 |
Reference | Chase, 1998 |
Comment | Data last reviewed in June, 1974 |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -117.21 | kcal/mol | Review | Chase, 1998 | Data last reviewed in June, 1974 |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid,1 bar | 35.968 | cal/mol*K | Review | Chase, 1998 | Data last reviewed in June, 1974 |
Quantity | Value | Units | Method | Reference | Comment |
ΔfH°solid | -125.30 | kcal/mol | Review | Chase, 1998 | Data last reviewed in June, 1974 |
Quantity | Value | Units | Method | Reference | Comment |
S°solid | 27.990 | cal/mol*K | Review | Chase, 1998 | Data last reviewed in June, 1974 |
Liquid Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (cal/mol*K)
H° = standard enthalpy (kcal/mol)
S° = standard entropy (cal/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 984. to 2000. |
---|---|
A | 25.00000 |
B | -6.067520×10-8 |
C | 3.624381×10-8 |
D | -7.385101×10-9 |
E | -4.555980×10-9 |
F | -127.1060 |
G | 60.90449 |
H | -117.2100 |
Reference | Chase, 1998 |
Comment | Data last reviewed in June, 1974 |
Solid Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (cal/mol*K)
H° = standard enthalpy (kcal/mol)
S° = standard entropy (cal/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 984. |
---|---|
A | 20.48140 |
B | -3.984511 |
C | 6.190311 |
D | -1.404941 |
E | -0.205494 |
F | -131.9740 |
G | 52.54469 |
H | -125.3000 |
Reference | Chase, 1998 |
Comment | Data last reviewed in June, 1974 |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: José A. Martinho Simões
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
(g) + CH3BrMg (solution) = (solution) + Br2Mg (solution)
By formula: HBr (g) + CH3BrMg (solution) = CH4 (solution) + Br2Mg (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -65.61 ± 0.53 | kcal/mol | RSC | Holm, 1981 | solvent: Diethyl ether; The enthalpy of formation was calculated using the assumptions and the auxiliary data in Holm, 1981, except for the organic compound, whose enthalpy of formation was quoted from Pedley, 1994 |
(g) + C2H3BrMg (solution) = (solution) + Br2Mg (solution)
By formula: HBr (g) + C2H3BrMg (solution) = C2H4 (solution) + Br2Mg (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -70.29 ± 0.53 | kcal/mol | RSC | Holm, 1981 | solvent: Tetrahydrofuran |
C4H9BrMg (solution) + (g) = (solution) + Br2Mg (solution)
By formula: C4H9BrMg (solution) + HBr (g) = C4H10 (solution) + Br2Mg (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -69.91 ± 0.53 | kcal/mol | RSC | Holm, 1981 | solvent: Diethyl ether |
C4H9BrMg (solution) + (g) = (solution) + Br2Mg (solution)
By formula: C4H9BrMg (solution) + HBr (g) = C4H10 (solution) + Br2Mg (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -73.11 ± 0.53 | kcal/mol | RSC | Holm, 1981 | solvent: Diethyl ether |
C5H11BrMg (solution) + (g) = (solution) + Br2Mg (solution)
By formula: C5H11BrMg (solution) + HBr (g) = C5H12 (solution) + Br2Mg (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -73.21 ± 0.53 | kcal/mol | RSC | Holm, 1981 | solvent: Diethyl ether |
C19H15BrMg (solution) + (g) = (solution) + Br2Mg (solution)
By formula: C19H15BrMg (solution) + HBr (g) = C19H16 (solution) + Br2Mg (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -55.21 ± 0.53 | kcal/mol | RSC | Holm, 1981 | solvent: Diethyl ether |
C3H7BrMg (solution) + (g) = (solution) + Br2Mg (solution)
By formula: C3H7BrMg (solution) + HBr (g) = C3H8 (solution) + Br2Mg (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -73.11 ± 0.53 | kcal/mol | RSC | Holm, 1981 | solvent: Diethyl ether |
(g) + C2H5BrMg (solution) = (solution) + Br2Mg (solution)
By formula: HBr (g) + C2H5BrMg (solution) = C2H6 (solution) + Br2Mg (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -71.51 ± 0.53 | kcal/mol | RSC | Holm, 1981 | solvent: Diethyl ether |
C10H22Mg (cr) + (g) + (l) = 2 (l) + Br2Mg (cr)
By formula: C10H22Mg (cr) + H2 (g) + Br2 (l) = 2C5H12 (l) + Br2Mg (cr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -160.0 ± 1.6 | kcal/mol | RSC | Akkerman, Schat, et al., 1983 |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
10.47 | PE | Lee and Potts, 1979 | LLK |
10.65 ± 0.15 | EI | Berkowitz and Marquart, 1962 | RDSH |
10.85 ± 0.03 | PE | Lee and Potts, 1979 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
Br+ | 16. ± 1. | ? | EI | Berkowitz and Marquart, 1962 | RDSH |
MgBr+ | 12.0 ± 0.4 | Br | EI | Berkowitz and Marquart, 1962 | RDSH |
Br2+ | 17. ± 1. | Mg | EI | Berkowitz and Marquart, 1962 | RDSH |
Mg+ | 16. ± 1. | ? | EI | Berkowitz and Marquart, 1962 | RDSH |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Chase, 1998
Chase, M.W., Jr.,
NIST-JANAF Themochemical Tables, Fourth Edition,
J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]
Holm, 1981
Holm, T.,
J. Chem. Soc., Perkin Trans. II, 1981, 464.. [all data]
Pedley, 1994
Pedley, J.B.,
Thermodynamic Data and Structures of Organic Compounds; Thermodynamics Research Center Data Series, Vol I, Thermodynamics Research Center, College Station, 1994. [all data]
Akkerman, Schat, et al., 1983
Akkerman, O.S.; Schat, G.; Evers, E.A.I.M.; Bickelhaupt, F.,
Recl. Trav. Chim. Pays-Bas, 1983, 102, 109. [all data]
Lee and Potts, 1979
Lee, E.P.F.; Potts, A.W.,
An investigation of the valence shell electronic structure of alkaline earth halides by using Ab initio S. C. F. calculations and photoelectron spectroscopy,
Proc. R. Soc. London A:, 1979, 365, 395. [all data]
Berkowitz and Marquart, 1962
Berkowitz, J.; Marquart, J.R.,
Mass-spectrometric study of the magnesium halides,
J. Chem. Phys., 1962, 37, 1853. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References
- Symbols used in this document:
AE Appearance energy S°gas,1 bar Entropy of gas at standard conditions (1 bar) S°liquid,1 bar Entropy of liquid at standard conditions (1 bar) S°solid Entropy of solid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfH°solid Enthalpy of formation of solid at standard conditions ΔrH° Enthalpy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.