Methane, nitro-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Δfgas-81. ± 1.kJ/molCcbKnobel, Miroshnichenko, et al., 1971 

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-113. ± 0.4kJ/molCcbLebedeva and Ryadenko, 1973ALS
Δfliquid-113.1 ± 0.63kJ/molCcbCass, Fletcher, et al., 1958Reanalyzed by Cox and Pilcher, 1970, Original value = -93. ± 1. kJ/mol; ALS
Δfliquid-89.04 ± 0.75kJ/molCcbHolcomb and Dorsey, 1949ALS
Quantity Value Units Method Reference Comment
Δcliquid-709.6 ± 0.4kJ/molCcbLebedeva and Ryadenko, 1973ALS
Δcliquid-703. ± 1.kJ/molCcbKnobel, Miroshnichenko, et al., 1971ALS
Δcliquid-709.15 ± 0.59kJ/molCcbCass, Fletcher, et al., 1958Reanalyzed by Cox and Pilcher, 1970, Original value = -730. ± 1. kJ/mol; ALS
Δcliquid-733.25 ± 0.75kJ/molCcbHolcomb and Dorsey, 1949ALS
Δcliquid-709.2kJ/molCcbSwientoslawski, 1910ALS
Quantity Value Units Method Reference Comment
liquid171.75J/mol*KN/AJones and Giauque, 1947DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
106.22308.Berman and West, 1969T = 308 to 473 K.; DH
108.8313.Hough, Mason, et al., 1950T = 313 to 363 K.; DH
105.98298.15Jones and Giauque, 1947T = 15 to 300 K.; DH
100.298.Williams, 1925T = 288 to 343 K. Equation only.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil374.1 ± 0.8KAVGN/AAverage of 17 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus244.6KN/AToops, 1956Uncertainty assigned by TRC = 0.05 K; TRC
Tfus244.55KN/ATimmermans, 1952Uncertainty assigned by TRC = 0.4 K; TRC
Tfus243.11KN/ADreisbach and Martin, 1949Uncertainty assigned by TRC = 0.05 K; TRC
Tfus244.KN/AJoukovsky, 1934Uncertainty assigned by TRC = 2. K; TRC
Tfus243.95KN/ATimmermans, 1921Uncertainty assigned by TRC = 0.3 K; TRC
Quantity Value Units Method Reference Comment
Ttriple244.77KN/AJones and Giauque, 1947, 2Uncertainty assigned by TRC = 0.02 K; TRC
Quantity Value Units Method Reference Comment
Tc588.KN/AMajer and Svoboda, 1985 
Tc588.KN/AGriffin, 1949Uncertainty assigned by TRC = 3. K; taken from a plot of total P vs 1/T; TRC
Quantity Value Units Method Reference Comment
Pc58.70barN/AAmbrose, Counsell, et al., 1978Uncertainty assigned by TRC = 0.5865 bar; TRC
Pc63.10barN/AGriffin, 1949Uncertainty assigned by TRC = 1.0342 bar; from value pf vapor pressure at Tc, based on unpublished measurements; TRC
Quantity Value Units Method Reference Comment
ρc5.77mol/lN/AGriffin, 1949Uncertainty assigned by TRC = 0.05 mol/l; deduced from a series of P vs 1/T plots for various sample sizes in a fixed volume bomb; TRC
Quantity Value Units Method Reference Comment
Δvap38. ± 3.kJ/molAVGN/AAverage of 7 values; Individual data points

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
33.99374.4N/AMajer and Svoboda, 1985 
38.271298.15N/AJones and Giauque, 1947P = 4.89 kPA; DH
35.2420.AStephenson and Malanowski, 1987Based on data from 405. to 476. K. See also Berman and West, 1967.; AC
36.8343.AStephenson and Malanowski, 1987Based on data from 328. to 410. K. See also McCullough, Scott, et al., 1954.; AC
37.2 ± 0.1318.CMcCullough, Scott, et al., 1954AC
36.3 ± 0.1335.CMcCullough, Scott, et al., 1954AC
35.2 ± 0.1353.CMcCullough, Scott, et al., 1954AC
34.0 ± 0.1374.CMcCullough, Scott, et al., 1954AC

Enthalpy of vaporization

ΔvapH = A exp(-βTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A (kJ/mol) β Tc (K) Reference Comment
318. to 374.53.330.2732588.Majer and Svoboda, 1985 

Entropy of vaporization

ΔvapS (J/mol*K) Temperature (K) Reference Comment
128.36298.15Jones and Giauque, 1947P; DH

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
405.0 to 476.4.11351229.574-76.221Berman and West, 1967Coefficents calculated by NIST from author's data.
328.86 to 409.64.405421446.196-45.633McCullough, Scott, et al., 1954Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
9.703244.77Jones and Giauque, 1947DH
9.7244.8Domalski and Hearing, 1996AC

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
39.64244.77Jones and Giauque, 1947DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

CH2NO2- + Hydrogen cation = Methane, nitro-

By formula: CH2NO2- + H+ = CH3NO2

Quantity Value Units Method Reference Comment
Δr1498. ± 21.kJ/molD-EAMetz, Cyr, et al., 1991gas phase; B
Δr1491. ± 9.2kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1495. ± 12.kJ/molG+TSCumming and Kebarle, 1978gas phase; B
Quantity Value Units Method Reference Comment
Δr1463. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1467. ± 8.4kJ/molIMRECumming and Kebarle, 1978gas phase; B
Δr1467. ± 8.4kJ/molIMREMacKay and Bohme, 1978gas phase; EA: < NO2; B

Chlorine anion + Methane, nitro- = (Chlorine anion • Methane, nitro-)

By formula: Cl- + CH3NO2 = (Cl- • CH3NO2)

Quantity Value Units Method Reference Comment
Δr65.3 ± 2.5kJ/molTDAsWincel, 2003gas phase; B
Δr69.87 ± 0.42kJ/molTDAsSieck, 1985gas phase; B,M
Δr68. ± 13.kJ/molIMRBRiveros, Breda, et al., 1973gas phase; Anchored: Larson and McMahon, 1984; B
Quantity Value Units Method Reference Comment
Δr71.5J/mol*KPHPMSSieck, 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr38.5kJ/molTDAsWincel, 2003gas phase; B
Δr48.53 ± 0.42kJ/molTDAsSieck, 1985gas phase; B

(Chlorine anion • Methane, nitro-) + Methane, nitro- = (Chlorine anion • 2Methane, nitro-)

By formula: (Cl- • CH3NO2) + CH3NO2 = (Cl- • 2CH3NO2)

Quantity Value Units Method Reference Comment
Δr54.4 ± 2.1kJ/molTDAsWincel, 2003gas phase; B
Δr54.81 ± 0.42kJ/molTDAsSieck, 1985gas phase; B,M
Quantity Value Units Method Reference Comment
Δr76.6J/mol*KPHPMSSieck, 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr23.8kJ/molTDAsWincel, 2003gas phase; B
Δr31.8 ± 1.3kJ/molTDAsSieck, 1985gas phase; B

Nitrogen oxide anion + Methane, nitro- = (Nitrogen oxide anion • Methane, nitro-)

By formula: NO2- + CH3NO2 = (NO2- • CH3NO2)

Quantity Value Units Method Reference Comment
Δr60.7 ± 2.1kJ/molTDAsWincel, 2003gas phase; B
Δr59.83 ± 0.42kJ/molTDAsSieck, 1985gas phase; B,M
Quantity Value Units Method Reference Comment
Δr64.9J/mol*KPHPMSSieck, 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr32.6kJ/molTDAsWincel, 2003gas phase; B
Δr40.6 ± 0.84kJ/molTDAsSieck, 1985gas phase; B

C6H7N+ + Methane, nitro- = (C6H7N+ • Methane, nitro-)

By formula: C6H7N+ + CH3NO2 = (C6H7N+ • CH3NO2)

Quantity Value Units Method Reference Comment
Δr60.2kJ/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr75.J/mol*KN/AMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
34.343.PHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M

(CH3NO2- • Methane, nitro-) + Methane, nitro- = (CH3NO2- • 2Methane, nitro-)

By formula: (CH3NO2- • CH3NO2) + CH3NO2 = (CH3NO2- • 2CH3NO2)

Quantity Value Units Method Reference Comment
Δr50. ± 150.kJ/molN/ACompton, Carman Jr., et al., 1996gas phase; shift in electron detachment from less solvated ion; B
Δr53.6 ± 1.3kJ/molTDAsWincel, 2003gas phase; B
Quantity Value Units Method Reference Comment
Δr24.7kJ/molTDAsWincel, 2003gas phase; B

CH6N+ + Methane, nitro- = (CH6N+ • Methane, nitro-)

By formula: CH6N+ + CH3NO2 = (CH6N+ • CH3NO2)

Bond type: Hydrogen bonds of the type NH+-O between organics

Quantity Value Units Method Reference Comment
Δr85.8kJ/molPHPMSMeot-Ner, 1984gas phase; M
Quantity Value Units Method Reference Comment
Δr96.2J/mol*KPHPMSMeot-Ner, 1984gas phase; M

CH2NO2- + Methane, nitro- = C2H5N2O4-

By formula: CH2NO2- + CH3NO2 = C2H5N2O4-

Quantity Value Units Method Reference Comment
Δr66.5 ± 2.1kJ/molTDAsWincel, 2003gas phase; B
Quantity Value Units Method Reference Comment
Δr35.1kJ/molTDAsWincel, 2003gas phase; B

C3H9N3O6- + 3Methane, nitro- = C4H12N4O8-

By formula: C3H9N3O6- + 3CH3NO2 = C4H12N4O8-

Quantity Value Units Method Reference Comment
Δr43.5 ± 2.1kJ/molTDAsWincel, 2003gas phase; B
Quantity Value Units Method Reference Comment
Δr15.9kJ/molTDAsWincel, 2003gas phase; B

C2H5N2O4- + 2Methane, nitro- = C3H8N3O6-

By formula: C2H5N2O4- + 2CH3NO2 = C3H8N3O6-

Quantity Value Units Method Reference Comment
Δr55.6 ± 2.9kJ/molTDAsWincel, 2003gas phase; B
Quantity Value Units Method Reference Comment
Δr24.3kJ/molTDAsWincel, 2003gas phase; B

C3H8N3O6- + 3Methane, nitro- = C4H11N4O8-

By formula: C3H8N3O6- + 3CH3NO2 = C4H11N4O8-

Quantity Value Units Method Reference Comment
Δr52.7 ± 2.1kJ/molTDAsWincel, 2003gas phase; B
Quantity Value Units Method Reference Comment
Δr13.0kJ/molTDAsWincel, 2003gas phase; B

C4H11N4O8- + 4Methane, nitro- = C5H14N5O10-

By formula: C4H11N4O8- + 4CH3NO2 = C5H14N5O10-

Quantity Value Units Method Reference Comment
Δr47.70 ± 0.84kJ/molTDAsWincel, 2003gas phase; B
Quantity Value Units Method Reference Comment
Δr6.69kJ/molTDAsWincel, 2003gas phase; B

C2H6N2O6- + 2Methane, nitro- = C3H9N3O8-

By formula: C2H6N2O6- + 2CH3NO2 = C3H9N3O8-

Quantity Value Units Method Reference Comment
Δr45.6 ± 2.5kJ/molTDAsWincel, 2003gas phase; B
Quantity Value Units Method Reference Comment
Δr15.5kJ/molTDAsWincel, 2003gas phase; B

C4H12N4O8- + 4Methane, nitro- = C5H15N5O10-

By formula: C4H12N4O8- + 4CH3NO2 = C5H15N5O10-

Quantity Value Units Method Reference Comment
Δr35.1 ± 0.84kJ/molTDAsWincel, 2003gas phase; B
Quantity Value Units Method Reference Comment
Δr10.0kJ/molTDAsWincel, 2003gas phase; B

C3H9N3O8- + 3Methane, nitro- = C4H12N4O10-

By formula: C3H9N3O8- + 3CH3NO2 = C4H12N4O10-

Quantity Value Units Method Reference Comment
Δr39.7 ± 3.8kJ/molTDAsWincel, 2003gas phase; B
Quantity Value Units Method Reference Comment
Δr9.62kJ/molTDAsWincel, 2003gas phase; B

CH3N2O4- + 2Methane, nitro- = C2H6N3O6-

By formula: CH3N2O4- + 2CH3NO2 = C2H6N3O6-

Quantity Value Units Method Reference Comment
Δr51.9 ± 2.1kJ/molN/AWincel, 2003gas phase; B
Quantity Value Units Method Reference Comment
Δr22.6kJ/molTDAsWincel, 2003gas phase; B

C2H6ClN2O4- + 3Methane, nitro- = C3H9ClN3O6-

By formula: C2H6ClN2O4- + 3CH3NO2 = C3H9ClN3O6-

Quantity Value Units Method Reference Comment
Δr46.4 ± 2.1kJ/molN/AWincel, 2003gas phase; B
Quantity Value Units Method Reference Comment
Δr15.5kJ/molTDAsWincel, 2003gas phase; B

C11H10+ + Methane, nitro- = (C11H10+ • Methane, nitro-)

By formula: C11H10+ + CH3NO2 = (C11H10+ • CH3NO2)

Quantity Value Units Method Reference Comment
Δr46.9kJ/molPHPMSEl-Shall and Meot-Ner (Mautner), 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr93.3J/mol*KPHPMSEl-Shall and Meot-Ner (Mautner), 1987gas phase; M

C2H6N3O6- + 3Methane, nitro- = C3H9N4O8-

By formula: C2H6N3O6- + 3CH3NO2 = C3H9N4O8-

Quantity Value Units Method Reference Comment
Δr47.3 ± 3.3kJ/molN/AWincel, 2003gas phase; B
Quantity Value Units Method Reference Comment
Δr13.8kJ/molTDAsWincel, 2003gas phase; B

C3H9N4O8- + 4Methane, nitro- = C4H12N5O10-

By formula: C3H9N4O8- + 4CH3NO2 = C4H12N5O10-

Quantity Value Units Method Reference Comment
Δr40.6 ± 1.3kJ/molN/AWincel, 2003gas phase; B
Quantity Value Units Method Reference Comment
Δr6.69kJ/molTDAsWincel, 2003gas phase; B

C5H10NO2+ + Methane, nitro- = (C5H10NO2+ • Methane, nitro-)

By formula: C5H10NO2+ + CH3NO2 = (C5H10NO2+ • CH3NO2)

Quantity Value Units Method Reference Comment
Δr73.2kJ/molHPMSMeot-Ner and Field, 1974gas phase; M
Quantity Value Units Method Reference Comment
Δr90.4J/mol*KHPMSMeot-Ner and Field, 1974gas phase; M

C5H12NO2+ + Methane, nitro- = (C5H12NO2+ • Methane, nitro-)

By formula: C5H12NO2+ + CH3NO2 = (C5H12NO2+ • CH3NO2)

Quantity Value Units Method Reference Comment
Δr82.8kJ/molHPMSMeot-Ner and Field, 1974gas phase; M
Quantity Value Units Method Reference Comment
Δr116.J/mol*KHPMSMeot-Ner and Field, 1974gas phase; M

C3H9ClN3O6- + 4Methane, nitro- = C4H12ClN4O8-

By formula: C3H9ClN3O6- + 4CH3NO2 = C4H12ClN4O8-

Quantity Value Units Method Reference Comment
Δr40. ± 4.2kJ/molN/AWincel, 2003gas phase; B
Quantity Value Units Method Reference Comment
Δr11.3kJ/molTDAsWincel, 2003gas phase; B

C4H12N4O10- + 4Methane, nitro- = C5H15N5O12-

By formula: C4H12N4O10- + 4CH3NO2 = C5H15N5O12-

Quantity Value Units Method Reference Comment
Δr25.1kJ/molTDAsWincel, 2003gas phase; B
Quantity Value Units Method Reference Comment
Δr2.5kJ/molTDAsWincel, 2003gas phase; B

Lithium ion (1+) + Methane, nitro- = (Lithium ion (1+) • Methane, nitro-)

By formula: Li+ + CH3NO2 = (Li+ • CH3NO2)

Quantity Value Units Method Reference Comment
Δr165.kJ/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970; M

CH3NO2- + Methane, nitro- = (CH3NO2- • Methane, nitro-)

By formula: CH3NO2- + CH3NO2 = (CH3NO2- • CH3NO2)

Quantity Value Units Method Reference Comment
Δr63.60 ± 0.84kJ/molN/ACompton, Carman Jr., et al., 1996gas phase; Shift in electron detachment from non-solvated ion; B

Bromine anion + Methane, nitro- = CH3BrNO2-

By formula: Br- + CH3NO2 = CH3BrNO2-

Quantity Value Units Method Reference Comment
Δr40. ± 8.4kJ/molIMRETanabe, Morgon, et al., 1996gas phase; Anchored to H2O..Br- of Hiraoka, Mizure, et al., 19882; B

Iodide + Methane, nitro- = (Iodide • Methane, nitro-)

By formula: I- + CH3NO2 = (I- • CH3NO2)

Quantity Value Units Method Reference Comment
Δr51.0 ± 4.2kJ/molTDAsCaldwell, Masucci, et al., 1989gas phase; B,M

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Ion clustering data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

Quantity Value Units Method Reference Comment
IE (evaluated)11.08 ± 0.04eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)754.6kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity721.6kJ/molN/AHunter and Lias, 1998HL

Electron affinity determinations

EA (eV) Method Reference Comment
0.1720 ± 0.0060LPESAdams, Schneider, et al., 2009B
0.260 ± 0.080LPESCompton, Carman Jr., et al., 1996dipole-bound state: 12±3 meV.; B
0.01201N/ALecomte, Carles, et al., 2000Dipole-bound state; B
0.500 ± 0.020ECDChen, Welk, et al., 1999Reanalysis of Chen and Wentworth, 1983; B
0.49 ± 0.11IMREGrimsrud, Caldwell, et al., 1985ΔGea(423 K) = -12.1 kcal/mol; ΔSea (estimated) = +2.0 eu.; B
0.451 ± 0.052ECDChen and Wentworth, 1983B
0.44 ± 0.20NBIECompton, Reinhardt, et al., 1978B
0.960 ± 0.010LPESGoebbert, Pichugin, et al., 2009Stated electron affinity is the Vertical Detachment Energy; B

Ionization energy determinations

IE (eV) Method Reference Comment
11.07PEPasa-Tolic, Klasine, et al., 1990LL
11.1 ± 0.05PILifshitz, Rejwan, et al., 1988LL
10.7PEOgden, Shaw, et al., 1983LBLHLM
11.12PEGilman, Hsieh, et al., 1983LBLHLM
11.05PEKatsumata, Shiromaru, et al., 1982LBLHLM
11.28 ± 0.08EIAllam, Migahed, et al., 1982LBLHLM
11.28PEKimura, Katsumata, et al., 1981LLK
11.1PEAsbrink, Svensson, et al., 1981LLK
11.28 ± 0.08EIAllam, Migahed, et al., 1981LLK
11.07 ± 0.01PERabalais, 1972LLK
11.040 ± 0.017PINicholson, 1970RDSH
11.23 ± 0.01PEDewar, Shanshal, et al., 1969RDSH
11.130 ± 0.006PINicholson, 1965RDSH
11.08 ± 0.03PIWatanabe, Nakayama, et al., 1962RDSH
11.29PEBajic, Humski, et al., 1985Vertical value; LBLHLM
11.47PEKatsumata, Shiromaru, et al., 1982Vertical value; LBLHLM
11.31PEKobayashi, 1978Vertical value; LLK
11.8PERao, 1975Vertical value; LLK
11.29PEKobayashi and Nagakura, 1974Vertical value; LLK
11.31 ± 0.015PEKobayashi and Nagakura, 1972Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C+22.83 ± 0.05?EIKandel, 1955RDSH
CH2NO2+11.8 ± 0.1HPILifshitz, Rejwan, et al., 1988LL
CH2NO2+11.97 ± 0.02HEIKandel, 1955RDSH
CH3+13.6NO2EIHaney and Franklin, 1968RDSH
CH3+12.6NO2EITsuda and Hamill, 1966RDSH
CH3NO+11.75 ± 0.05OPILifshitz, Rejwan, et al., 1988LL
CH3NO+11.95OPIPECOGilman, Hsieh, et al., 1983LBLHLM
NO+11.75 ± 0.05CH3OPILifshitz, Rejwan, et al., 1988LL
NO+11.5CH3OPEOgden, Shaw, et al., 1983LBLHLM
NO+11.76CH3OPIPECOGilman, Hsieh, et al., 1983LBLHLM
NO+11.7CH3OPIPECONiwa, Tajima, et al., 1981LLK
NO+11.75 ± 0.01?PINicholson, 1970RDSH
NO2+12.1 ± 0.1CH3PILifshitz, Rejwan, et al., 1988LL
NO2+11.97CH3PEOgden, Shaw, et al., 1983LBLHLM
NO2+12.1CH3PIPECONiwa, Tajima, et al., 1981LLK
NO2+13. ± 0.CH3EICollin, 1959RDSH
O+14.50 ± 0.16?EIKandel, 1955RDSH

De-protonation reactions

CH2NO2- + Hydrogen cation = Methane, nitro-

By formula: CH2NO2- + H+ = CH3NO2

Quantity Value Units Method Reference Comment
Δr1498. ± 21.kJ/molD-EAMetz, Cyr, et al., 1991gas phase; B
Δr1491. ± 9.2kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1495. ± 12.kJ/molG+TSCumming and Kebarle, 1978gas phase; B
Quantity Value Units Method Reference Comment
Δr1463. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1467. ± 8.4kJ/molIMRECumming and Kebarle, 1978gas phase; B
Δr1467. ± 8.4kJ/molIMREMacKay and Bohme, 1978gas phase; EA: < NO2; B

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Bromine anion + Methane, nitro- = CH3BrNO2-

By formula: Br- + CH3NO2 = CH3BrNO2-

Quantity Value Units Method Reference Comment
Δr40. ± 8.4kJ/molIMRETanabe, Morgon, et al., 1996gas phase; Anchored to H2O..Br- of Hiraoka, Mizure, et al., 19882; B

CH2NO2- + Methane, nitro- = C2H5N2O4-

By formula: CH2NO2- + CH3NO2 = C2H5N2O4-

Quantity Value Units Method Reference Comment
Δr66.5 ± 2.1kJ/molTDAsWincel, 2003gas phase; B
Quantity Value Units Method Reference Comment
Δr35.1kJ/molTDAsWincel, 2003gas phase; B

CH3NO2- + Methane, nitro- = (CH3NO2- • Methane, nitro-)

By formula: CH3NO2- + CH3NO2 = (CH3NO2- • CH3NO2)

Quantity Value Units Method Reference Comment
Δr63.60 ± 0.84kJ/molN/ACompton, Carman Jr., et al., 1996gas phase; Shift in electron detachment from non-solvated ion; B

(CH3NO2- • Methane, nitro-) + Methane, nitro- = (CH3NO2- • 2Methane, nitro-)

By formula: (CH3NO2- • CH3NO2) + CH3NO2 = (CH3NO2- • 2CH3NO2)

Quantity Value Units Method Reference Comment
Δr50. ± 150.kJ/molN/ACompton, Carman Jr., et al., 1996gas phase; shift in electron detachment from less solvated ion; B
Δr53.6 ± 1.3kJ/molTDAsWincel, 2003gas phase; B
Quantity Value Units Method Reference Comment
Δr24.7kJ/molTDAsWincel, 2003gas phase; B

CH3N2O4- + 2Methane, nitro- = C2H6N3O6-

By formula: CH3N2O4- + 2CH3NO2 = C2H6N3O6-

Quantity Value Units Method Reference Comment
Δr51.9 ± 2.1kJ/molN/AWincel, 2003gas phase; B
Quantity Value Units Method Reference Comment
Δr22.6kJ/molTDAsWincel, 2003gas phase; B

CH6N+ + Methane, nitro- = (CH6N+ • Methane, nitro-)

By formula: CH6N+ + CH3NO2 = (CH6N+ • CH3NO2)

Bond type: Hydrogen bonds of the type NH+-O between organics

Quantity Value Units Method Reference Comment
Δr85.8kJ/molPHPMSMeot-Ner, 1984gas phase; M
Quantity Value Units Method Reference Comment
Δr96.2J/mol*KPHPMSMeot-Ner, 1984gas phase; M

C2H5N2O4- + 2Methane, nitro- = C3H8N3O6-

By formula: C2H5N2O4- + 2CH3NO2 = C3H8N3O6-

Quantity Value Units Method Reference Comment
Δr55.6 ± 2.9kJ/molTDAsWincel, 2003gas phase; B
Quantity Value Units Method Reference Comment
Δr24.3kJ/molTDAsWincel, 2003gas phase; B

C2H6ClN2O4- + 3Methane, nitro- = C3H9ClN3O6-

By formula: C2H6ClN2O4- + 3CH3NO2 = C3H9ClN3O6-

Quantity Value Units Method Reference Comment
Δr46.4 ± 2.1kJ/molN/AWincel, 2003gas phase; B
Quantity Value Units Method Reference Comment
Δr15.5kJ/molTDAsWincel, 2003gas phase; B

C2H6N2O6- + 2Methane, nitro- = C3H9N3O8-

By formula: C2H6N2O6- + 2CH3NO2 = C3H9N3O8-

Quantity Value Units Method Reference Comment
Δr45.6 ± 2.5kJ/molTDAsWincel, 2003gas phase; B
Quantity Value Units Method Reference Comment
Δr15.5kJ/molTDAsWincel, 2003gas phase; B

C2H6N3O6- + 3Methane, nitro- = C3H9N4O8-

By formula: C2H6N3O6- + 3CH3NO2 = C3H9N4O8-

Quantity Value Units Method Reference Comment
Δr47.3 ± 3.3kJ/molN/AWincel, 2003gas phase; B
Quantity Value Units Method Reference Comment
Δr13.8kJ/molTDAsWincel, 2003gas phase; B

C3H8N3O6- + 3Methane, nitro- = C4H11N4O8-

By formula: C3H8N3O6- + 3CH3NO2 = C4H11N4O8-

Quantity Value Units Method Reference Comment
Δr52.7 ± 2.1kJ/molTDAsWincel, 2003gas phase; B
Quantity Value Units Method Reference Comment
Δr13.0kJ/molTDAsWincel, 2003gas phase; B

C3H9ClN3O6- + 4Methane, nitro- = C4H12ClN4O8-

By formula: C3H9ClN3O6- + 4CH3NO2 = C4H12ClN4O8-

Quantity Value Units Method Reference Comment
Δr40. ± 4.2kJ/molN/AWincel, 2003gas phase; B
Quantity Value Units Method Reference Comment
Δr11.3kJ/molTDAsWincel, 2003gas phase; B

C3H9N3O6- + 3Methane, nitro- = C4H12N4O8-

By formula: C3H9N3O6- + 3CH3NO2 = C4H12N4O8-

Quantity Value Units Method Reference Comment
Δr43.5 ± 2.1kJ/molTDAsWincel, 2003gas phase; B
Quantity Value Units Method Reference Comment
Δr15.9kJ/molTDAsWincel, 2003gas phase; B

C3H9N3O8- + 3Methane, nitro- = C4H12N4O10-

By formula: C3H9N3O8- + 3CH3NO2 = C4H12N4O10-

Quantity Value Units Method Reference Comment
Δr39.7 ± 3.8kJ/molTDAsWincel, 2003gas phase; B
Quantity Value Units Method Reference Comment
Δr9.62kJ/molTDAsWincel, 2003gas phase; B

C3H9N4O8- + 4Methane, nitro- = C4H12N5O10-

By formula: C3H9N4O8- + 4CH3NO2 = C4H12N5O10-

Quantity Value Units Method Reference Comment
Δr40.6 ± 1.3kJ/molN/AWincel, 2003gas phase; B
Quantity Value Units Method Reference Comment
Δr6.69kJ/molTDAsWincel, 2003gas phase; B

C4H11N4O8- + 4Methane, nitro- = C5H14N5O10-

By formula: C4H11N4O8- + 4CH3NO2 = C5H14N5O10-

Quantity Value Units Method Reference Comment
Δr47.70 ± 0.84kJ/molTDAsWincel, 2003gas phase; B
Quantity Value Units Method Reference Comment
Δr6.69kJ/molTDAsWincel, 2003gas phase; B

C4H12N4O8- + 4Methane, nitro- = C5H15N5O10-

By formula: C4H12N4O8- + 4CH3NO2 = C5H15N5O10-

Quantity Value Units Method Reference Comment
Δr35.1 ± 0.84kJ/molTDAsWincel, 2003gas phase; B
Quantity Value Units Method Reference Comment
Δr10.0kJ/molTDAsWincel, 2003gas phase; B

C4H12N4O10- + 4Methane, nitro- = C5H15N5O12-

By formula: C4H12N4O10- + 4CH3NO2 = C5H15N5O12-

Quantity Value Units Method Reference Comment
Δr25.1kJ/molTDAsWincel, 2003gas phase; B
Quantity Value Units Method Reference Comment
Δr2.5kJ/molTDAsWincel, 2003gas phase; B

C5H10NO2+ + Methane, nitro- = (C5H10NO2+ • Methane, nitro-)

By formula: C5H10NO2+ + CH3NO2 = (C5H10NO2+ • CH3NO2)

Quantity Value Units Method Reference Comment
Δr73.2kJ/molHPMSMeot-Ner and Field, 1974gas phase; M
Quantity Value Units Method Reference Comment
Δr90.4J/mol*KHPMSMeot-Ner and Field, 1974gas phase; M

C5H12NO2+ + Methane, nitro- = (C5H12NO2+ • Methane, nitro-)

By formula: C5H12NO2+ + CH3NO2 = (C5H12NO2+ • CH3NO2)

Quantity Value Units Method Reference Comment
Δr82.8kJ/molHPMSMeot-Ner and Field, 1974gas phase; M
Quantity Value Units Method Reference Comment
Δr116.J/mol*KHPMSMeot-Ner and Field, 1974gas phase; M

C6H7N+ + Methane, nitro- = (C6H7N+ • Methane, nitro-)

By formula: C6H7N+ + CH3NO2 = (C6H7N+ • CH3NO2)

Quantity Value Units Method Reference Comment
Δr60.2kJ/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr75.J/mol*KN/AMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
34.343.PHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M

C11H10+ + Methane, nitro- = (C11H10+ • Methane, nitro-)

By formula: C11H10+ + CH3NO2 = (C11H10+ • CH3NO2)

Quantity Value Units Method Reference Comment
Δr46.9kJ/molPHPMSEl-Shall and Meot-Ner (Mautner), 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr93.3J/mol*KPHPMSEl-Shall and Meot-Ner (Mautner), 1987gas phase; M

Chlorine anion + Methane, nitro- = (Chlorine anion • Methane, nitro-)

By formula: Cl- + CH3NO2 = (Cl- • CH3NO2)

Quantity Value Units Method Reference Comment
Δr65.3 ± 2.5kJ/molTDAsWincel, 2003gas phase; B
Δr69.87 ± 0.42kJ/molTDAsSieck, 1985gas phase; B,M
Δr68. ± 13.kJ/molIMRBRiveros, Breda, et al., 1973gas phase; Anchored: Larson and McMahon, 1984; B
Quantity Value Units Method Reference Comment
Δr71.5J/mol*KPHPMSSieck, 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr38.5kJ/molTDAsWincel, 2003gas phase; B
Δr48.53 ± 0.42kJ/molTDAsSieck, 1985gas phase; B

(Chlorine anion • Methane, nitro-) + Methane, nitro- = (Chlorine anion • 2Methane, nitro-)

By formula: (Cl- • CH3NO2) + CH3NO2 = (Cl- • 2CH3NO2)

Quantity Value Units Method Reference Comment
Δr54.4 ± 2.1kJ/molTDAsWincel, 2003gas phase; B
Δr54.81 ± 0.42kJ/molTDAsSieck, 1985gas phase; B,M
Quantity Value Units Method Reference Comment
Δr76.6J/mol*KPHPMSSieck, 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr23.8kJ/molTDAsWincel, 2003gas phase; B
Δr31.8 ± 1.3kJ/molTDAsSieck, 1985gas phase; B

Iodide + Methane, nitro- = (Iodide • Methane, nitro-)

By formula: I- + CH3NO2 = (I- • CH3NO2)

Quantity Value Units Method Reference Comment
Δr51.0 ± 4.2kJ/molTDAsCaldwell, Masucci, et al., 1989gas phase; B,M

Lithium ion (1+) + Methane, nitro- = (Lithium ion (1+) • Methane, nitro-)

By formula: Li+ + CH3NO2 = (Li+ • CH3NO2)

Quantity Value Units Method Reference Comment
Δr165.kJ/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970; M

Nitrogen oxide anion + Methane, nitro- = (Nitrogen oxide anion • Methane, nitro-)

By formula: NO2- + CH3NO2 = (NO2- • CH3NO2)

Quantity Value Units Method Reference Comment
Δr60.7 ± 2.1kJ/molTDAsWincel, 2003gas phase; B
Δr59.83 ± 0.42kJ/molTDAsSieck, 1985gas phase; B,M
Quantity Value Units Method Reference Comment
Δr64.9J/mol*KPHPMSSieck, 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr32.6kJ/molTDAsWincel, 2003gas phase; B
Δr40.6 ± 0.84kJ/molTDAsSieck, 1985gas phase; B

Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin CARL DJERASSI DEPT OF CHEM STANFORD UNIV STANFORD CALIF 94305
NIST MS number 49304

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


UV/Visible spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Victor Talrose, Eugeny B. Stern, Antonina A. Goncharova, Natalia A. Messineva, Natalia V. Trusova, Margarita V. Efimkina

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

UVVis spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Source Grammaticakis, 1950
Owner INEP CP RAS, NIST OSRD
Collection (C) 2007 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS
Source reference RAS UV No. 2
Instrument n.i.g.
Melting point -28.5
Boiling point 101.1

Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryHP-1100.527.85Görgényi and Héberger, 2003N2; Column length: 30. m; Phase thickness: 3. μm
CapillaryHP-1110.528.16Görgényi and Héberger, 2003N2; Column length: 30. m; Phase thickness: 3. μm
CapillaryHP-1120.528.60Görgényi and Héberger, 2003N2; Column length: 30. m; Phase thickness: 3. μm
CapillaryHP-120.531.15Görgényi and Héberger, 2003N2; Column length: 30. m; Phase thickness: 3. μm
CapillaryHP-130.530.05Görgényi and Héberger, 2003N2; Column length: 30. m; Phase thickness: 3. μm
CapillaryHP-140.529.26Görgényi and Héberger, 2003N2; Column length: 30. m; Phase thickness: 3. μm
CapillaryHP-150.528.66Görgényi and Héberger, 2003N2; Column length: 30. m; Phase thickness: 3. μm
CapillaryHP-160.528.15Görgényi and Héberger, 2003N2; Column length: 30. m; Phase thickness: 3. μm
CapillaryHP-170.527.88Görgényi and Héberger, 2003N2; Column length: 30. m; Phase thickness: 3. μm
CapillaryHP-180.527.75Görgényi and Héberger, 2003N2; Column length: 30. m; Phase thickness: 3. μm
CapillaryHP-190.526.13Görgényi and Héberger, 2003N2; Column length: 30. m; Phase thickness: 3. μm
PackedOV-1130.556.Gurevich and Roshchina, 2003He or N2, Gas-Chrom Q
PackedApolane100.500.Castello and D'Amato, 1983He, Chromosorb G; Column length: 3. m
PackedApolane200.500.Castello and D'Amato, 1983He, Chromosorb G; Column length: 3. m
PackedSE-30100.536.Winskowski, 1983Gaschrom Q; Column length: 2. m
PackedSF-96100.565.Boneva and Dimov, 1979N2; Column length: 2. m
PackedSF-96110.565.Boneva and Dimov, 1979N2; Column length: 2. m
PackedSF-9690.565.Boneva and Dimov, 1979N2; Column length: 2. m
PackedApiezon L150.512.Brown, Chapman, et al., 1968N2, DCMS-treated Chromosorb W; Column length: 2.3 m

Kovats' RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillarySPB-1543.6Castello, Timossi, et al., 1988N2; Column length: 60. m; Column diameter: 0.75 mm; Program: not specified

Kovats' RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryHP-Innowax100.1187.8Görgényi and Héberger, 2003Column length: 30. m; Phase thickness: 0.5 μm
CapillaryHP-Innowax110.1188.5Görgényi and Héberger, 2003Column length: 30. m; Phase thickness: 0.5 μm
CapillaryHP-Innowax120.1190.2Görgényi and Héberger, 2003Column length: 30. m; Phase thickness: 0.5 μm
CapillaryHP-Innowax50.1178.5Görgényi and Héberger, 2003Column length: 30. m; Phase thickness: 0.5 μm
CapillaryHP-Innowax60.1179.2Görgényi and Héberger, 2003Column length: 30. m; Phase thickness: 0.5 μm
CapillaryHP-Innowax70.1180.6Görgényi and Héberger, 2003Column length: 30. m; Phase thickness: 0.5 μm
CapillaryHP-Innowax80.1182.9Görgényi and Héberger, 2003Column length: 30. m; Phase thickness: 0.5 μm
CapillaryHP-Innowax90.1184.7Görgényi and Héberger, 2003Column length: 30. m; Phase thickness: 0.5 μm
PackedCarbowax 20M75.1172.Goebel, 1982N2, Kieselgur (60-100 mesh); Column length: 2. m

Kovats' RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryPEG-20M1159.Slizhov and Gavrilenko, 2001He; Column length: 10. m; Column diameter: 0.2 mm; Program: not specified
CapillarySupelcowax-101160.9Castello, Timossi, et al., 1988N2; Column length: 60. m; Column diameter: 0.75 mm; Program: not specified

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryOV-101531.Zenkevich, 200525. m/0.20 mm/0.10 μm, N2/He, 6. K/min; Tstart: 50. C; Tend: 250. C
CapillaryDB-1521.Habu, Flath, et al., 19853. K/min; Column length: 50. m; Column diameter: 0.32 mm; Tstart: 0. C; Tend: 250. C

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryMethyl Silicone487.N/AProgram: not specified
CapillarySPB-1526.Flanagan, Streete, et al., 199760. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C
CapillaryPolydimethyl siloxanes531.Zenkevich and Chupalov, 1996Program: not specified
CapillaryDB-1521.Schuberth, 199430. m/0.25 mm/1. μm, He; Program: 40C (4min) => 10C/min => 200C => 50C/min => 250C
CapillarySPB-1526.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C
CapillarySPB-1565.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: not specified
CapillaryOV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc.536.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryOV-1565.Ramsey and Flanagan, 1982Program: not specified

Normal alkane RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax1177.Shimadzu, 201230. m/0.32 mm/0.50 μm, Helium, 4. K/min; Tstart: 40. C; Tend: 260. C
CapillaryDB-Wax1177.Shimadzu Corporation, 200330. m/0.32 mm/0.5 μm, He, 4. K/min; Tstart: 40. C; Tend: 260. C

Normal alkane RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryCarbowax 20M1154.Ramsey and Flanagan, 1982Program: not specified

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Knobel, Miroshnichenko, et al., 1971
Knobel, Y.K.; Miroshnichenko, E.A.; Lebedev, Y.A., Heats of combustion of nitromethane and dinitromethane: enthalpies of formation of nitromethyl radicals and energies of dissociation of bonds in nitro derivatives of methane, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1971, 425-428. [all data]

Lebedeva and Ryadenko, 1973
Lebedeva, N.D.; Ryadenko, V.L.R., Enthalpies of formation of nitroalkanes, Russ. J. Phys. Chem. (Engl. Transl.), 1973, 47, 1382. [all data]

Cass, Fletcher, et al., 1958
Cass, R.C.; Fletcher, S.E.; Mortimer, C.T.; Quincey, P.G.; Springall, H.D., Heats of combustion and molecular structure. Part IV. Aliphatic nitroalkanes and nitric esters, J. Chem. Soc., 1958, 958-962. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Holcomb and Dorsey, 1949
Holcomb, D.E.; Dorsey, C.L., Jr., Thermodynamic properties of nitroparaffins, Ind. Eng. Chem., 1949, 41, 2788-2792. [all data]

Swientoslawski, 1910
Swientoslawski, W., Thermochemische Untersuchungen der organischen Verbindungen. Dritte Mitteilung. Stickstoffhaltige Verbindungen., Z. Phys. Chem., 1910, 72, 49-83. [all data]

Jones and Giauque, 1947
Jones, W.M.; Giauque, W.F., The entropy of nitromethane. Heat capacity of solid and liquid. Vapor pressure, heats of fusion and vaporization, J. Am. Chem. Soc., 1947, 69, 983-987. [all data]

Berman and West, 1969
Berman, H.A.; West, E.D., Heat capacity of liquid nitromethane from 35 to 200°C, J. Chem. Eng. Data, 1969, 14, 107-109. [all data]

Hough, Mason, et al., 1950
Hough, E.W.; Mason, D.M.; Sage, B.H., Heat capacities of several organic liquids, J. Am. Chem. Soc., 1950, 72, 5775-5777. [all data]

Williams, 1925
Williams, J.W., A study of the physical properties of nitromethane, J. Am. Chem. Soc., 1925, 47, 2644-2652. [all data]

Toops, 1956
Toops, E.E., Physical Properties of High Purity Nitroparaffins, J. Phys. Chem., 1956, 60, 304-6. [all data]

Timmermans, 1952
Timmermans, J., Freezing points of organic compounds. VVI New determinations., Bull. Soc. Chim. Belg., 1952, 61, 393. [all data]

Dreisbach and Martin, 1949
Dreisbach, R.R.; Martin, R.A., Physical Data on Some Organic Compounds, Ind. Eng. Chem., 1949, 41, 2875-8. [all data]

Joukovsky, 1934
Joukovsky, N.I., Experimental Study of the Theory of Concentrated Solutions. XI. Thermodynamic Properties of Concentrated Solutions of Aliphatic Organic Compounds Containing Nitrogen., Bull. Soc. Chim. Belg., 1934, 43, 397. [all data]

Timmermans, 1921
Timmermans, J., The Freezing Points of Organic Substances IV. New Exp. Determinations, Bull. Soc. Chim. Belg., 1921, 30, 62. [all data]

Jones and Giauque, 1947, 2
Jones, W.M.; Giauque, W.F., The Entropy of Nitromethane. Heat Capacity of Solid and Liquid. Vapor Pressure, Heats of Fusion and Vaporizaion, J. Am. Chem. Soc., 1947, 69, 983-7. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Griffin, 1949
Griffin, D.N., The Critical Point of Nitromethane., J. Am. Chem. Soc., 1949, 71, 1423. [all data]

Ambrose, Counsell, et al., 1978
Ambrose, D.; Counsell, J.F.; Hicks, C.P., The correlation and estimation of vapour pressures: II a new procedure for estimation and extrapolation, J. Chem. Thermodyn., 1978, 10, 771. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Berman and West, 1967
Berman, Horace A.; West, Estal Dale, Density and vapor pressure of nitromethane 26.degree. to 200.degree., J. Chem. Eng. Data, 1967, 12, 2, 197-199, https://doi.org/10.1021/je60033a011 . [all data]

McCullough, Scott, et al., 1954
McCullough, J.P.; Scott, D.W.; Pennington, R.E.; Hossenlopp, I.A.; Waddington, Guy, Nitromethane: The Vapor Heat Capacity, Heat of Vaporization, Vapor Pressure and Gas Imperfection; the Chemical Thermodynamic Properties from 0 to 1500°K., J. Am. Chem. Soc., 1954, 76, 19, 4791-4796, https://doi.org/10.1021/ja01648a008 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Metz, Cyr, et al., 1991
Metz, R.B.; Cyr, D.R.; Neumark, D.M., Study of the 2B1 and 2A2 States of CH2NO2 via Ultraviolet Photoelectron Spectroscopy of the CH2NO2- Anion, J. Phys. Chem., 1991, 95, 7, 2900, https://doi.org/10.1021/j100160a047 . [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P., Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A), Can. J. Chem., 1978, 56, 1. [all data]

MacKay and Bohme, 1978
MacKay, G.I.; Bohme, D.K., Proton-Transfer Reactions in Nitromethane at 297K, Int. J. Mass Spectrom. Ion Phys., 1978, 26, 4, 327, https://doi.org/10.1016/0020-7381(78)80052-7 . [all data]

Wincel, 2003
Wincel, H., Gas-phase Solvation of Cl-, NO2-, CH2NO2-, CH3NO2-, and CH3NO4- by CH3NO2, Int. J. Mass Spectrom., 2003, 226, 3, 341-353, https://doi.org/10.1016/S1387-3806(03)00066-6 . [all data]

Sieck, 1985
Sieck, L.W., Thermochemistry of Solvation of NO2- and C6H5NO2- by Polar Molecules in the Vapor Phase. Comparison with Cl- and Variation with Ligand Structure., J. Phys. Chem., 1985, 89, 25, 5552, https://doi.org/10.1021/j100271a049 . [all data]

Riveros, Breda, et al., 1973
Riveros, J.M.; Breda, A.C.; Blair, L.K., Formation and relative stability of chloride ion clusters in the gas phase by ICR spectroscopy, J. Am. Chem. Soc., 1973, 95, 4066. [all data]

Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B., Fluoride and chloride affinities of main group oxides, fluorides, oxofluorides, and alkyls. Quantitative scales of lewis acidities from ion cyclotron resonance halide-exchange equilibria, J. Phys. Chem., 1984, 88, 1083. [all data]

Meot-Ner (Mautner) and El-Shall, 1986
Meot-Ner (Mautner), M.; El-Shall, M.S., Ionic Charge Transfer Complexes. 1. Cationic Complexes with Delocalized and Partially Localized pi Systems, J. Am. Chem. Soc., 1986, 108, 15, 4386, https://doi.org/10.1021/ja00275a026 . [all data]

Compton, Carman Jr., et al., 1996
Compton, R.N.; Carman Jr.; Desfrancois, C.; Abdoul-Carmine, H.; Schermann, J.P.; Hendricks, J.H., On the binding of Electrons to Nitromethane: Dipole and Valence Bound Anions, J. Chem. Phys., 1996, 105, 9, 3472, https://doi.org/10.1063/1.472993 . [all data]

Meot-Ner, 1984
Meot-Ner, (Mautner)M., The Ionic Hydrogen Bond and Ion Solvation. 1. -NH+ O-, -NH+ N- and -OH+ O- Bonds. Correlations with Proton Affinity. Deviations Due to Structural Effects, J. Am. Chem. Soc., 1984, 106, 5, 1257, https://doi.org/10.1021/ja00317a015 . [all data]

El-Shall and Meot-Ner (Mautner), 1987
El-Shall, M.S.; Meot-Ner (Mautner), M., Ionic Charge Transfer Complexes. 3. Delocalised pi Systems as Electron Acceptors and Donors, J. Phys. Chem., 1987, 91, 5, 1088, https://doi.org/10.1021/j100289a017 . [all data]

Meot-Ner and Field, 1974
Meot-Ner, (Mautner); Field, F.H., Solvation and Association of Protonated Gaseous Amino Acids, J. Am. Chem. Soc., 1974, 96, 10, 3168, https://doi.org/10.1021/ja00817a024 . [all data]

Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L., Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases, J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050 . [all data]

Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P., Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n, J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013 . [all data]

Tanabe, Morgon, et al., 1996
Tanabe, F.K.J.; Morgon, N.H.; Riveros, J.M., Relative Bromide and Iodide Affinity of Simple Solvent Molecules Determined by FT-ICR, J. Phys. Chem., 1996, 100, 8, 2862-2866, https://doi.org/10.1021/jp952290p . [all data]

Hiraoka, Mizure, et al., 1988
Hiraoka, K.; Mizure, S.; Yamabe, S.; Nakatsuji, Y., Gas Phase Clustering Reactions of CN- and CH2CN- with MeCN, Chem. Phys. Lett., 1988, 148, 6, 497, https://doi.org/10.1016/0009-2614(88)80320-8 . [all data]

Caldwell, Masucci, et al., 1989
Caldwell, G.W.; Masucci, J.A.; Ikonomou, M.G., Negative Ion Chemical Ionization Mass Spectrometry - Binding of Molecules to Bromide and Iodide Anions, Org. Mass Spectrom., 1989, 24, 1, 8, https://doi.org/10.1002/oms.1210240103 . [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Adams, Schneider, et al., 2009
Adams, C.L.; Schneider, H.; Ervin, K.M.; Weber, J.M., Low-energy photoelectron imaging spectroscopy of nitromethane anions: Electron affinity, vibrational features, anisotropies, and the dipole-bound state, J. Chem. Phys., 2009, 130, 7, 074307, https://doi.org/10.1063/1.3076892 . [all data]

Lecomte, Carles, et al., 2000
Lecomte, F.; Carles, S.; Desfrancois, C.; Johnson, M.A., Dipole bound and valence state coupling in argon-solvated nitromethane anions, J. Chem. Phys., 2000, 113, 24, 10973-10977, https://doi.org/10.1063/1.1326476 . [all data]

Chen, Welk, et al., 1999
Chen, E.C.M.; Welk, N.; Chen, E.S.; Wentworth, W.E., Electron affinity, gas-phase acidity, bond dissociation energy, and negative ion states of nitromethane, J. Phys. Chem. A, 1999, 103, 45, 9072-9079, https://doi.org/10.1021/jp990530l . [all data]

Chen and Wentworth, 1983
Chen, E.C.M.; Wentworth, W.E., Determination of molecular electron affinities using the electron capture detector in the pulse sampling mode at steady state, J. Phys. Chem., 1983, 87, 45. [all data]

Grimsrud, Caldwell, et al., 1985
Grimsrud, E.; Caldwell, G.; Kebarle, P., Electron affinities from electron transfer equilibria: A- + B = A + B-, J. Am. Chem. Soc., 1985, 107, 4627. [all data]

Compton, Reinhardt, et al., 1978
Compton, R.N.; Reinhardt, P.W.; Cooper, C.D., Collisional ionization between alkali atoms and some methane derivatives: Electron affinities for CH3NO2, CF3I, and CF3Br, J. Chem. Phys., 1978, 68, 4360. [all data]

Goebbert, Pichugin, et al., 2009
Goebbert, D.J.; Pichugin, K.; Sanov, A., Low-lying electronic states of CH3NO2 via photoelectron imaging of the nitromethane anion, J. Chem. Phys., 2009, 131, 16, 164308, https://doi.org/10.1063/1.3256233 . [all data]

Pasa-Tolic, Klasine, et al., 1990
Pasa-Tolic, L.; Klasine, L.; McGlynn, S.P., The HeI PE spectrum and electronic structure of nitroethene, Chem. Phys. Lett., 1990, 170, 113. [all data]

Lifshitz, Rejwan, et al., 1988
Lifshitz, C.; Rejwan, M.; Levin, I.; Peres, T., Unimolecular fragmentations of the nitromenthane cation, Int. J. Mass Spectrom. Ion Processes, 1988, 84, 271. [all data]

Ogden, Shaw, et al., 1983
Ogden, I.K.; Shaw, N.; Danby, C.J.; Powis, I., Competing dissociation channels of nitromethane and methyl nitrite ions and the role of electronic and internal modes of excitation, Int. J. Mass Spectrom. Ion Processes, 1983, 54, 41. [all data]

Gilman, Hsieh, et al., 1983
Gilman, J.P.; Hsieh, T.; Meisels, G.G., Competition between isomerization and fragmentation of gaseous ions. II. Nitromethane and methylnitrite ions, J. Chem. Phys., 1983, 78, 1174. [all data]

Katsumata, Shiromaru, et al., 1982
Katsumata, S.; Shiromaru, H.; Mitani, K.; Iwata, S.; Kimura, K., Photoelectron angular distribution and assignments of photoelectron spectra of nitrogen dioxide, nitromethane and nitrobenzene, Chem. Phys., 1982, 69, 423. [all data]

Allam, Migahed, et al., 1982
Allam, S.H.; Migahed, M.D.; El-Khodary, A., Electron impact ionization and dissociation of deuterated and non-deuterated methanol, methyl cyanide, nitromethane and nitrobenzene, Egypt. J. Phys., 1982, 13, 167. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Asbrink, Svensson, et al., 1981
Asbrink, L.; Svensson, A.; Von Niessen, W.; Bieri, G., 30.4 nm He(II) photoelectron spectra of organic molecules, J. Electron Spectrosc. Relat. Phenom., 1981, 24, 293. [all data]

Allam, Migahed, et al., 1981
Allam, S.H.; Migahed, M.D.; El Khodary, A., Electron impact study of nitrobenzene and nitromethane, Int. J. Mass Spectrom. Ion Phys., 1981, 39, 117. [all data]

Rabalais, 1972
Rabalais, J.W., Photoelectron spectroscopic investigation of the electronic structure of nitromethane and nitrobenzene, J. Chem. Phys., 1972, 57, 960. [all data]

Nicholson, 1970
Nicholson, A.J.C., Determination of bond dissociation energies from photoionization efficiency curves in Recent Developments in Mass Spectrometroscopy, ed. K Ogata and T. Hayakawa, Univ. Park Press, Baltimore, MD, 1970, 745. [all data]

Dewar, Shanshal, et al., 1969
Dewar, M.J.S.; Shanshal, M.; Worley, S.D., Calculated and observed ionization potentials gf nitroalkanes and of nitrous and nitric acids and esters. Extension of the MINDO method to nitrogen-oxygen compounds, J. Am. Chem. Soc., 1969, 91, 3590. [all data]

Nicholson, 1965
Nicholson, A.J.C., Photoionization-efficiency curves. II. False and genuine structure, J. Chem. Phys., 1965, 43, 1171. [all data]

Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J., Ionization potentials of some molecules, J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]

Bajic, Humski, et al., 1985
Bajic, M.; Humski, K.; Klasinc, L.; Ruscic, B., Substitution effects on electronic structure of thiophene, Z. Naturforsch. B:, 1985, 40, 1214. [all data]

Kobayashi, 1978
Kobayashi, T., A simple general tendency in photoelectron angular distributions of some monosubstituted benzenes, Phys. Lett., 1978, 69, 105. [all data]

Rao, 1975
Rao, C.N.R., Lone-pair ionization bands of chromophores in the photoelectron spectra of organic molecules, Indian J. Chem., 1975, 13, 950. [all data]

Kobayashi and Nagakura, 1974
Kobayashi, T.; Nagakura, S., Photoelectron spectra of substituted benzenes, Bull. Chem. Soc. Jpn., 1974, 47, 2563. [all data]

Kobayashi and Nagakura, 1972
Kobayashi, T.; Nagakura, S., Photoelectron spectra of nitro-compounds, Chem. Lett., 1972, 903. [all data]

Kandel, 1955
Kandel, R.J., Appearance potential studies. II. Nitromethane, J. Chem. Phys., 1955, 23, 84. [all data]

Haney and Franklin, 1968
Haney, M.A.; Franklin, J.L., Correlation of excess energies of electron-impact dissociations with the translational energies of the products, J.Chem. Phys., 1968, 48, 4093. [all data]

Tsuda and Hamill, 1966
Tsuda, S.; Hamill, W.H., Ionization efficiency measurements by the retarding potential difference method, Advan. Mass Spectrom., 1966, 3, 249. [all data]

Niwa, Tajima, et al., 1981
Niwa, Y.; Tajima, S.; Tsuchiya, T., Fragmentation of energy-selected nitromethane ions, Int. J. Mass Spectrom. Ion Processes, 1981, 40, 287. [all data]

Collin, 1959
Collin, J., Ionization and dissociation of molecules by monoenergetic electrons. III. On the existence of a bent excited state of NO2+, J. Chem. Phys., 1959, 30, 1621. [all data]

Grammaticakis, 1950
Grammaticakis, P., Contribution a l'etude de l'absorption dans l'ultraviolet moyen des anilines ortho-substituees. III. Orthonitro- et orthocarboxy- anilines N-substituees, Bull. Soc. Chim. Fr., 1950, 17, 158-166. [all data]

Görgényi and Héberger, 2003
Görgényi, M.; Héberger, K., Minimum in the temperature dependence of the Kováts retention indices of nitroalkanes and alkanenitriles on an apolar phase, J. Chromatogr. A, 2003, 985, 1-2, 11-19, https://doi.org/10.1016/S0021-9673(02)01842-3 . [all data]

Gurevich and Roshchina, 2003
Gurevich, K.B.; Roshchina, T.M., G as chromatography study of silica modified with polyfluoroalkyl groups, J. Chromatogr. A, 2003, 1008, 97-103. [all data]

Castello and D'Amato, 1983
Castello, G.; D'Amato, G., Classification of the Polarity of porous polymer bead stationary phases by comparison with squalane and apolane standard liquid phases, J. Chromatogr., 1983, 269, 153-160, https://doi.org/10.1016/S0021-9673(01)90798-8 . [all data]

Winskowski, 1983
Winskowski, J., Gaschromatographische Identifizierung von Stoffen anhand von Indexziffem und unterschiedlichen Detektoren, Chromatographia, 1983, 17, 3, 160-165, https://doi.org/10.1007/BF02271041 . [all data]

Boneva and Dimov, 1979
Boneva, S.; Dimov, N., Chromatographic retention indices of C1-C4 nitroparaffins, Zh. Anal. Khim., 1979, 34, 6, 902-905. [all data]

Brown, Chapman, et al., 1968
Brown, I.; Chapman, I.L.; Nicholson, G.J., Gas chromatography of polar solutes in electron acceptor stationary phases, Aust. J. Chem., 1968, 21, 5, 1125-1141, https://doi.org/10.1071/CH9681125 . [all data]

Castello, Timossi, et al., 1988
Castello, G.; Timossi, A.; Gerbino, T.C., Gas Chromatographic Separation of Halogenated Compounds on Non-Polar and Polar Wide Bore Capillary Columns, J. Chromatogr., 1988, 454, 129-143, https://doi.org/10.1016/S0021-9673(00)88608-2 . [all data]

Goebel, 1982
Goebel, K.-J., Gaschromatographische Identifizierung Niedrig Siedender Substanzen Mittels Retentionsindices und Rechnerhilfe, J. Chromatogr., 1982, 235, 1, 119-127, https://doi.org/10.1016/S0021-9673(00)95793-5 . [all data]

Slizhov and Gavrilenko, 2001
Slizhov, Yu.G.; Gavrilenko, M.A., Effect of thermal treatment of poly(ethylene glycol) modified with europium acetylacetonate on its chromatographic properties, Russ. J. Phys. Chem. (Engl. Transl.), 2001, 75, 6, 1012-1013. [all data]

Zenkevich, 2005
Zenkevich, I.G., Experimentally measured retention indices., 2005. [all data]

Habu, Flath, et al., 1985
Habu, T.; Flath, R.A.; Mon, T.R.; Morton, J.F., Volatile components of Rooibos tea (Aspalathus linearis), J. Agric. Food Chem., 1985, 33, 2, 249-254, https://doi.org/10.1021/jf00062a024 . [all data]

Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D., Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]

Zenkevich and Chupalov, 1996
Zenkevich, I.G.; Chupalov, A.A., New Possibilities of Chromato Mass Pectrometric Identification of Organic Compounds Using Increments of Gas Chromatographic Retention Indices of Molecular Structural Fragments, Zh. Org. Khim. (Rus.), 1996, 32, 5, 656-666. [all data]

Schuberth, 1994
Schuberth, J., Joint use of retention index and mass spectrum in postmortem tests for volatile organics by headspace capillary gas chromatography with ion-trap detection, J. Chromatogr. A, 1994, 674, 1-2, 63-71, https://doi.org/10.1016/0021-9673(94)85217-0 . [all data]

Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J., Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning, Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111 . [all data]

Waggott and Davies, 1984
Waggott, A.; Davies, I.W., Identification of organic pollutants using linear temperature programmed retention indices (LTPRIs) - Part II, 1984, retrieved from http://dwi.defra.gov.uk/research/completed-research/reports/dwi0383.pdf. [all data]

Ramsey and Flanagan, 1982
Ramsey, J.D.; Flanagan, R.J., Detection and Identification of Volatile Organic Compounds in Blood by Headspace Gas Chromatography as an Aid to the Diagnosis of Solvent Abuse, J. Chromatogr., 1982, 240, 2, 423-444, https://doi.org/10.1016/S0021-9673(00)99622-5 . [all data]

Shimadzu, 2012
Shimadzu, Pharmaceutical Related, Analysis of pharmaceutical residual solvent (observation of separation) (1) - GC, 2012, retrieved from www.shimadzu.ru/applications/Applicationspdf/GC/Pharma/Pharmaceutical residual solvents GC.pdf. [all data]

Shimadzu Corporation, 2003
Shimadzu Corporation, Analysis of pharmaceutical residual solvent (observation of separation), 2003, retrieved from http://www.shimadzu.com.br/analitica/aplicacoes/book/pharm69.pdf. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References