2-Propanol, 2-methyl-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-74.72 ± 0.21kcal/molEqkWiberg and Hao, 1991Heat of hydration; ALS
Δfgas-74.9 ± 0.35kcal/molCcbSkinner and Snelson, 1960ALS
Δfgas-74.02kcal/molN/ATaft and Riesz, 1955Value computed using ΔfHliquid° value of -356.0 kj/mol from Taft and Riesz, 1955 and ΔvapH° value of 46.3 kj/mol from Skinner and Snelson, 1960.; DRB

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
8.56850.Thermodynamics Research Center, 1997p=1 bar. Selected values of S(T) and Cp(T) are in good agreement with those of [ Beynon E.T., 1963] because of using practically the same molecular constants in two calculations. Please also see Chao J., 1986.; GT
12.60100.
16.83150.
20.38200.
25.404273.15
27.158 ± 0.050298.15
27.290300.
34.175400.
40.246500.
45.327600.
49.591700.
53.229800.
56.370900.
59.0971000.
61.4721100.
63.5401200.
65.3371300.
66.9021400.
68.2651500.
70.961750.
72.872000.
74.262250.
75.262500.
76.002750.
76.553000.

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
31.87 ± 0.27360.55Stromsoe E., 1970Ideal gas heat capacities are given by [ Stromsoe E., 1970] as a linear function Cp=f1*(a+bT). This expression approximates the experimental values with the average deviation of 1.13 J/mol*K. The accuracy of the experimental heat capacities [ Stromsoe E., 1970] is estimated as less than 0.3%. Please also see Beynon E.T., 1963.; GT
31.699365.15
32.56 ± 0.27372.85
32.971383.15
33.27 ± 0.27385.65
34.149401.15
34.68 ± 0.27410.85
35.390419.15
36.699437.15
36.30 ± 0.27439.85
36.39 ± 0.27441.45
38.02 ± 0.27470.75
39.61 ± 0.27499.25
41.25 ± 0.27528.75
43.84 ± 0.27575.05
44.76 ± 0.27591.55

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-85.86 ± 0.20kcal/molEqkWiberg and Hao, 1991Heat of hydration; ALS
Δfliquid-85.87 ± 0.19kcal/molCcbSkinner and Snelson, 1960ALS
Δfliquid-85.0kcal/molEqkTaft and Riesz, 1955ALS
Quantity Value Units Method Reference Comment
Δcliquid-631.92 ± 0.19kcal/molCcbSkinner and Snelson, 1960Corresponding Δfliquid = -85.86 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid45.29cal/mol*KN/AParks, Kelley, et al., 1929Extrapolation bloew 90 K, 45.19 J/mol*K. Revision of previous data.; DH
liquid47.20cal/mol*KN/AParks and Anderson, 1926Extrapolation below 90 K, 53.35 J/mol*K.; DH
Quantity Value Units Method Reference Comment
Δcsolid-629.4kcal/molCcbRaley, Rust, et al., 1948Corresponding Δfsolid = -88.4 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
solid,1 bar40.839cal/mol*KN/AOetting F.L., 1963crystaline, I phase; DH

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
51.475298.15Caceres-Alonso, Costas, et al., 1988DH
53.031299.15Okano, Ogawa, et al., 1988DH
50.2298.De Visser, Perron, et al., 1977DH
50.2298.15De Visser, Perron, et al., 1977, 2T = 298.15, 313.15, 328.15 K.; DH
53.75298.15Murthy and Subrahmanyam, 1977DH
52.25298.15Skold, Suurkuusk, et al., 1976DH
53.70300.Parks and Anderson, 1926T = 87 to 300 K. Value is unsmoothed experimental datum.; DH

Constant pressure heat capacity of solid

Cp,solid (cal/mol*K) Temperature (K) Reference Comment
34.921298.15Oetting F.L., 1963crystaline, I phase; T = 15 to 330 K.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Henry's Law data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis

Quantity Value Units Method Reference Comment
Tboil355.5 ± 0.7KAVGN/AAverage of 65 out of 70 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus298.3 ± 0.7KAVGN/AAverage of 15 out of 17 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple298.96KN/AWilhoit, Chao, et al., 1985Crystal phase 1 phase; Uncertainty assigned by TRC = 0.06 K; TRC
Ttriple298.97KN/AOetting, 1963Crystal phase 1 phase; Uncertainty assigned by TRC = 0.06 K; TRC
Ttriple298.5KN/AParks and Anderson, 1926, 2Uncertainty assigned by TRC = 0.2 K; TRC
Quantity Value Units Method Reference Comment
Tc506.2 ± 0.3KN/AGude and Teja, 1995 
Tc506.2KN/AMajer and Svoboda, 1985 
Tc506.2KN/AAmbrose and Townsend, 1963TRC
Tc508.9KN/AKrone and Johnson, 1956TRC
Tc508.1KN/APawlewski, 1883TRC
Quantity Value Units Method Reference Comment
Pc39.2 ± 0.2atmN/AGude and Teja, 1995 
Pc39.20atmN/AAmbrose and Townsend, 1963TRC
Pc41.77atmN/AKrone and Johnson, 1956TRC
Quantity Value Units Method Reference Comment
Vc0.275l/molN/AGude and Teja, 1995 
Quantity Value Units Method Reference Comment
ρc3.64 ± 0.02mol/lN/AGude and Teja, 1995 
ρc3.643mol/lN/AAmbrose and Townsend, 1963TRC
ρc3.48mol/lN/AKrone and Johnson, 1956TRC
Quantity Value Units Method Reference Comment
Δvap11.1 ± 0.3kcal/molAVGN/AAverage of 11 values; Individual data points
Quantity Value Units Method Reference Comment
Δsub9.7kcal/molVRaley, Rust, et al., 1948ALS

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
9.338355.5N/AMajer and Svoboda, 1985 
10.2338.N/AOrtega, Espiau, et al., 2003Based on data from 323. to 368. K.; AC
10.4336.N/AAucejo, Loras, et al., 1999Based on data from 321. to 359. K.; AC
11.0314.AStephenson and Malanowski, 1987Based on data from 299. to 375. K.; AC
9.89355.AStephenson and Malanowski, 1987Based on data from 347. to 363. K.; AC
10.3371.AStephenson and Malanowski, 1987Based on data from 356. to 480. K.; AC
9.89355.AStephenson and Malanowski, 1987Based on data from 347. to 363. K.; AC
9.51372.AStephenson and Malanowski, 1987Based on data from 357. to 461. K.; AC
8.03468.AStephenson and Malanowski, 1987Based on data from 453. to 506. K.; AC
10.2344.EBStephenson and Malanowski, 1987Based on data from 329. to 363. K. See also Ambrose, Counsell, et al., 1970 and Beynon and McKetta, 1963.; AC
11.02 ± 0.01303.2CMajer, Svoboda, et al., 1984ALS
11.0 ± 0.02303.CMajer, Svoboda, et al., 1984AC
10.7 ± 0.02313.CMajer, Svoboda, et al., 1984AC
10.3 ± 0.02328.CMajer, Svoboda, et al., 1984AC
9.80 ± 0.02343.CMajer, Svoboda, et al., 1984AC
8.89 ± 0.02368.CMajer, Svoboda, et al., 1984AC
10.7321.N/ASachek, Peshchenko, et al., 1982Based on data from 306. to 357. K.; AC
11.1308.N/AWilhoit and Zwolinski, 1973Based on data from 293. to 376. K.; AC
10.6328.N/ABrown, Fock, et al., 1969Based on data from 313. to 355. K. See also Boublik, Fried, et al., 1984.; AC
9.25388.N/AAmbrose and Townsend, 1963, 2Based on data from 373. to 506. K.; AC
10.1348.EBBeynon and McKetta, 1963Based on data from 333. to 363. K.; AC
10.2 ± 0.02330.CBeynon and McKetta, 1963AC
9.87 ± 0.02340.CBeynon and McKetta, 1963AC
9.66 ± 0.02346.CBeynon and McKetta, 1963AC
9.56 ± 0.02349.CBeynon and McKetta, 1963AC
9.32 ± 0.02356.CBeynon and McKetta, 1963AC
10.7323.N/AParks and Barton, 1928Based on data from 293. to 363. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-αTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kcal/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) 298. to 385.
A (kcal/mol) 16.51
α -0.3583
β 0.678
Tc (K) 506.2
ReferenceMajer and Svoboda, 1985

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
312.66 to 355.564.492031174.869-93.92Brown, Fock, et al., 1969Coefficents calculated by NIST from author's data.
376.42 to 506.4.258121075.578-102.588Ambrose and Townsend, 1963, 3Coefficents calculated by NIST from author's data.
330.6 to 363.4.587521225.649-88.316Beynon and McKetta, 1963Coefficents calculated by NIST from author's data.
333.93 to 362.714.326871095.084-102.409Biddiscombe, Collerson, et al., 1963Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

ΔsubH (kcal/mol) Temperature (K) Method Reference Comment
12.3275.AStull, 1947Based on data from 253. to 298. K.; AC

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Reference Comment
1.6299.Domalski and Hearing, 1996AC
1.621298.5Parks and Anderson, 1926DH

Entropy of fusion

ΔfusS (cal/mol*K) Temperature (K) Reference Comment
5.430298.5Parks and Anderson, 1926DH

Entropy of fusion

ΔfusS (cal/mol*K) Temperature (K) Reference Comment
0.69286.1Domalski and Hearing, 1996CAL
0.397294.5
5.359299.0

Enthalpy of phase transition

ΔHtrs (kcal/mol) Temperature (K) Initial Phase Final Phase Reference Comment
0.198286.14crystaline, IIcrystaline, IOetting F.L., 1963DH
0.117294.47crystaline, IIIcrystaline, IOetting F.L., 1963Metastable transition, not always reproducible, c,III,metastable form.; DH
1.6020298.97crystaline, IliquidOetting F.L., 1963DH

Entropy of phase transition

ΔStrs (cal/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
0.691286.14crystaline, IIcrystaline, IOetting F.L., 1963DH
0.397294.47crystaline, IIIcrystaline, IOetting F.L., 1963Metastable; DH
5.359298.97crystaline, IliquidOetting F.L., 1963DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
70.8300.MN/A 
83. MButler, Ramchandani, et al., 1935 

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

Quantity Value Units Method Reference Comment
IE (evaluated)9.90 ± 0.03eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)191.8kcal/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity184.6kcal/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
9.90 ± 0.03PIPECOShao, Baer, et al., 1988LL
9.97 ± 0.02PECocksey, Eland, et al., 1971LLK
10.23PEBaker, Betteridge, et al., 1971LLK
10.23PEBaker, Betteridge, et al., 1971LLK
10.26PEBenoit and Harrison, 1977Vertical value; LLK
10.25 ± 0.03PEPeel and Willett, 1975Vertical value; LLK
10.25PERobin and Kuebler, 1973Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C3H7O+9.86CH3EILossing, 1977LLK
C3H7O+10.1 ± 0.2CH3EIBeauchamp, Caserio, et al., 1974LLK
C3H7O+9.87 ± 0.03CH3PIPotapov and Sorokin, 1972LLK
C3H7O+9.87CH3EIPotapov and Sorokin, 1970RDSH
C3H7O+10.2CH3EIHarrison, Ivko, et al., 1966RDSH

De-protonation reactions

C4H9O- + Hydrogen cation = 2-Propanol, 2-methyl-

By formula: C4H9O- + H+ = C4H10O

Quantity Value Units Method Reference Comment
Δr374.7 ± 1.0kcal/molD-EARamond, Davico, et al., 2000gas phase; B
Δr374.6 ± 2.1kcal/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr376.00 ± 0.70kcal/molCIDTDeTuri and Ervin, 1999gas phase; B
Δr374.3 ± 2.0kcal/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Quantity Value Units Method Reference Comment
Δr368.1 ± 1.1kcal/molH-TSRamond, Davico, et al., 2000gas phase; B
Δr368.0 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr367.7 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Wiberg and Hao, 1991
Wiberg, K.B.; Hao, S., Enthalpies of hydration of alkenes. 4. Formation of acyclic tert-alcohols, J. Org. Chem., 1991, 56, 5108-5110. [all data]

Skinner and Snelson, 1960
Skinner, H.A.; Snelson, A., The heats of combustion of the four isomeric butyl alcohols, Trans. Faraday Soc., 1960, 56, 1776-1783. [all data]

Taft and Riesz, 1955
Taft, R.W., Jr.; Riesz, P., Thermodynamic properties for the system isobutene-t-butyl alcohol, J. Am. Chem. Soc., 1955, 77, 902-904. [all data]

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Beynon E.T., 1963
Beynon E.T., Jr., The thermodynamic properties of 2-methyl-2-propanol, J. Phys. Chem., 1963, 67, 2761-2765. [all data]

Chao J., 1986
Chao J., Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties, J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]

Stromsoe E., 1970
Stromsoe E., Heat capacity of alcohol vapors at atmospheric pressure, J. Chem. Eng. Data, 1970, 15, 286-290. [all data]

Parks, Kelley, et al., 1929
Parks, G.S.; Kelley, K.K.; Huffman, H.M., Thermal data on organic compounds. V. A revision of the entropies and free energies of nineteen organic compounds, J. Am. Chem. Soc., 1929, 51, 1969-1973. [all data]

Parks and Anderson, 1926
Parks, G.S.; Anderson, C.T., Thermal data on organic compounds. III. The heat capacities, entropies and free energies of tertiary butyl alcohol, mannitol, erythritol and normal butyric acid, J. Am. Chem. Soc., 1926, 48, 1506-1512. [all data]

Raley, Rust, et al., 1948
Raley, J.H.; Rust, F.F.; Vaughan, W.E., Decompositions of Di-t-alkyl peroxides. I. Kinetics, J. Am. Chem. Soc., 1948, 70, 88-94. [all data]

Oetting F.L., 1963
Oetting F.L., The heat capacity and entropy of 2-methyl-2-propanol from 15 to 330 K, J. Phys. Chem., 1963, 67, 2757-2761. [all data]

Caceres-Alonso, Costas, et al., 1988
Caceres-Alonso, M.; Costas, M.; Andreoli-Ball, L.; Patterson, D., Steric effects on the self-association of branched and cyclic alcohols in inert solvents. Apparent heat capacities of secondary and tertiary alcohols in hydrocarbons, Can. J. Chem., 1988, 66, 989-998. [all data]

Okano, Ogawa, et al., 1988
Okano, T.; Ogawa, H.; Murakami, S., Molar excess volumes, isentropic compressions, and isobaric heat capacities of methanol-isomeric butanol systems at 298.15 K, Can. J. Chem., 1988, 66, 713-717. [all data]

De Visser, Perron, et al., 1977
De Visser, C.; Perron, G.; Desnoyers, J.E., Volumes and heat capacities of ternary aqueous systems at 25°C. Mixtures of urea, tert-butyl alcohol, N,N-dimethylformamide, and water, J. Amer. Chem. Soc., 1977, 99, 5894-5900. [all data]

De Visser, Perron, et al., 1977, 2
De Visser, C.; Perron, G.; Desnoyers, J.E., The heat capacities, volumes and expansibilities of tert-butyl alcohol - water mixtures form 6 to 65°C, Can. J. Chem., 1977, 55, 856-762. [all data]

Murthy and Subrahmanyam, 1977
Murthy, N.M.; Subrahmanyam, S.V., Behaviour of excess heat capacity of aqueous non-electrolytes, Indian J. Pure Appl. Phys., 1977, 15, 485-489. [all data]

Skold, Suurkuusk, et al., 1976
Skold, R.; Suurkuusk, J.; Wadso, I., Thermochemistry of solutions of biochemical model compounds. 7. Aqueous solutions of some amides, t-butanol, and pentanol, J. Chem. Thermodynam., 1976, 8, 1075-1080. [all data]

Wilhoit, Chao, et al., 1985
Wilhoit, R.C.; Chao, J.; Hall, K.R., Thermodynamic Properties of Key Organic Compounds in the Carbon Range C1 to C4. Part 1. Properties of Condensed Phases, J. Phys. Chem. Ref. Data, 1985, 14, 1. [all data]

Oetting, 1963
Oetting, F.L., The heat capacity and entropy of 2-methyl-2-propanol from 15 to 330!31k, J. Phys. Chem., 1963, 67, 2757-61. [all data]

Parks and Anderson, 1926, 2
Parks, G.S.; Anderson, C.T., Thermal data on organic compounds. III. The heat capacities, entropies and free energies of tertiary butyl alcohol, mannitol, erythritol and normal butyric acid, J. Am. Chem. Soc., 1926, 48, 1506-12. [all data]

Gude and Teja, 1995
Gude, M.; Teja, A.S., Vapor-Liquid Critical Properties of Elements and Compounds. 4. Aliphatic Alkanols, J. Chem. Eng. Data, 1995, 40, 1025-1036. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Ambrose and Townsend, 1963
Ambrose, D.; Townsend, R., Thermodynamic Properties of Organic Oxygen Compounds IX. The Critical Properties and Vapor Pressures Above Five Atmospheres of Six Aliphatic Alcohols, J. Chem. Soc., 1963, 54, 3614-25. [all data]

Krone and Johnson, 1956
Krone, L.H.; Johnson, R.C., Thermodynamic Properties of tert-Butyl ALcohol, AIChE J., 1956, 2, 552-4. [all data]

Pawlewski, 1883
Pawlewski, B., Critical temperatures of some liquids, Ber. Dtsch. Chem. Ges., 1883, 16, 2633-36. [all data]

Ortega, Espiau, et al., 2003
Ortega, Juan; Espiau, Fernando; Postigo, Miguel, Isobaric Vapor-Liquid Equilibria and Excess Quantities for Binary Mixtures of an Ethyl Ester + tert -Butanol and a New Approach to VLE Data Processing, J. Chem. Eng. Data, 2003, 48, 4, 916-924, https://doi.org/10.1021/je0202073 . [all data]

Aucejo, Loras, et al., 1999
Aucejo, Antonio; Loras, Sonia; Muñoz, Rosa; Ordoñez, Luis Miguel, Isobaric vapor--liquid equilibrium for binary mixtures of 2-methylpentane+ethanol and +2-methyl-2-propanol, Fluid Phase Equilibria, 1999, 156, 1-2, 173-183, https://doi.org/10.1016/S0378-3812(99)00029-1 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Ambrose, Counsell, et al., 1970
Ambrose, D.; Counsell, J.F.; Davenport, A.J., The use of Chebyshev polynomials for the representation of vapour pressures between the triple point and the critical point, The Journal of Chemical Thermodynamics, 1970, 2, 2, 283-294, https://doi.org/10.1016/0021-9614(70)90093-5 . [all data]

Beynon and McKetta, 1963
Beynon, Eugene T.; McKetta, John J., THE THERMODYNAMIC PROPERTIES OF 2-METHYL-2-PROPANOL, J. Phys. Chem., 1963, 67, 12, 2761-2765, https://doi.org/10.1021/j100806a060 . [all data]

Majer, Svoboda, et al., 1984
Majer, V.; Svoboda, V.; Hynek, V., On the enthalpy of vaporization of isomeric butanols, J. Chem. Thermodyn., 1984, 16, 1059-1066. [all data]

Sachek, Peshchenko, et al., 1982
Sachek, A.I.; Peshchenko, A.D.; Markovnik, V.S.; Ral'ko, O.V.; Andreevskii, D.N.; Leont'eva, A.A., Termodin. Org. Soedin., 1982, 94. [all data]

Wilhoit and Zwolinski, 1973
Wilhoit, R.C.; Zwolinski, B.J., Physical and thermodynamic properties of aliphatic alcohols, J. Phys. Chem. Ref. Data Suppl., 1973, 1, 2, 1. [all data]

Brown, Fock, et al., 1969
Brown, I.; Fock, W.; Smith, F., The thermodynamic properties of solutions of normal and branched alcohols in benzene and n-hexane, The Journal of Chemical Thermodynamics, 1969, 1, 3, 273-291, https://doi.org/10.1016/0021-9614(69)90047-0 . [all data]

Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E., The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]

Ambrose and Townsend, 1963, 2
Ambrose, D.; Townsend, R., 681. Thermodynamic properties of organic oxygen compounds. Part IX. The critical properties and vapour pressures, above five atmospheres, of six aliphatic alcohols, J. Chem. Soc., 1963, 3614, https://doi.org/10.1039/jr9630003614 . [all data]

Parks and Barton, 1928
Parks, George S.; Barton, Bernard, VAPOR PRESSURE DATA FOR ISOPROPYL ALCOHOL AND TERTIARY BUTYL ALCOHOL, J. Am. Chem. Soc., 1928, 50, 1, 24-26, https://doi.org/10.1021/ja01388a004 . [all data]

Ambrose and Townsend, 1963, 3
Ambrose, D.; Townsend, R., Thermodynamic Properties of Organic Oxygen Compounds. Part 9. The Critical Properties and Vapour Pressures, above Five Atmospheres, of Six Aliphatic Alcohols, J. Chem. Soc., 1963, 3614-3625, https://doi.org/10.1039/jr9630003614 . [all data]

Biddiscombe, Collerson, et al., 1963
Biddiscombe, D.P.; Collerson, R.R.; Handley, R.; Herington, E.F.G.; Martin, J.F.; Sprake, C.H.S., Thermodynamic Properties of Organic Oxygen Compounds. Part 8. Purification and Vapor Pressures of the Propyl and Butyl Alcohols, J. Chem. Soc., 1963, 1954-1957, https://doi.org/10.1039/jr9630001954 . [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Butler, Ramchandani, et al., 1935
Butler, J.A.V.; Ramchandani, C.N.; Thomson, D.W., The Solubility of Non-Electrolytes. Part 1. The Free Energy of Hydration of Some Alphatic Alcohols, J. Chem. Soc., 1935, 280-285, https://doi.org/10.1039/jr9350000280 . [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Shao, Baer, et al., 1988
Shao, J.D.; Baer, T.; Lewis, D.K., Dissociation dynamics of energy-selected ion-dipole complexes. 2. Butyl alcohol ions, J. Phys. Chem., 1988, 92, 5123. [all data]

Cocksey, Eland, et al., 1971
Cocksey, B.J.; Eland, J.H.D.; Danby, C.J., The effect of alkyl substitution on ionisation potential, J. Chem. Soc., 1971, (B), 790. [all data]

Baker, Betteridge, et al., 1971
Baker, A.D.; Betteridge, D.; Kemp, N.R.; Kirby, R.E., Application of photoelectron spectrometry to pesticide analysis. II.Photoelectron spectra of hydroxy-, and halo-alkanes and halohydrins, Anal. Chem., 1971, 43, 375. [all data]

Benoit and Harrison, 1977
Benoit, F.M.; Harrison, A.G., Predictive value of proton affinity. Ionization energy correlations involving oxygenated molecules, J. Am. Chem. Soc., 1977, 99, 3980. [all data]

Peel and Willett, 1975
Peel, J.B.; Willett, G.D., Photoelectron spectroscopic studies of the higher alcohols, Aust. J. Chem., 1975, 28, 2357. [all data]

Robin and Kuebler, 1973
Robin, M.B.; Kuebler, N.A., Excited electronic states of the simple alcohols, J. Electron Spectrosc. Relat. Phenom., 1973, 1, 13. [all data]

Lossing, 1977
Lossing, F.P., Heats of formation of some isomeric [CnH2n+1]+ ions. Substitutional effects on ion stability, J. Am. Chem. Soc., 1977, 99, 7526. [all data]

Beauchamp, Caserio, et al., 1974
Beauchamp, J.L.; Caserio, M.C.; McMahon, T.B., Ion-molecule reactions of tert-butyl alcohol by ion cyclotron resonance spectroscopy, J. Am. Chem. Soc., 1974, 96, 6243. [all data]

Potapov and Sorokin, 1972
Potapov, V.K.; Sorokin, V.V., Kinetic energies of products of dissociative photoionization of molecules. I. Aliphatic ketones and alcohols, Khim. Vys. Energ., 1972, 6, 387. [all data]

Potapov and Sorokin, 1970
Potapov, V.K.; Sorokin, V.V., Investigation of ionic molecular reactions proceeding during photoionization of aromatic compounds and alcohols, Dokl. Akad. Nauk SSSR, 1970, 195, 616, In original 848. [all data]

Harrison, Ivko, et al., 1966
Harrison, A.G.; Ivko, A.; Van Raalte, D., Energetics of formation of some oxygenated ions and the proton affinities of carbonyl compounds, Can. J. Chem., 1966, 44, 1625. [all data]

Ramond, Davico, et al., 2000
Ramond, T.M.; Davico, G.E.; Schwartz, R.L.; Lineberger, W.C., Vibronic structure of alkoxy radicals via photoelectron spectroscopy, J. Chem. Phys., 2000, 112, 3, 1158-1169, https://doi.org/10.1063/1.480767 . [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

DeTuri and Ervin, 1999
DeTuri, V.F.; Ervin, K.M., Competitive threshold collision-induced dissociation: Gas-phase acidities and bond dissociation energies for a series of alcohols, J. Phys. Chem. A, 1999, 103, 35, 6911-6920, https://doi.org/10.1021/jp991459m . [all data]

Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G., The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols, Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, References