Hydrogen sulfide
- Formula: H2S
- Molecular weight: 34.081
- IUPAC Standard InChIKey: RWSOTUBLDIXVET-UHFFFAOYSA-N
- CAS Registry Number: 7783-06-4
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Dihydrogen monosulfide; Dihydrogen sulfide; Hydrosulfuric acid; Stink damp; Sulfur hydride; Sulfureted hydrogen; H2S; Sulfuretted hydrogen; Hydrogen sulphide; Hydrogen sulfide (H2S); Acide sulfhydrique; Hydrogene sulfure; Idrogeno solforato; Rcra waste number U135; Schwefelwasserstoff; Siarkowodor; UN 1053; Zwavelwaterstof; Hepatic gas; Hepatic acid; Hydrogen monosulfide; Sewer gas
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Phase change data
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 212.87 | K | N/A | Goodwin, 1983 | Uncertainty assigned by TRC = 0.07 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 190.85 | K | N/A | Beckmann and Waentig, 1910 | Uncertainty assigned by TRC = 1.5 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 187.66 | K | N/A | Goodwin, 1983 | Uncertainty assigned by TRC = 0.06 K; TRC |
Ttriple | 187.61 | K | N/A | Giauque and Blue, 1936 | Crystal phase 1 phase; Uncertainty assigned by TRC = 0.03 K; temp. scale for transition tempertures, T0 = 273.10 K Nature of transition C2 - C1 not definitely established; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Ptriple | 0.232 | bar | N/A | Goodwin, 1983 | Uncertainty assigned by TRC = 0.005 bar; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 373.3 | K | N/A | Cubitt, Henderson, et al., 1987 | Uncertainty assigned by TRC = 0.37 K; Tc from H.Kopper, 1936-450; TRC |
Tc | 373.4 | K | N/A | Goodwin, 1983 | Uncertainty assigned by TRC = 0.15 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 89.70 | bar | N/A | Cubitt, Henderson, et al., 1987 | Uncertainty assigned by TRC = 0.18 bar; from VP equation fitted to lit. values of vapour pressure; TRC |
Pc | 89.6291 | bar | N/A | Goodwin, 1983 | Uncertainty assigned by TRC = 0.30 bar; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 10.2 | mol/l | N/A | Goodwin, 1983 | Uncertainty assigned by TRC = 0.1 mol/l; TRC |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
19.5 | 200. | Dykyj, Svoboda, et al., 1999 | Based on data from 185. to 228. K.; AC |
18.6 | 243. | Dykyj, Svoboda, et al., 1999 | Based on data from 228. to 363. K.; AC |
21.9 | 200. | Giauque and Blue, 1936, 2 | Based on data from 187. to 213. K.; AC |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
138.8 to 212.8 | 4.43681 | 829.439 | -25.412 | Stull, 1947 | Coefficents calculated by NIST from author's data. |
212.8 to 349.5 | 4.52887 | 958.587 | -0.539 | Stull, 1947 | Coefficents calculated by NIST from author's data. |
Enthalpy of sublimation
ΔsubH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
22.5 | 135. | MG | Clark, Cockett, et al., 1951 | Based on data from 128. to 142. K.; AC |
25.4 | 175. | N/A | Giauque and Blue, 1936, 2 | Based on data from 164. to 187. K.; AC |
Reaction thermochemistry data
Go To: Top, Phase change data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
HS- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1470. ± 3. | kJ/mol | AVG | N/A | Average of 6 out of 7 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1441. ± 13. | kJ/mol | H-TS | Rempala and Ervin, 2000 | gas phase; B |
ΔrG° | 1443. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrG° | 1443.1 ± 0.42 | kJ/mol | H-TS | Shiell, Hu, et al., 1900 | gas phase; 0K:350.125±0.009 kcal/mol, corr to 298K from Gurvich, Veyts, et al., With EA( Breyer, Frey, et al., 1981)BDE(0K)=89.97±0.05; B |
ΔrG° | 1446. ± 8.4 | kJ/mol | IMRE | Cumming and Kebarle, 1978 | gas phase; B |
ΔrG° | 1432.2 | kJ/mol | N/A | Check, Faust, et al., 2001 | gas phase; MnO2-(t); ; ΔS(EA)=5.4; B |
By formula: F- + H2S = (F- • H2S)
Bond type: Hydrogen bond (negative ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 145. ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1983 | gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 78.7 | J/mol*K | N/A | Larson and McMahon, 1983 | gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 121. ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1983 | gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M |
By formula: H3S+ + H2S = (H3S+ • H2S)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 64.4 | kJ/mol | PHPMS | Hiraoka and Kebarle, 1977 | gas phase; M |
ΔrH° | 45.2 | kJ/mol | PI | Walters and Blais, 1984 | gas phase; M |
ΔrH° | 44.4 | kJ/mol | PI | Prest, Tzeng, et al., 1983 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 102. | J/mol*K | PHPMS | Hiraoka and Kebarle, 1977 | gas phase; M |
ΔrS° | 74.5 | J/mol*K | PHPMS | Meot-Ner (Mautner) and Field, 1977 | gas phase; Entropy change is questionable; M |
ΔrS° | 78.2 | J/mol*K | PHPMS | Meot-Ner (Mautner) and Field, 1977 | gas phase; M |
By formula: CN- + H2S = (CN- • H2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 79.1 ± 4.2 | kJ/mol | TDEq | Meot-ner, 1988 | gas phase; B |
ΔrH° | 83. ± 15. | kJ/mol | IMRE | Larson and McMahon, 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 99.6 | J/mol*K | N/A | Larson and McMahon, 1987 | gas phase; switching reaction,Thermochemical ladder(CN-)H2O, Entropy change calculated or estimated; Payzant, Yamdagni, et al., 1971; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 54.0 ± 4.2 | kJ/mol | TDEq | Meot-ner, 1988 | gas phase; B |
ΔrG° | 51.9 ± 9.6 | kJ/mol | IMRE | Larson and McMahon, 1987 | gas phase; B,M |
By formula: (H3S+ • 3H2S) + H2S = (H3S+ • 4H2S)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 28. | kJ/mol | PHPMS | Hiraoka and Kebarle, 1977 | gas phase; M |
ΔrH° | 10. | kJ/mol | PI | Walters and Blais, 1984 | gas phase; M |
ΔrH° | 14. | kJ/mol | PHPMS | Meot-Ner (Mautner) and Field, 1977 | gas phase; Entropy change is questionable; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 103. | J/mol*K | PHPMS | Hiraoka and Kebarle, 1977 | gas phase; M |
ΔrS° | 42. | J/mol*K | PHPMS | Meot-Ner (Mautner) and Field, 1977 | gas phase; Entropy change is questionable; M |
By formula: (H3S+ • 2H2S) + H2S = (H3S+ • 3H2S)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18. | kJ/mol | PI | Walters and Blais, 1984 | gas phase; M |
ΔrH° | 35. | kJ/mol | PHPMS | Hiraoka and Kebarle, 1977 | gas phase; M |
ΔrH° | 23. | kJ/mol | PHPMS | Meot-Ner (Mautner) and Field, 1977 | gas phase; Entropy change is questionable; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 103. | J/mol*K | PHPMS | Hiraoka and Kebarle, 1977 | gas phase; M |
ΔrS° | 59. | J/mol*K | PHPMS | Meot-Ner (Mautner) and Field, 1977 | gas phase; Entropy change is questionable; M |
By formula: (H3S+ • H2S) + H2O = (H3S+ • H2O • H2S)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 79.9 | kJ/mol | PHPMS | Hiraoka and Kebarle, 1977 | gas phase; From thermochemical cycle,switching reaction(H3S+ H2O)H2O; Cunningham, Payzant, et al., 1972, Lias, Liebman, et al., 1984; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 91.2 | J/mol*K | PHPMS | Hiraoka and Kebarle, 1977 | gas phase; From thermochemical cycle,switching reaction(H3S+ H2O)H2O; Cunningham, Payzant, et al., 1972, Lias, Liebman, et al., 1984; M |
By formula: (H3S+ • H2S) + H2S = (H3S+ • 2H2S)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 38. | kJ/mol | PHPMS | Hiraoka and Kebarle, 1977 | gas phase; M |
ΔrH° | 25. | kJ/mol | PI | Walters and Blais, 1984 | gas phase; M |
ΔrH° | 30. | kJ/mol | PHPMS | Meot-Ner (Mautner) and Field, 1977 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 87.4 | J/mol*K | PHPMS | Hiraoka and Kebarle, 1977 | gas phase; M |
ΔrS° | 72.4 | J/mol*K | PHPMS | Meot-Ner (Mautner) and Field, 1977 | gas phase; M |
By formula: (H3S+ • 4H2S) + H2S = (H3S+ • 5H2S)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 26. | kJ/mol | PHPMS | Hiraoka and Kebarle, 1977 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | PHPMS | Hiraoka and Kebarle, 1977 | gas phase; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
7.1 | 185. | PHPMS | Hiraoka and Kebarle, 1977 | gas phase; M |
By formula: CH6N+ + H2S = (CH6N+ • H2S)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 45.2 | kJ/mol | PHPMS | Meot-Ner (Mautner) and Sieck, 1985 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84. | J/mol*K | PHPMS | Meot-Ner (Mautner) and Sieck, 1985 | gas phase; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
23. | 270. | PHPMS | Meot-Ner (Mautner) and Sieck, 1985 | gas phase; M |
By formula: HS- + H2S = (HS- • H2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 55.2 ± 4.2 | kJ/mol | TDAs | Meot-ner, 1988 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 82.4 | J/mol*K | PHPMS | Meot-ner, 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 31. ± 4.2 | kJ/mol | TDAs | Meot-ner, 1988 | gas phase; B |
By formula: H4N+ + H2S = (H4N+ • H2S)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 47.7 | kJ/mol | PHPMS | Meot-Ner (Mautner) and Sieck, 1985 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 69.9 | J/mol*K | PHPMS | Meot-Ner (Mautner) and Sieck, 1985 | gas phase; M |
By formula: C3H7+ + H2S = (C3H7+ • H2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 134. | kJ/mol | PHPMS | Meot-Ner (Mautner) and Sieck, 1991 | gas phase; condensation; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 146. | J/mol*K | PHPMS | Meot-Ner (Mautner) and Sieck, 1991 | gas phase; condensation; M |
By formula: COS + H2O = CO2 + H2S
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -33.4 ± 0.96 | kJ/mol | Eqk | Terres and Wesemann, 1932 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -35.66 kJ/mol; ALS |
By formula: (H2S+ • H2S) + H2S = (H2S+ • 2H2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18. | kJ/mol | PI | Prest, Tzeng, et al., 1983 | gas phase; M |
ΔrH° | 13. | kJ/mol | PI | Walters and Blais, 1981 | gas phase; M |
By formula: I- + H2S = (I- • H2S)
Bond type: Hydrogen bond (negative ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 37. ± 4.2 | kJ/mol | TDAs | Caldwell, Masucci, et al., 1989 | gas phase; B,M |
By formula: H2S+ + H2S = (H2S+ • H2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 88.7 | kJ/mol | PI | Prest, Tzeng, et al., 1983 | gas phase; M |
ΔrH° | 71.1 | kJ/mol | PI | Walters and Blais, 1981 | gas phase; M |
By formula: C2H4OS + H2O = C2H4O2 + H2S
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -2.7 ± 0.3 | kJ/mol | Cm | Sunner and Wadso, 1957 | liquid phase; Heat of hydrolysis; ALS |
By formula: F5S- + H2S = (F5S- • H2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 212. ± 48. | kJ/mol | SIFT | Zangerle, Hansel, et al., 1993 | gas phase; CID with Ar; M |
By formula: (H2S+ • 2H2S) + H2S = (H2S+ • 3H2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 5.0 | kJ/mol | PI | Walters and Blais, 1981 | gas phase; M |
By formula: (H2S+ • 3H2S) + H2S = (H2S+ • 4H2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 5.9 | kJ/mol | PI | Walters and Blais, 1981 | gas phase; M |
By formula: (H2S+ • 4H2S) + H2S = (H2S+ • 5H2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11. | kJ/mol | PI | Walters and Blais, 1981 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 44. ± 1. | kJ/mol | Cm | Gattow and Krebes, 1963 | liquid phase; ALS |
+ = H2NOS-
By formula: NO- + H2S = H2NOS-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 23.4 | kJ/mol | N/A | Hendricks, de Clercq, et al., 2002 | gas phase; B |
Gas phase ion energetics data
Go To: Top, Phase change data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
View reactions leading to H2S+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 10.457 ± 0.012 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 705. | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 673.8 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Ionization energy determinations
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
HS+ | 14.300 ± 0.024 | H | PI | Prest, Tzeng, et al., 1983, 2 | LBLHLM |
HS+ | 14.7 ± 0.2 | H | EI | Balkis, Gaines, et al., 1976 | LLK |
HS+ | 14.4 | H | EI | Morrison and Traeger, 1973 | LLK |
HS+ | 14.27 ± 0.02 | H | PI | Dibeler and Liston, 1968 | RDSH |
HS+ | 14.4 ± 0.1 | H | EI | Palmer and Lossing, 1962 | RDSH |
S+ | 13.375 ± 0.022 | H2 | PI | Prest, Tzeng, et al., 1983, 2 | LBLHLM |
S+ | 13.41 | H2 | PIPECO | Eland, 1979 | LLK |
S+ | 13.5 | H2 | EI | Morrison and Traeger, 1973 | LLK |
S+ | 13.36 ± 0.01 | H2 | PI | Dibeler and Liston, 1968 | RDSH |
S+ | 13.40 ± 0.01 | H2 | PI | Dibeler and Liston, 1968 | RDSH |
De-protonation reactions
HS- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1470. ± 3. | kJ/mol | AVG | N/A | Average of 6 out of 7 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1441. ± 13. | kJ/mol | H-TS | Rempala and Ervin, 2000 | gas phase; B |
ΔrG° | 1443. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrG° | 1443.1 ± 0.42 | kJ/mol | H-TS | Shiell, Hu, et al., 1900 | gas phase; 0K:350.125±0.009 kcal/mol, corr to 298K from Gurvich, Veyts, et al., With EA( Breyer, Frey, et al., 1981)BDE(0K)=89.97±0.05; B |
ΔrG° | 1446. ± 8.4 | kJ/mol | IMRE | Cumming and Kebarle, 1978 | gas phase; B |
ΔrG° | 1432.2 | kJ/mol | N/A | Check, Faust, et al., 2001 | gas phase; MnO2-(t); ; ΔS(EA)=5.4; B |
References
Go To: Top, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Goodwin, 1983
Goodwin, R.D.,
Hydrogen sulfide provisional thermophysical properties from 188 to 700K at pressures to 75 MPa, Report, NBSIR-83-1694; NTIS No. PB84-122704, 177 pp., 1983. [all data]
Beckmann and Waentig, 1910
Beckmann, E.; Waentig, P.,
Cryoscopic Measurements at Low Temperatures,
Z. Anorg. Chem., 1910, 67, 17. [all data]
Giauque and Blue, 1936
Giauque, W.F.; Blue, R.W.,
Hydrogen Sulfide. The Heat Capacity and Vapor Pressure of Solid and Liquid. The HEat of Vaporization. A Comparison of Thermooodynamic and Spectroscopic Values of the Entropy,
J. Am. Chem. Soc., 1936, 58, 831. [all data]
Cubitt, Henderson, et al., 1987
Cubitt, A.G.; Henderson, C.; Staveley, L.A.K.; Fonseca, I.M.A.; Ferreira, A.G.M.,
Some thermodynamic properties of liquid hydrogen sulphide and deuterium sulphide,
J. Chem. Thermodyn., 1987, 19, 703. [all data]
Dykyj, Svoboda, et al., 1999
Dykyj, J.; Svoboda, J.; Wilhoit, R.C.; Frenkel, M.L.; Hall, K.R.,
Vapor Pressure of Chemicals: Part A. Vapor Pressure and Antoine Constants for Hydrocarbons and Sulfur, Selenium, Tellurium and Hydrogen Containing Organic Compounds, Springer, Berlin, 1999, 373. [all data]
Giauque and Blue, 1936, 2
Giauque, W.F.; Blue, R.W.,
Hydrogen Sulfide. The Heat Capacity and Vapor Pressure of Solid and Liquid. The Heat of Vaporization. A Comparison of Thermodynamic and Spectroscopic Values of the Entropy,
J. Am. Chem. Soc., 1936, 58, 5, 831-837, https://doi.org/10.1021/ja01296a045
. [all data]
Stull, 1947
Stull, Daniel R.,
Vapor Pressure of Pure Substances. Organic and Inorganic Compounds,
Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022
. [all data]
Clark, Cockett, et al., 1951
Clark, A.M.; Cockett, A.H.; Eisner, H.S.,
The Vapour Pressure of Hydrogen Sulphide,
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1951, 209, 1098, 408-415, https://doi.org/10.1098/rspa.1951.0214
. [all data]
Rempala and Ervin, 2000
Rempala, K.; Ervin, K.M.,
Collisional activation of the Endoergic Hydrogen Atom Transfer Reaction S-(2P) + H2 - SH- + H,
J. Chem. Phys., 2000, 112, 10, 4579, https://doi.org/10.1063/1.481016
. [all data]
Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr.,
The gas phase acidity scale from methanol to phenol,
J. Am. Chem. Soc., 1979, 101, 6047. [all data]
Shiell, Hu, et al., 1900
Shiell, R.C.; Hu, X.K.; Hu, Q.J.; Hepburn, J.W.,
A determination of the bond dissociation energy (D-0(H-SH)): Threshold ion-pair production spectroscopy (TIPPS) of a triatomic molecule,
J. Phys. Chem. A, 1900, 104, 19, 4339-4342, https://doi.org/10.1021/jp000025k
. [all data]
Gurvich, Veyts, et al.
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B.,
Hemisphere Publishing, NY, 1989, V. 1 2, Thermodynamic Properties of Individual Substances, 4th Ed. [all data]
Breyer, Frey, et al., 1981
Breyer, F.; Frey, P.; Hotop, H.,
High Resolution Photoelectron Spectrometry of Negative Ions: Rotational Transitions in Laser-Photodetachment of OH-, SH-, and SD-,
Z. Phys. A, 1981, 300, 1, 7, https://doi.org/10.1007/BF01412609
. [all data]
Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P.,
Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A),
Can. J. Chem., 1978, 56, 1. [all data]
Check, Faust, et al., 2001
Check, C.E.; Faust, T.O.; Bailey, J.M.; Wright, B.J.; Gilbert, T.M.; Sunderlin, L.S.,
Addition of Polarization and Diffuse Functions to the LANL2DZ Basis Set for P-Block Elements,
J. Phys. Chem. A,, 2001, 105, 34, 8111, https://doi.org/10.1021/jp011945l
. [all data]
Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B.,
Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements,
J. Am. Chem. Soc., 1983, 105, 2944. [all data]
Wenthold and Squires, 1995
Wenthold, P.G.; Squires, R.R.,
Bond dissociation energies of F2(-) and HF2(-). A gas-phase experimental and G2 theoretical study,
J. Phys. Chem., 1995, 99, 7, 2002, https://doi.org/10.1021/j100007a034
. [all data]
Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P.,
Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions,
J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014
. [all data]
Hiraoka and Kebarle, 1977
Hiraoka, K.; Kebarle, P.,
Gas Phase Ion Equilibria Studies of the Proton in Hydrogen Sulfide and Hydrogen Sulfide - Water Mixtures. Stabilities of the Hydrogen Bonded Complexes H+(H2S)x(H2O)y,
Can. J. Chem., 1977, 55, 1, 24, https://doi.org/10.1139/v77-005
. [all data]
Walters and Blais, 1984
Walters, E.A.; Blais, N.C.,
Molecular beam photoionization and fragmentation of D2S, (H2S)2, (D2S)2, and H2S.H2O,
J. Chem. Phys., 1984, 80, 3501. [all data]
Prest, Tzeng, et al., 1983
Prest, H.F.; Tzeng, W.-B.; Brom, J.M., Jr.; Ng, C.Y.,
Photoionization study of (H2S)2 and (H2S)3,
J. Am. Chem. Soc., 1983, 105, 7531. [all data]
Meot-Ner (Mautner) and Field, 1977
Meot-Ner (Mautner), M.; Field, F.H.,
Stability, Association and Dissociation in the Cluster Ions H3S+.nH2S, H3O+.nH2O and H3O+.H2O,
J. Am. Chem. Soc., 1977, 99, 4, 998, https://doi.org/10.1021/ja00446a004
. [all data]
Meot-ner, 1988
Meot-ner, M.,
Ionic Hydrogen Bond and Ion Solvation. 6. Interaction Energies of the Acetate Ion with Organic Molecules. Comparison of CH3COO- with Cl-, CN-, and SH-,
J. Am. Chem. Soc., 1988, 110, 12, 3854, https://doi.org/10.1021/ja00220a022
. [all data]
Larson and McMahon, 1987
Larson, J.W.; McMahon, T.B.,
Hydrogen bonding in gas phase anions. The energetics of interaction between cyanide ion and bronsted acids,
J. Am. Chem. Soc., 1987, 109, 6230. [all data]
Payzant, Yamdagni, et al., 1971
Payzant, J.D.; Yamdagni, R.; Kebarle, P.,
Hydration of CN-, NO2-, NO3-, and HO- in the gas phase,
Can. J. Chem., 1971, 49, 3308. [all data]
Cunningham, Payzant, et al., 1972
Cunningham, A.J.; Payzant, J.D.; Kebarle, P.,
A Kinetic Study of the Proton Hydrate H+(H2O)n Equilibria in the Gas Phase,
J. Am. Chem. Soc., 1972, 94, 22, 7627, https://doi.org/10.1021/ja00777a003
. [all data]
Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D.,
Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules,
J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]
Meot-Ner (Mautner) and Sieck, 1985
Meot-Ner (Mautner), M.; Sieck, L.W.,
The Ionic Hydrogen Bond and Ion Solvation. 4. SH+ O and NH+ S Bonds. Correlations with Proton Affinity. Mutual Effects of Weak and Strong Ligands in Mixed Clusters,
J. Phys. Chem., 1985, 89, 24, 5222, https://doi.org/10.1021/j100270a021
. [all data]
Meot-Ner (Mautner) and Sieck, 1991
Meot-Ner (Mautner), M.; Sieck, L.W.,
Proton affinity ladders from variable-temperature equilibrium measurements. 1. A reevaluation of the upper proton affinity range,
J. Am. Chem. Soc., 1991, 113, 12, 4448, https://doi.org/10.1021/ja00012a012
. [all data]
Terres and Wesemann, 1932
Terres, E.; Wesemann, H.,
Uber Gleichgewichtsmessungen der teilreaktionen bei der umsetzung von scnwefelkohlenstoff mit wasserdampf im temperaturgebiet von 350° bis 900° C,
Angew. Chem., 1932, 45, 795-832. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Walters and Blais, 1981
Walters, E.A.; Blais, N.C.,
Molecular beam photoionization of (H2S)n,n = 1 - 7,
J. Chem. Phys., 1981, 75, 4208. [all data]
Caldwell, Masucci, et al., 1989
Caldwell, G.W.; Masucci, J.A.; Ikonomou, M.G.,
Negative Ion Chemical Ionization Mass Spectrometry - Binding of Molecules to Bromide and Iodide Anions,
Org. Mass Spectrom., 1989, 24, 1, 8, https://doi.org/10.1002/oms.1210240103
. [all data]
Sunner and Wadso, 1957
Sunner, S.; Wadso, I.,
The heat of hydrolysis of thiolacetic acid,
Trans. Faraday Soc., 1957, 53, 455-459. [all data]
Zangerle, Hansel, et al., 1993
Zangerle, R.; Hansel, A.; Richter, R.; Lindinger, W.,
The Reaction of SF5+ + H2S at Near Thermal Energies: Competition between Association and Binary Reactions,
Int. J. Mass Spectrom. Ion Proc., 1993, 129, 117, https://doi.org/10.1016/0168-1176(93)87035-Q
. [all data]
Gattow and Krebes, 1963
Gattow, V.G.; Krebes, B.,
Das kohlenstoffsulfid-di-(hydrogensulfid) SC(SH)2 und das system H2S-CS2. 2. Thermochemie des SC(SH)2,
Z. Anorg. Allg. Chem., 1963, 322, 113. [all data]
Hendricks, de Clercq, et al., 2002
Hendricks, J.H.; de Clercq, H.L.; Freidhoff, C.B.; Arnold, S.T.; Eaton, J.G.; Fancher, C.; Lyapustina, S.A.; S.,
Anion solvation at the microscopic level: Photoelectron spectroscopy of the solvated anion clusters, NO-(Y)(n), where Y=Ar, Kr, Xe, N2O, H2S, NH3, H2O, and C2H4(OH)(2),
J. Chem. Phys., 2002, 116, 18, 7926-7938, https://doi.org/10.1063/1.1457444
. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Prest, Tzeng, et al., 1983, 2
Prest, H.F.; Tzeng, W.-B.; Brom, J.M., Jr.; Ng, C.Y.,
Molecular beam photoionization study of H2S,
Int. J. Mass Spectrom. Ion Processes, 1983, 50, 315. [all data]
Smith, Adams, et al., 1981
Smith, D.; Adams, N.G.; Lindinger, W.,
Reactions of the HnS ions (n = 0 to 3) with several molecular gases at thermal energies,
J. Chem. Phys., 1981, 75, 3365. [all data]
Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S.,
Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules
in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]
Karlsson, Mattsson, et al., 1976
Karlsson, L.; Mattsson, L.; Jadrny, R.; Bergmark, T.; Siegbahn, K.,
Vibrational ans vibronic structure in the valence electron spectrum of H2S,
Phys. Scr., 1976, 13, 229. [all data]
Balkis, Gaines, et al., 1976
Balkis, T.; Gaines, A.F.; Ozgen, G.; Ozgen, I.T.; Flowers, M.C.,
Ionization of hydrogen sul- phide, selenide and telluride by electron impact,
J. Chem. Soc. Faraday Trans. 2, 1976, 72, 524. [all data]
Rabalais, Debies, et al., 1974
Rabalais, J.W.; Debies, T.P.; Berkosky, J.L.; Huang, J.-T.J.; Ellison, F.O.,
Calculated photoionization cross sections relative experimental photoionization intensities for a selection of small molecules,
J. Chem. Phys., 1974, 61, 516. [all data]
Natalis, 1973
Natalis, P.,
Contribution a la spectroscopie photoelectronique. Effets de l'autoionisation dans less spectres photoelectroniques de molecules diatomiques et triatomiques,
Acad. R. Belg. Mem. Cl. Sci. Collect. 8, 1973, 41, 1. [all data]
Morrison and Traeger, 1973
Morrison, J.D.; Traeger, J.C.,
Ionization and dissociation by electron impact. I. H2O and H2S,
Int. J. Mass Spectrom. Ion Phys., 1973, 11, 77. [all data]
Potts and Price, 1972
Potts, A.W.; Price, W.C.,
Photoelectron spectra and valence shell orbital structures of groups V VI hydrides,
Proc. R. Soc. London A:, 1972, 326, 181. [all data]
Delwiche and Natalis, 1970
Delwiche, J.; Natalis, P.,
Photoelectron spectrometry of hydrogen sulfide,
Chem. Phys. Lett., 1970, 5, 564. [all data]
Delwiche, Natalis, et al., 1970
Delwiche, J.; Natalis, P.; Collin, J.E.,
High resolution photoelectron spectrometry of H2S and H2Se,
Intern. J. Mass Spectrom. Ion Phys., 1970, 5, 443. [all data]
Dibeler and Liston, 1968
Dibeler, V.H.; Liston, S.K.,
Mass-spectrometric study of photoionization. XI.Hydrogen sulfide and sulfur dioxide,
J. Chem. Phys., 1968, 49, 482. [all data]
Al-Joboury and Turner, 1964
Al-Joboury, M.I.; Turner, D.W.,
Molecular photoelectron spectroscopy. Part II. A summary of ionization potentials,
J. Chem. Soc., 1964, 4434. [all data]
Frost and McDowell, 1958
Frost, D.C.; McDowell, C.A.,
Excited states of the molecular ions of hydrogen fluoride, hydrogen iodide, water, hydrogen sulphide, and ammonia,
Can. J. Chem., 1958, 36, 39. [all data]
Watanabe, 1954
Watanabe, K.,
Photoionization and total absorption cross section of gases. I. Ionization potentials of several molecules. Cross sections of NH3 and NO,
J. Chem. Phys., 1954, 22, 1564. [all data]
Price, 1935
Price, W.C.,
The far ultraviolet absorption spectra and ionization potentials of H2S, CS2, and SO2,
Bull. Am. Phys. Soc., 1935, 10, 9. [all data]
Bieri, Asbrink, et al., 1982
Bieri, G.; Asbrink, L.; Von Niessen, W.,
30.4-nm He(II) photoelectron spectra of organic molecules,
J. Electron Spectrosc. Relat. Phenom., 1982, 27, 129. [all data]
Wagner and Bock, 1974
Wagner, G.; Bock, H.,
Photoelektronenspektren und molekuleigenschaften, XXVI. Die delokalisation von schwefel-elektronenpaaren in alkylsulfiden und -disulfiden,
Chem. Ber., 1974, 107, 68. [all data]
Schweig and Thiel, 1974
Schweig, A.; Thiel, W.,
Photoionization cross sections: He I- and He II-photoelectron spectra of homologous oxygen and sulphur compounds,
Mol. Phys., 1974, 27, 265. [all data]
Bock, Wagner, et al., 1972
Bock, H.; Wagner, G.; Kroner, J.,
Photoelektronenspektren und molekuleigenschaften, XIV. Die delokalisation des schwefel-elektronenpaar in CH3S-substituierten aromaten,
Chem. Ber., 1972, 105, 3850. [all data]
Palmer and Lossing, 1962
Palmer, T.F.; Lossing, F.P.,
Free radicals by mass spectrometry. XXVIII. The HS, CH3S, and phenyl-S radicals: ionization potentials and heats of formation,
J. Am. Chem. Soc., 1962, 84, 4661. [all data]
Eland, 1979
Eland, J.H.D.,
Dissociations of state-selected C2H2+, H2S+ and D2S+ ions studied by photoelectron-photoion coincidence spectroscopy,
Int. J. Mass Spectrom. Ion Phys., 1979, 31, 161. [all data]
Notes
Go To: Top, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, References
- Symbols used in this document:
AE Appearance energy IE (evaluated) Recommended ionization energy Pc Critical pressure Ptriple Triple point pressure T Temperature Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions ΔsubH Enthalpy of sublimation ΔvapH Enthalpy of vaporization ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.