Piperidine, 2,2,6,6-tetramethyl-
- Formula: C9H19N
- Molecular weight: 141.2539
- IUPAC Standard InChIKey: RKMGAJGJIURJSJ-UHFFFAOYSA-N
- CAS Registry Number: 768-66-1
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Norpempidine; 2,2,6,6-Tetramethylpiperidine
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Phase change data
Go To: Top, Gas phase ion energetics data, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
AC - William E. Acree, Jr., James S. Chickos
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 425.2 | K | N/A | Aldrich Chemical Company Inc., 1990 | BS |
Tboil | 429.2 | K | N/A | Weast and Grasselli, 1989 | BS |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 47.0 ± 2.0 | kJ/mol | E | Suradi, Hacking, et al., 1981 | ALS |
ΔvapH° | 47.0 | kJ/mol | N/A | Suradi, Hacking, et al., 1981 | DRB |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
44.5 ± 0.5 | 300. | Verevkin, 1997 | Based on data from 288. to 313. K.; AC |
Gas phase ion energetics data
Go To: Top, Phase change data, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Proton affinity (review) | 987.0 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 953.9 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
7.59 ± 0.05 | PE | Rozeboom and Houk, 1982 | LBLHLM |
7.39 | PE | Bodor, Kaminski, et al., 1974 | LLK |
8.14 | PE | Aue and Bowers, 1979 | Vertical value; LLK |
De-protonation reactions
C9H18N- + =
By formula: C9H18N- + H+ = C9H19N
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1630.5 ± 3.0 | kJ/mol | G+TS | Grimm and Bartmess, 1992 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1599.5 ± 1.7 | kJ/mol | IMRE | Grimm and Bartmess, 1992 | gas phase; B |
Gas Chromatography
Go To: Top, Phase change data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Normal alkane RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Methyl Silicone | 947. | Farkas, Héberger, et al., 2004 | Program: not specified |
References
Go To: Top, Phase change data, Gas phase ion energetics data, Gas Chromatography, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Aldrich Chemical Company Inc., 1990
Aldrich Chemical Company Inc.,
Catalog Handbook of Fine Chemicals, Aldrich Chemical Company, Inc., Milwaukee WI, 1990, 1. [all data]
Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]
Suradi, Hacking, et al., 1981
Suradi, S.; Hacking, J.M.; Pilcher, G.; Gumrukcu, I.; Lappert, M.F.,
Enthalpies of combustion of five sterically hindered amines,
J. Chem. Thermodyn., 1981, 13, 857-861. [all data]
Verevkin, 1997
Verevkin, Sergey P.,
Thermochemistry of amines: experimental standard molar enthalpies of formation of some aliphatic and aromatic amines,
The Journal of Chemical Thermodynamics, 1997, 29, 8, 891-899, https://doi.org/10.1006/jcht.1997.0212
. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Rozeboom and Houk, 1982
Rozeboom, M.D.; Houk, K.N.,
Stereospecific alkyl group effects on amine lone-pair ionization potentials: Photoelectron spectra of alkylpiperidines,
J. Am. Chem. Soc., 1982, 104, 1189. [all data]
Bodor, Kaminski, et al., 1974
Bodor, N.; Kaminski, J.J.; Worley, S.D.; Colton, R.J.; Lee, T.H.; Rabalais, J.W.,
Photoelectron spectra, hydrolytic stability, and antimicrobial activity of N-chlorinated piperidines,
J. Pharm. Sci., 1974, 63, 1387. [all data]
Aue and Bowers, 1979
Aue, D.H.; Bowers, M.T.,
Chapter 9. Stabilities of positive ions from equilibrium gas phase basicity measurements
in Ions Chemistry,, ed. M.T. Bowers, 1979. [all data]
Grimm and Bartmess, 1992
Grimm, D.T.; Bartmess, J.E.,
The Intrinsic (Gas Phase) Basicity of some Anions Commonly Used in Condensed-Phase Synthesis,
J. Am. Chem. Soc., 1992, 114, 4, 1227, https://doi.org/10.1021/ja00030a016
. [all data]
Farkas, Héberger, et al., 2004
Farkas, O.; Héberger, K.; Zenkevich, I.G.,
Quantitative structure-retention relationships. XIV. Prediction of gas chromatographic retention indices for saturated O-, N-, and S-heterocyclic compounds,
Chemom. Intell. Lab. Syst., 2004, 72, 2, 173-184, https://doi.org/10.1016/j.chemolab.2004.01.012
. [all data]
Notes
Go To: Top, Phase change data, Gas phase ion energetics data, Gas Chromatography, References
- Symbols used in this document:
Tboil Boiling point ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.