Methane, nitro-
- Formula: CH3NO2
- Molecular weight: 61.0400
- IUPAC Standard InChIKey: LYGJENNIWJXYER-UHFFFAOYSA-N
- CAS Registry Number: 75-52-5
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Nitromethane; Nitrocarbol; CH3NO2; Nitrometan; UN 1261; NM; NSC 428
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Condensed phase thermochemistry data
Go To: Top, Gas phase ion energetics data, Ion clustering data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -113. ± 0.4 | kJ/mol | Ccb | Lebedeva and Ryadenko, 1973 | ALS |
ΔfH°liquid | -113.1 ± 0.63 | kJ/mol | Ccb | Cass, Fletcher, et al., 1958 | Reanalyzed by Cox and Pilcher, 1970, Original value = -93. ± 1. kJ/mol; ALS |
ΔfH°liquid | -89.04 ± 0.75 | kJ/mol | Ccb | Holcomb and Dorsey, 1949 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -709.6 ± 0.4 | kJ/mol | Ccb | Lebedeva and Ryadenko, 1973 | ALS |
ΔcH°liquid | -703. ± 1. | kJ/mol | Ccb | Knobel, Miroshnichenko, et al., 1971 | ALS |
ΔcH°liquid | -709.15 ± 0.59 | kJ/mol | Ccb | Cass, Fletcher, et al., 1958 | Reanalyzed by Cox and Pilcher, 1970, Original value = -730. ± 1. kJ/mol; ALS |
ΔcH°liquid | -733.25 ± 0.75 | kJ/mol | Ccb | Holcomb and Dorsey, 1949 | ALS |
ΔcH°liquid | -709.2 | kJ/mol | Ccb | Swientoslawski, 1910 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 171.75 | J/mol*K | N/A | Jones and Giauque, 1947 | DH |
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
106.22 | 308. | Berman and West, 1969 | T = 308 to 473 K.; DH |
108.8 | 313. | Hough, Mason, et al., 1950 | T = 313 to 363 K.; DH |
105.98 | 298.15 | Jones and Giauque, 1947 | T = 15 to 300 K.; DH |
100. | 298. | Williams, 1925 | T = 288 to 343 K. Equation only.; DH |
Gas phase ion energetics data
Go To: Top, Condensed phase thermochemistry data, Ion clustering data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 11.08 ± 0.04 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 754.6 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 721.6 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Electron affinity determinations
EA (eV) | Method | Reference | Comment |
---|---|---|---|
0.1720 ± 0.0060 | LPES | Adams, Schneider, et al., 2009 | B |
0.260 ± 0.080 | LPES | Compton, Carman Jr., et al., 1996 | dipole-bound state: 12±3 meV.; B |
0.01201 | N/A | Lecomte, Carles, et al., 2000 | Dipole-bound state; B |
0.500 ± 0.020 | ECD | Chen, Welk, et al., 1999 | Reanalysis of Chen and Wentworth, 1983; B |
0.49 ± 0.11 | IMRE | Grimsrud, Caldwell, et al., 1985 | ΔGea(423 K) = -12.1 kcal/mol; ΔSea (estimated) = +2.0 eu.; B |
0.451 ± 0.052 | ECD | Chen and Wentworth, 1983 | B |
0.44 ± 0.20 | NBIE | Compton, Reinhardt, et al., 1978 | B |
0.960 ± 0.010 | LPES | Goebbert, Pichugin, et al., 2009 | Stated electron affinity is the Vertical Detachment Energy; B |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
11.07 | PE | Pasa-Tolic, Klasine, et al., 1990 | LL |
11.1 ± 0.05 | PI | Lifshitz, Rejwan, et al., 1988 | LL |
10.7 | PE | Ogden, Shaw, et al., 1983 | LBLHLM |
11.12 | PE | Gilman, Hsieh, et al., 1983 | LBLHLM |
11.05 | PE | Katsumata, Shiromaru, et al., 1982 | LBLHLM |
11.28 ± 0.08 | EI | Allam, Migahed, et al., 1982 | LBLHLM |
11.28 | PE | Kimura, Katsumata, et al., 1981 | LLK |
11.1 | PE | Asbrink, Svensson, et al., 1981 | LLK |
11.28 ± 0.08 | EI | Allam, Migahed, et al., 1981 | LLK |
11.07 ± 0.01 | PE | Rabalais, 1972 | LLK |
11.040 ± 0.017 | PI | Nicholson, 1970 | RDSH |
11.23 ± 0.01 | PE | Dewar, Shanshal, et al., 1969 | RDSH |
11.130 ± 0.006 | PI | Nicholson, 1965 | RDSH |
11.08 ± 0.03 | PI | Watanabe, Nakayama, et al., 1962 | RDSH |
11.29 | PE | Bajic, Humski, et al., 1985 | Vertical value; LBLHLM |
11.47 | PE | Katsumata, Shiromaru, et al., 1982 | Vertical value; LBLHLM |
11.31 | PE | Kobayashi, 1978 | Vertical value; LLK |
11.8 | PE | Rao, 1975 | Vertical value; LLK |
11.29 | PE | Kobayashi and Nagakura, 1974 | Vertical value; LLK |
11.31 ± 0.015 | PE | Kobayashi and Nagakura, 1972 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
C+ | 22.83 ± 0.05 | ? | EI | Kandel, 1955 | RDSH |
CH2NO2+ | 11.8 ± 0.1 | H | PI | Lifshitz, Rejwan, et al., 1988 | LL |
CH2NO2+ | 11.97 ± 0.02 | H | EI | Kandel, 1955 | RDSH |
CH3+ | 13.6 | NO2 | EI | Haney and Franklin, 1968 | RDSH |
CH3+ | 12.6 | NO2 | EI | Tsuda and Hamill, 1966 | RDSH |
CH3NO+ | 11.75 ± 0.05 | O | PI | Lifshitz, Rejwan, et al., 1988 | LL |
CH3NO+ | 11.95 | O | PIPECO | Gilman, Hsieh, et al., 1983 | LBLHLM |
NO+ | 11.75 ± 0.05 | CH3O | PI | Lifshitz, Rejwan, et al., 1988 | LL |
NO+ | 11.5 | CH3O | PE | Ogden, Shaw, et al., 1983 | LBLHLM |
NO+ | 11.76 | CH3O | PIPECO | Gilman, Hsieh, et al., 1983 | LBLHLM |
NO+ | 11.7 | CH3O | PIPECO | Niwa, Tajima, et al., 1981 | LLK |
NO+ | 11.75 ± 0.01 | ? | PI | Nicholson, 1970 | RDSH |
NO2+ | 12.1 ± 0.1 | CH3 | PI | Lifshitz, Rejwan, et al., 1988 | LL |
NO2+ | 11.97 | CH3 | PE | Ogden, Shaw, et al., 1983 | LBLHLM |
NO2+ | 12.1 | CH3 | PIPECO | Niwa, Tajima, et al., 1981 | LLK |
NO2+ | 13. ± 0. | CH3 | EI | Collin, 1959 | RDSH |
O+ | 14.50 ± 0.16 | ? | EI | Kandel, 1955 | RDSH |
De-protonation reactions
CH2NO2- + =
By formula: CH2NO2- + H+ = CH3NO2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1498. ± 21. | kJ/mol | D-EA | Metz, Cyr, et al., 1991 | gas phase; B |
ΔrH° | 1491. ± 9.2 | kJ/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrH° | 1495. ± 12. | kJ/mol | G+TS | Cumming and Kebarle, 1978 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1463. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrG° | 1467. ± 8.4 | kJ/mol | IMRE | Cumming and Kebarle, 1978 | gas phase; B |
ΔrG° | 1467. ± 8.4 | kJ/mol | IMRE | MacKay and Bohme, 1978 | gas phase; EA: < NO2; B |
Ion clustering data
Go To: Top, Condensed phase thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.
Clustering reactions
+ = CH3BrNO2-
By formula: Br- + CH3NO2 = CH3BrNO2-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 40. ± 8.4 | kJ/mol | IMRE | Tanabe, Morgon, et al., 1996 | gas phase; Anchored to H2O..Br- of Hiraoka, Mizure, et al., 19882; B |
By formula: CH2NO2- + CH3NO2 = C2H5N2O4-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 66.5 ± 2.1 | kJ/mol | TDAs | Wincel, 2003 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 35.1 | kJ/mol | TDAs | Wincel, 2003 | gas phase; B |
By formula: CH3NO2- + CH3NO2 = (CH3NO2- • CH3NO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 63.60 ± 0.84 | kJ/mol | N/A | Compton, Carman Jr., et al., 1996 | gas phase; Shift in electron detachment from non-solvated ion; B |
(CH3NO2- • ) + = (CH3NO2- • 2)
By formula: (CH3NO2- • CH3NO2) + CH3NO2 = (CH3NO2- • 2CH3NO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 50. ± 150. | kJ/mol | N/A | Compton, Carman Jr., et al., 1996 | gas phase; shift in electron detachment from less solvated ion; B |
ΔrH° | 53.6 ± 1.3 | kJ/mol | TDAs | Wincel, 2003 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 24.7 | kJ/mol | TDAs | Wincel, 2003 | gas phase; B |
By formula: CH3N2O4- + 2CH3NO2 = C2H6N3O6-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 51.9 ± 2.1 | kJ/mol | N/A | Wincel, 2003 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 22.6 | kJ/mol | TDAs | Wincel, 2003 | gas phase; B |
By formula: CH6N+ + CH3NO2 = (CH6N+ • CH3NO2)
Bond type: Hydrogen bonds of the type NH+-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 85.8 | kJ/mol | PHPMS | Meot-Ner, 1984 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 96.2 | J/mol*K | PHPMS | Meot-Ner, 1984 | gas phase; M |
By formula: C2H5N2O4- + 2CH3NO2 = C3H8N3O6-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 55.6 ± 2.9 | kJ/mol | TDAs | Wincel, 2003 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 24.3 | kJ/mol | TDAs | Wincel, 2003 | gas phase; B |
C2H6ClN2O4- + 3 = C3H9ClN3O6-
By formula: C2H6ClN2O4- + 3CH3NO2 = C3H9ClN3O6-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 46.4 ± 2.1 | kJ/mol | N/A | Wincel, 2003 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 15.5 | kJ/mol | TDAs | Wincel, 2003 | gas phase; B |
By formula: C2H6N2O6- + 2CH3NO2 = C3H9N3O8-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 45.6 ± 2.5 | kJ/mol | TDAs | Wincel, 2003 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 15.5 | kJ/mol | TDAs | Wincel, 2003 | gas phase; B |
By formula: C2H6N3O6- + 3CH3NO2 = C3H9N4O8-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 47.3 ± 3.3 | kJ/mol | N/A | Wincel, 2003 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 13.8 | kJ/mol | TDAs | Wincel, 2003 | gas phase; B |
C3H8N3O6- + 3 = C4H11N4O8-
By formula: C3H8N3O6- + 3CH3NO2 = C4H11N4O8-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 52.7 ± 2.1 | kJ/mol | TDAs | Wincel, 2003 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 13.0 | kJ/mol | TDAs | Wincel, 2003 | gas phase; B |
C3H9ClN3O6- + 4 = C4H12ClN4O8-
By formula: C3H9ClN3O6- + 4CH3NO2 = C4H12ClN4O8-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 40. ± 4.2 | kJ/mol | N/A | Wincel, 2003 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 11.3 | kJ/mol | TDAs | Wincel, 2003 | gas phase; B |
C3H9N3O6- + 3 = C4H12N4O8-
By formula: C3H9N3O6- + 3CH3NO2 = C4H12N4O8-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 43.5 ± 2.1 | kJ/mol | TDAs | Wincel, 2003 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 15.9 | kJ/mol | TDAs | Wincel, 2003 | gas phase; B |
C3H9N3O8- + 3 = C4H12N4O10-
By formula: C3H9N3O8- + 3CH3NO2 = C4H12N4O10-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 39.7 ± 3.8 | kJ/mol | TDAs | Wincel, 2003 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 9.62 | kJ/mol | TDAs | Wincel, 2003 | gas phase; B |
C3H9N4O8- + 4 = C4H12N5O10-
By formula: C3H9N4O8- + 4CH3NO2 = C4H12N5O10-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 40.6 ± 1.3 | kJ/mol | N/A | Wincel, 2003 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 6.69 | kJ/mol | TDAs | Wincel, 2003 | gas phase; B |
C4H11N4O8- + 4 = C5H14N5O10-
By formula: C4H11N4O8- + 4CH3NO2 = C5H14N5O10-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 47.70 ± 0.84 | kJ/mol | TDAs | Wincel, 2003 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 6.69 | kJ/mol | TDAs | Wincel, 2003 | gas phase; B |
C4H12N4O8- + 4 = C5H15N5O10-
By formula: C4H12N4O8- + 4CH3NO2 = C5H15N5O10-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 35.1 ± 0.84 | kJ/mol | TDAs | Wincel, 2003 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 10.0 | kJ/mol | TDAs | Wincel, 2003 | gas phase; B |
C4H12N4O10- + 4 = C5H15N5O12-
By formula: C4H12N4O10- + 4CH3NO2 = C5H15N5O12-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 25.1 | kJ/mol | TDAs | Wincel, 2003 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 2.5 | kJ/mol | TDAs | Wincel, 2003 | gas phase; B |
By formula: C5H10NO2+ + CH3NO2 = (C5H10NO2+ • CH3NO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 73.2 | kJ/mol | HPMS | Meot-Ner and Field, 1974 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 90.4 | J/mol*K | HPMS | Meot-Ner and Field, 1974 | gas phase; M |
By formula: C5H12NO2+ + CH3NO2 = (C5H12NO2+ • CH3NO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 82.8 | kJ/mol | HPMS | Meot-Ner and Field, 1974 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 116. | J/mol*K | HPMS | Meot-Ner and Field, 1974 | gas phase; M |
By formula: C6H7N+ + CH3NO2 = (C6H7N+ • CH3NO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 60.2 | kJ/mol | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 75. | J/mol*K | N/A | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
34. | 343. | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; Entropy change calculated or estimated; M |
By formula: C11H10+ + CH3NO2 = (C11H10+ • CH3NO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 46.9 | kJ/mol | PHPMS | El-Shall and Meot-Ner (Mautner), 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 93.3 | J/mol*K | PHPMS | El-Shall and Meot-Ner (Mautner), 1987 | gas phase; M |
By formula: Cl- + CH3NO2 = (Cl- • CH3NO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 65.3 ± 2.5 | kJ/mol | TDAs | Wincel, 2003 | gas phase; B |
ΔrH° | 69.87 ± 0.42 | kJ/mol | TDAs | Sieck, 1985 | gas phase; B,M |
ΔrH° | 68. ± 13. | kJ/mol | IMRB | Riveros, Breda, et al., 1973 | gas phase; Anchored: Larson and McMahon, 1984; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 71.5 | J/mol*K | PHPMS | Sieck, 1985 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 38.5 | kJ/mol | TDAs | Wincel, 2003 | gas phase; B |
ΔrG° | 48.53 ± 0.42 | kJ/mol | TDAs | Sieck, 1985 | gas phase; B |
By formula: (Cl- • CH3NO2) + CH3NO2 = (Cl- • 2CH3NO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 54.4 ± 2.1 | kJ/mol | TDAs | Wincel, 2003 | gas phase; B |
ΔrH° | 54.81 ± 0.42 | kJ/mol | TDAs | Sieck, 1985 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 76.6 | J/mol*K | PHPMS | Sieck, 1985 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 23.8 | kJ/mol | TDAs | Wincel, 2003 | gas phase; B |
ΔrG° | 31.8 ± 1.3 | kJ/mol | TDAs | Sieck, 1985 | gas phase; B |
By formula: I- + CH3NO2 = (I- • CH3NO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 51.0 ± 4.2 | kJ/mol | TDAs | Caldwell, Masucci, et al., 1989 | gas phase; B,M |
By formula: Li+ + CH3NO2 = (Li+ • CH3NO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 165. | kJ/mol | ICR | Staley and Beauchamp, 1975 | gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970; M |
By formula: NO2- + CH3NO2 = (NO2- • CH3NO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 60.7 ± 2.1 | kJ/mol | TDAs | Wincel, 2003 | gas phase; B |
ΔrH° | 59.83 ± 0.42 | kJ/mol | TDAs | Sieck, 1985 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 64.9 | J/mol*K | PHPMS | Sieck, 1985 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 32.6 | kJ/mol | TDAs | Wincel, 2003 | gas phase; B |
ΔrG° | 40.6 ± 0.84 | kJ/mol | TDAs | Sieck, 1985 | gas phase; B |
References
Go To: Top, Condensed phase thermochemistry data, Gas phase ion energetics data, Ion clustering data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Lebedeva and Ryadenko, 1973
Lebedeva, N.D.; Ryadenko, V.L.R.,
Enthalpies of formation of nitroalkanes,
Russ. J. Phys. Chem. (Engl. Transl.), 1973, 47, 1382. [all data]
Cass, Fletcher, et al., 1958
Cass, R.C.; Fletcher, S.E.; Mortimer, C.T.; Quincey, P.G.; Springall, H.D.,
Heats of combustion and molecular structure. Part IV. Aliphatic nitroalkanes and nitric esters,
J. Chem. Soc., 1958, 958-962. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Holcomb and Dorsey, 1949
Holcomb, D.E.; Dorsey, C.L., Jr.,
Thermodynamic properties of nitroparaffins,
Ind. Eng. Chem., 1949, 41, 2788-2792. [all data]
Knobel, Miroshnichenko, et al., 1971
Knobel, Y.K.; Miroshnichenko, E.A.; Lebedev, Y.A.,
Heats of combustion of nitromethane and dinitromethane: enthalpies of formation of nitromethyl radicals and energies of dissociation of bonds in nitro derivatives of methane,
Bull. Acad. Sci. USSR, Div. Chem. Sci., 1971, 425-428. [all data]
Swientoslawski, 1910
Swientoslawski, W.,
Thermochemische Untersuchungen der organischen Verbindungen. Dritte Mitteilung. Stickstoffhaltige Verbindungen.,
Z. Phys. Chem., 1910, 72, 49-83. [all data]
Jones and Giauque, 1947
Jones, W.M.; Giauque, W.F.,
The entropy of nitromethane. Heat capacity of solid and liquid. Vapor pressure, heats of fusion and vaporization,
J. Am. Chem. Soc., 1947, 69, 983-987. [all data]
Berman and West, 1969
Berman, H.A.; West, E.D.,
Heat capacity of liquid nitromethane from 35 to 200°C,
J. Chem. Eng. Data, 1969, 14, 107-109. [all data]
Hough, Mason, et al., 1950
Hough, E.W.; Mason, D.M.; Sage, B.H.,
Heat capacities of several organic liquids,
J. Am. Chem. Soc., 1950, 72, 5775-5777. [all data]
Williams, 1925
Williams, J.W.,
A study of the physical properties of nitromethane,
J. Am. Chem. Soc., 1925, 47, 2644-2652. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Adams, Schneider, et al., 2009
Adams, C.L.; Schneider, H.; Ervin, K.M.; Weber, J.M.,
Low-energy photoelectron imaging spectroscopy of nitromethane anions: Electron affinity, vibrational features, anisotropies, and the dipole-bound state,
J. Chem. Phys., 2009, 130, 7, 074307, https://doi.org/10.1063/1.3076892
. [all data]
Compton, Carman Jr., et al., 1996
Compton, R.N.; Carman Jr.; Desfrancois, C.; Abdoul-Carmine, H.; Schermann, J.P.; Hendricks, J.H.,
On the binding of Electrons to Nitromethane: Dipole and Valence Bound Anions,
J. Chem. Phys., 1996, 105, 9, 3472, https://doi.org/10.1063/1.472993
. [all data]
Lecomte, Carles, et al., 2000
Lecomte, F.; Carles, S.; Desfrancois, C.; Johnson, M.A.,
Dipole bound and valence state coupling in argon-solvated nitromethane anions,
J. Chem. Phys., 2000, 113, 24, 10973-10977, https://doi.org/10.1063/1.1326476
. [all data]
Chen, Welk, et al., 1999
Chen, E.C.M.; Welk, N.; Chen, E.S.; Wentworth, W.E.,
Electron affinity, gas-phase acidity, bond dissociation energy, and negative ion states of nitromethane,
J. Phys. Chem. A, 1999, 103, 45, 9072-9079, https://doi.org/10.1021/jp990530l
. [all data]
Chen and Wentworth, 1983
Chen, E.C.M.; Wentworth, W.E.,
Determination of molecular electron affinities using the electron capture detector in the pulse sampling mode at steady state,
J. Phys. Chem., 1983, 87, 45. [all data]
Grimsrud, Caldwell, et al., 1985
Grimsrud, E.; Caldwell, G.; Kebarle, P.,
Electron affinities from electron transfer equilibria: A- + B = A + B-,
J. Am. Chem. Soc., 1985, 107, 4627. [all data]
Compton, Reinhardt, et al., 1978
Compton, R.N.; Reinhardt, P.W.; Cooper, C.D.,
Collisional ionization between alkali atoms and some methane derivatives: Electron affinities for CH3NO2, CF3I, and CF3Br,
J. Chem. Phys., 1978, 68, 4360. [all data]
Goebbert, Pichugin, et al., 2009
Goebbert, D.J.; Pichugin, K.; Sanov, A.,
Low-lying electronic states of CH3NO2 via photoelectron imaging of the nitromethane anion,
J. Chem. Phys., 2009, 131, 16, 164308, https://doi.org/10.1063/1.3256233
. [all data]
Pasa-Tolic, Klasine, et al., 1990
Pasa-Tolic, L.; Klasine, L.; McGlynn, S.P.,
The HeI PE spectrum and electronic structure of nitroethene,
Chem. Phys. Lett., 1990, 170, 113. [all data]
Lifshitz, Rejwan, et al., 1988
Lifshitz, C.; Rejwan, M.; Levin, I.; Peres, T.,
Unimolecular fragmentations of the nitromenthane cation,
Int. J. Mass Spectrom. Ion Processes, 1988, 84, 271. [all data]
Ogden, Shaw, et al., 1983
Ogden, I.K.; Shaw, N.; Danby, C.J.; Powis, I.,
Competing dissociation channels of nitromethane and methyl nitrite ions and the role of electronic and internal modes of excitation,
Int. J. Mass Spectrom. Ion Processes, 1983, 54, 41. [all data]
Gilman, Hsieh, et al., 1983
Gilman, J.P.; Hsieh, T.; Meisels, G.G.,
Competition between isomerization and fragmentation of gaseous ions. II. Nitromethane and methylnitrite ions,
J. Chem. Phys., 1983, 78, 1174. [all data]
Katsumata, Shiromaru, et al., 1982
Katsumata, S.; Shiromaru, H.; Mitani, K.; Iwata, S.; Kimura, K.,
Photoelectron angular distribution and assignments of photoelectron spectra of nitrogen dioxide, nitromethane and nitrobenzene,
Chem. Phys., 1982, 69, 423. [all data]
Allam, Migahed, et al., 1982
Allam, S.H.; Migahed, M.D.; El-Khodary, A.,
Electron impact ionization and dissociation of deuterated and non-deuterated methanol, methyl cyanide, nitromethane and nitrobenzene,
Egypt. J. Phys., 1982, 13, 167. [all data]
Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S.,
Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules
in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]
Asbrink, Svensson, et al., 1981
Asbrink, L.; Svensson, A.; Von Niessen, W.; Bieri, G.,
30.4 nm He(II) photoelectron spectra of organic molecules,
J. Electron Spectrosc. Relat. Phenom., 1981, 24, 293. [all data]
Allam, Migahed, et al., 1981
Allam, S.H.; Migahed, M.D.; El Khodary, A.,
Electron impact study of nitrobenzene and nitromethane,
Int. J. Mass Spectrom. Ion Phys., 1981, 39, 117. [all data]
Rabalais, 1972
Rabalais, J.W.,
Photoelectron spectroscopic investigation of the electronic structure of nitromethane and nitrobenzene,
J. Chem. Phys., 1972, 57, 960. [all data]
Nicholson, 1970
Nicholson, A.J.C.,
Determination of bond dissociation energies from photoionization efficiency curves
in Recent Developments in Mass Spectrometroscopy, ed. K Ogata and T. Hayakawa, Univ. Park Press, Baltimore, MD, 1970, 745. [all data]
Dewar, Shanshal, et al., 1969
Dewar, M.J.S.; Shanshal, M.; Worley, S.D.,
Calculated and observed ionization potentials gf nitroalkanes and of nitrous and nitric acids and esters. Extension of the MINDO method to nitrogen-oxygen compounds,
J. Am. Chem. Soc., 1969, 91, 3590. [all data]
Nicholson, 1965
Nicholson, A.J.C.,
Photoionization-efficiency curves. II. False and genuine structure,
J. Chem. Phys., 1965, 43, 1171. [all data]
Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J.,
Ionization potentials of some molecules,
J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]
Bajic, Humski, et al., 1985
Bajic, M.; Humski, K.; Klasinc, L.; Ruscic, B.,
Substitution effects on electronic structure of thiophene,
Z. Naturforsch. B:, 1985, 40, 1214. [all data]
Kobayashi, 1978
Kobayashi, T.,
A simple general tendency in photoelectron angular distributions of some monosubstituted benzenes,
Phys. Lett., 1978, 69, 105. [all data]
Rao, 1975
Rao, C.N.R.,
Lone-pair ionization bands of chromophores in the photoelectron spectra of organic molecules,
Indian J. Chem., 1975, 13, 950. [all data]
Kobayashi and Nagakura, 1974
Kobayashi, T.; Nagakura, S.,
Photoelectron spectra of substituted benzenes,
Bull. Chem. Soc. Jpn., 1974, 47, 2563. [all data]
Kobayashi and Nagakura, 1972
Kobayashi, T.; Nagakura, S.,
Photoelectron spectra of nitro-compounds,
Chem. Lett., 1972, 903. [all data]
Kandel, 1955
Kandel, R.J.,
Appearance potential studies. II. Nitromethane,
J. Chem. Phys., 1955, 23, 84. [all data]
Haney and Franklin, 1968
Haney, M.A.; Franklin, J.L.,
Correlation of excess energies of electron-impact dissociations with the translational energies of the products,
J.Chem. Phys., 1968, 48, 4093. [all data]
Tsuda and Hamill, 1966
Tsuda, S.; Hamill, W.H.,
Ionization efficiency measurements by the retarding potential difference method,
Advan. Mass Spectrom., 1966, 3, 249. [all data]
Niwa, Tajima, et al., 1981
Niwa, Y.; Tajima, S.; Tsuchiya, T.,
Fragmentation of energy-selected nitromethane ions,
Int. J. Mass Spectrom. Ion Processes, 1981, 40, 287. [all data]
Collin, 1959
Collin, J.,
Ionization and dissociation of molecules by monoenergetic electrons. III. On the existence of a bent excited state of NO2+,
J. Chem. Phys., 1959, 30, 1621. [all data]
Metz, Cyr, et al., 1991
Metz, R.B.; Cyr, D.R.; Neumark, D.M.,
Study of the 2B1 and 2A2 States of CH2NO2 via Ultraviolet Photoelectron Spectroscopy of the CH2NO2- Anion,
J. Phys. Chem., 1991, 95, 7, 2900, https://doi.org/10.1021/j100160a047
. [all data]
Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr.,
The gas phase acidity scale from methanol to phenol,
J. Am. Chem. Soc., 1979, 101, 6047. [all data]
Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P.,
Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A),
Can. J. Chem., 1978, 56, 1. [all data]
MacKay and Bohme, 1978
MacKay, G.I.; Bohme, D.K.,
Proton-Transfer Reactions in Nitromethane at 297K,
Int. J. Mass Spectrom. Ion Phys., 1978, 26, 4, 327, https://doi.org/10.1016/0020-7381(78)80052-7
. [all data]
Tanabe, Morgon, et al., 1996
Tanabe, F.K.J.; Morgon, N.H.; Riveros, J.M.,
Relative Bromide and Iodide Affinity of Simple Solvent Molecules Determined by FT-ICR,
J. Phys. Chem., 1996, 100, 8, 2862-2866, https://doi.org/10.1021/jp952290p
. [all data]
Hiraoka, Mizure, et al., 1988
Hiraoka, K.; Mizure, S.; Yamabe, S.; Nakatsuji, Y.,
Gas Phase Clustering Reactions of CN- and CH2CN- with MeCN,
Chem. Phys. Lett., 1988, 148, 6, 497, https://doi.org/10.1016/0009-2614(88)80320-8
. [all data]
Wincel, 2003
Wincel, H.,
Gas-phase Solvation of Cl-, NO2-, CH2NO2-, CH3NO2-, and CH3NO4- by CH3NO2,
Int. J. Mass Spectrom., 2003, 226, 3, 341-353, https://doi.org/10.1016/S1387-3806(03)00066-6
. [all data]
Meot-Ner, 1984
Meot-Ner, (Mautner)M.,
The Ionic Hydrogen Bond and Ion Solvation. 1. -NH+ O-, -NH+ N- and -OH+ O- Bonds. Correlations with Proton Affinity. Deviations Due to Structural Effects,
J. Am. Chem. Soc., 1984, 106, 5, 1257, https://doi.org/10.1021/ja00317a015
. [all data]
Meot-Ner and Field, 1974
Meot-Ner, (Mautner); Field, F.H.,
Solvation and Association of Protonated Gaseous Amino Acids,
J. Am. Chem. Soc., 1974, 96, 10, 3168, https://doi.org/10.1021/ja00817a024
. [all data]
Meot-Ner (Mautner) and El-Shall, 1986
Meot-Ner (Mautner), M.; El-Shall, M.S.,
Ionic Charge Transfer Complexes. 1. Cationic Complexes with Delocalized and Partially Localized pi Systems,
J. Am. Chem. Soc., 1986, 108, 15, 4386, https://doi.org/10.1021/ja00275a026
. [all data]
El-Shall and Meot-Ner (Mautner), 1987
El-Shall, M.S.; Meot-Ner (Mautner), M.,
Ionic Charge Transfer Complexes. 3. Delocalised pi Systems as Electron Acceptors and Donors,
J. Phys. Chem., 1987, 91, 5, 1088, https://doi.org/10.1021/j100289a017
. [all data]
Sieck, 1985
Sieck, L.W.,
Thermochemistry of Solvation of NO2- and C6H5NO2- by Polar Molecules in the Vapor Phase. Comparison with Cl- and Variation with Ligand Structure.,
J. Phys. Chem., 1985, 89, 25, 5552, https://doi.org/10.1021/j100271a049
. [all data]
Riveros, Breda, et al., 1973
Riveros, J.M.; Breda, A.C.; Blair, L.K.,
Formation and relative stability of chloride ion clusters in the gas phase by ICR spectroscopy,
J. Am. Chem. Soc., 1973, 95, 4066. [all data]
Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B.,
Fluoride and chloride affinities of main group oxides, fluorides, oxofluorides, and alkyls. Quantitative scales of lewis acidities from ion cyclotron resonance halide-exchange equilibria,
J. Phys. Chem., 1984, 88, 1083. [all data]
Caldwell, Masucci, et al., 1989
Caldwell, G.W.; Masucci, J.A.; Ikonomou, M.G.,
Negative Ion Chemical Ionization Mass Spectrometry - Binding of Molecules to Bromide and Iodide Anions,
Org. Mass Spectrom., 1989, 24, 1, 8, https://doi.org/10.1002/oms.1210240103
. [all data]
Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L.,
Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases,
J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050
. [all data]
Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P.,
Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n,
J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013
. [all data]
Notes
Go To: Top, Condensed phase thermochemistry data, Gas phase ion energetics data, Ion clustering data, References
- Symbols used in this document:
AE Appearance energy Cp,liquid Constant pressure heat capacity of liquid EA Electron affinity IE (evaluated) Recommended ionization energy S°liquid Entropy of liquid at standard conditions T Temperature ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.