Isobutane
- Formula: C4H10
- Molecular weight: 58.1222
- IUPAC Standard InChIKey: NNPPMTNAJDCUHE-UHFFFAOYSA-N
- CAS Registry Number: 75-28-5
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Propane, 2-methyl-; Trimethylmethane; 1,1-Dimethylethane; 2-Methylpropane; iso-C4H10; i-Butane; UN 1969; R 600a; tert-Butane; A 31; Methylpropane; A 31 (hydrocarbon)
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, Site Links, NIST Free Links, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -134.2 ± 0.63 | kJ/mol | Ccb | Pittam and Pilcher, 1972 | ALS |
ΔfH°gas | -135.6 ± 0.54 | kJ/mol | Cm | Prosen, Maron, et al., 1951 | see Prosen and Rossini, 1945, Rossini, 1935; ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°gas | -2869.0 ± 0.59 | kJ/mol | Ccb | Pittam and Pilcher, 1972 | Corresponding ΔfHºgas = -134.2 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°gas | -2867.6 ± 0.46 | kJ/mol | Cm | Prosen, Maron, et al., 1951 | see Prosen and Rossini, 1945, Rossini, 1935; Corresponding ΔfHºgas = -135.6 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
34.81 | 50. | Chen S.S., 1975 | Recommended values are in good agreement with those calculated by [ Pitzer K.S., 1946].; GT |
47.28 | 100. | ||
60.29 | 150. | ||
71.84 | 200. | ||
89.91 | 273.15 | ||
96.65 | 298.15 | ||
97.15 | 300. | ||
124.43 | 400. | ||
149.24 | 500. | ||
170.37 | 600. | ||
188.28 | 700. | ||
203.64 | 800. | ||
216.94 | 900. | ||
228.45 | 1000. | ||
238.49 | 1100. | ||
247.15 | 1200. | ||
254.72 | 1300. | ||
261.29 | 1400. | ||
267.02 | 1500. |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
82.30 ± 0.06 | 243.15 | Ernst G., 1970 | Other experimental values of heat capacity [ Sage B.H., 1937, Sage B.H., 1938] are less accurate, see [ Chen S.S., 1975]. Please also see Dailey B.P., 1943, Wacker P.F., 1947.; GT |
89.97 ± 0.06 | 273.15 | ||
95.21 ± 0.10 | 293.15 | ||
100.67 ± 0.10 | 313.15 | ||
106.37 ± 0.11 | 333.15 | ||
109.66 | 347.6 | ||
111.74 ± 0.11 | 353.15 | ||
112.55 | 359.4 | ||
119.62 | 387.5 | ||
137.03 | 452.5 | ||
152.93 | 520.9 | ||
161.29 | 561.7 | ||
169.70 | 605.3 | ||
185.18 | 692.7 |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, Site Links, NIST Free Links, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
S°liquid | 200.79 | J/mol*K | N/A | Aston, Kennedy, et al., 1940 | |
S°liquid | 198.7 | J/mol*K | N/A | Parks, Shomate, et al., 1937 | Extrapolation below 67 K, 44.02 J/mol*K. |
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
129.70 | 260. | Aston, Kennedy, et al., 1940 | T = 20 to 260 K. |
128.4 | 258.3 | Parks, Shomate, et al., 1937 | T = 79 to 261 K. Value is unsmoothed experimental datum. |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, Site Links, NIST Free Links, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
DH - Eugene S. Domalski and Elizabeth D. Hearing
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 262. ± 2. | K | AVG | N/A | Average of 24 out of 25 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 140. ± 100. | K | AVG | N/A | Average of 7 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 113.55 | K | N/A | Younglove and Ely, 1987 | Uncertainty assigned by TRC = 0.05 K; TRC |
Ttriple | 113.55 | K | N/A | Goodwin and Haynes, 1982 | Uncertainty assigned by TRC = 0.02 K; TRC |
Ttriple | 113.74 | K | N/A | Aston, Kennedy, et al., 1940, 2 | Uncertainty assigned by TRC = 0.07 K; TRC |
Ttriple | 113.2 | K | N/A | Parks, Shomate, et al., 1937, 2 | Uncertainty assigned by TRC = 0.2 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Ptriple | 1.9481×10-7 | bar | N/A | Younglove and Ely, 1987 | Uncertainty assigned by TRC = 2.×10-10 bar; TRC |
Ptriple | 1.9481×10-7 | bar | N/A | Goodwin and Haynes, 1982 | Uncertainty assigned by TRC = 5.×10-10 bar; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 407.7 ± 0.8 | K | AVG | N/A | Average of 10 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 36.5 ± 0.5 | bar | AVG | N/A | Average of 9 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Vc | 0.259 | l/mol | N/A | Daubert, 1996 | |
Vc | 0.2591 | l/mol | N/A | Younglove and Ely, 1987 | Uncertainty assigned by TRC = 0.001 l/mol; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 3.85 ± 0.05 | mol/l | N/A | Daubert, 1996 | |
ρc | 3.880 | mol/l | N/A | Levelt Sengers, Kamgar-Parsi, et al., 1983 | Uncertainty assigned by TRC = 0.009 mol/l; TRC |
ρc | 3.91 | mol/l | N/A | Waxman and Gallagher, 1983 | Uncertainty assigned by TRC = 0.09 mol/l; TRC |
ρc | 3.8601 | mol/l | N/A | Goodwin and Haynes, 1982 | Uncertainty assigned by TRC = 0.03 mol/l; TRC |
ρc | 3.802 | mol/l | N/A | Beattie, Edwards, et al., 1949 | Uncertainty assigned by TRC = 0.1 mol/l; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 19.99 | kJ/mol | N/A | Majer and Svoboda, 1985 |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
21.297 | 261.44 | N/A | Aston, Kennedy, et al., 1940 | P = 101.325 kPa; DH |
21.3 | 261.3 | N/A | Majer and Svoboda, 1985 | |
21.5 | 318. | N/A | Lim, Park, et al., 1999 | Based on data from 303. to 333. K.; AC |
22.4 | 265. | A | Stephenson and Malanowski, 1987 | Based on data from 186. to 280. K.; AC |
26.9 | 172. | A | Stephenson and Malanowski, 1987 | Based on data from 121. to 187. K.; AC |
21.9 | 278. | A | Stephenson and Malanowski, 1987 | Based on data from 263. to 306. K.; AC |
21.4 | 316. | A | Stephenson and Malanowski, 1987 | Based on data from 301. to 366. K.; AC |
21.6 | 376. | A | Stephenson and Malanowski, 1987 | Based on data from 361. to 408. K.; AC |
21.6 | 292. | N/A | Steele, Poling, et al., 1976 | Based on data from 277. to 344. K. See also Boublik, Fried, et al., 1984.; AC |
21.3 | 286. | N/A | Reid, 1972 | AC |
21. ± 3. | 261.44 | V | Aston, Kennedy, et al., 1940, 3 | ALS |
22.6 | 247. | N/A | Aston, Kennedy, et al., 1940 | Based on data from 188. to 262. K. See also Boublik, Fried, et al., 1984.; AC |
Entropy of vaporization
ΔvapS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
81.46 | 261.44 | Aston, Kennedy, et al., 1940 | P; DH |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
261.31 to 408.12 | 4.3281 | 1132.108 | 0.918 | Das, Reed, et al., 1973 | Coefficents calculated by NIST from author's data. |
188.06 to 261.54 | 3.94417 | 912.141 | -29.808 | Aston, Kennedy, et al., 1940 | Coefficents calculated by NIST from author's data. |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
4.540 | 113.74 | Aston, Kennedy, et al., 1940 | DH |
4.49 | 113.7 | Perkins and Magee, 2009 | AC |
4.56 | 113.7 | Domalski and Hearing, 1996 | AC |
4.498 | 113.2 | Parks, Shomate, et al., 1937 | DH |
Entropy of fusion
ΔfusS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
39.92 | 113.74 | Aston, Kennedy, et al., 1940 | DH |
39.73 | 113.2 | Parks, Shomate, et al., 1937 | DH |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, Site Links, NIST Free Links, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
C4H9- + =
By formula: C4H9- + H+ = C4H10
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1728. ± 8.4 | kJ/mol | Bran | DePuy, Gronert, et al., 1989 | gas phase; B |
ΔrH° | 1735. ± 20. | kJ/mol | Bran | Peerboom, Rademaker, et al., 1992 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1692. ± 8.8 | kJ/mol | H-TS | DePuy, Gronert, et al., 1989 | gas phase; B |
ΔrG° | 1699. ± 21. | kJ/mol | H-TS | Peerboom, Rademaker, et al., 1992 | gas phase; B |
C4H9- + =
By formula: C4H9- + H+ = C4H10
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1728. ± 8.4 | kJ/mol | Bran | DePuy, Gronert, et al., 1989 | gas phase; B |
ΔrH° | 1732. ± 8.4 | kJ/mol | Bran | DePuy, Bierbaum, et al., 1984 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1697. ± 8.8 | kJ/mol | H-TS | DePuy, Gronert, et al., 1989 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -117.8 ± 0.42 | kJ/mol | Chyd | Kistiakowsky, Ruhoff, et al., 1935 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -118.78 ± 0.75 kJ/mol; At 355 °K; ALS |
By formula: C4H10 = C4H10
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -9.699 | kJ/mol | Eqk | Pines, Kvetinskas, et al., 1945 | gas phase; Heat of isomerization; ALS |
Henry's Law data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, Site Links, NIST Free Links, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference | Comment |
---|---|---|---|---|
0.00086 | Q | N/A | missing citation give several references for the Henry's law constants but don't assign them to specific species. | |
0.00084 | L | N/A | ||
0.00081 | 2700. | L | N/A | |
0.00085 | V | N/A |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, Site Links, NIST Free Links, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 10.68 ± 0.11 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 677.8 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 671.3 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
10.57 | EST | Luo and Pacey, 1992 | LL |
10.74 ± 0.05 | EI | Flesch and Svec, 1973 | LLK |
10.69 | PI | Dewar and Worley, 1969 | RDSH |
10.79 | PI | Turner and Al-Joboury, 1964 | RDSH |
10.78 | PI | Al-Joboury and Turner, 1964 | RDSH |
10.57 | PI | Watanabe, Nakayama, et al., 1962 | RDSH |
~10.5 | PI | Steiner, Giese, et al., 1961 | RDSH |
11.13 | PE | Kimura, Katsumata, et al., 1981 | Vertical value; LLK |
11.0 ± 0.1 | PE | Bieri, Burger, et al., 1977 | Vertical value; LLK |
11.4 | PE | Murrell and Schmidt, 1972 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
CH3+ | 29.4 ± 0.2 | ? | EI | Olmsted, Street, et al., 1964 | RDSH |
C2H5+ | 13.80 | C2H5 | EI | Omura, 1961 | RDSH |
C3H5+ | 14.55 | ? | EI | Omura, 1961 | RDSH |
C3H6+ | 10.89 ± 0.02 | CH4 | PI | Mead, Donchi, et al., 1980 | LLK |
C3H6+ | 10.91 | CH4 | EI | Wolkoff and Holmes, 1978 | LLK |
C3H6+ | 10.93 ± 0.03 | CH4 | PI | Steiner, Giese, et al., 1961 | RDSH |
C3H7+ | 11.16 ± 0.02 | CH3 | PI | Mead, Donchi, et al., 1980 | LLK |
C3H7+ | 11.16 ± 0.05 | CH3 | EI | Williams and Hamill, 1968 | RDSH |
C3H7+ | 11.23 ± 0.03 | CH3 | PI | Steiner, Giese, et al., 1961 | RDSH |
C4H9+ | 10.68 ± 0.02 | H | PI | Mead, Donchi, et al., 1980 | LLK |
C4H9+ | 10.68 ± 0.03 | H | PI | McLoughlin and Traeger, 1979 | LLK |
C4H9+ | 11.6 | H | EI | Omura, 1961 | RDSH |
De-protonation reactions
C4H9- + =
By formula: C4H9- + H+ = C4H10
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1728. ± 8.4 | kJ/mol | Bran | DePuy, Gronert, et al., 1989 | gas phase; B |
ΔrH° | 1735. ± 20. | kJ/mol | Bran | Peerboom, Rademaker, et al., 1992 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1692. ± 8.8 | kJ/mol | H-TS | DePuy, Gronert, et al., 1989 | gas phase; B |
ΔrG° | 1699. ± 21. | kJ/mol | H-TS | Peerboom, Rademaker, et al., 1992 | gas phase; B |
C4H9- + =
By formula: C4H9- + H+ = C4H10
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1728. ± 8.4 | kJ/mol | Bran | DePuy, Gronert, et al., 1989 | gas phase; B |
ΔrH° | 1732. ± 8.4 | kJ/mol | Bran | DePuy, Bierbaum, et al., 1984 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1697. ± 8.8 | kJ/mol | H-TS | DePuy, Gronert, et al., 1989 | gas phase; B |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Gas Chromatography, Site Links, NIST Free Links, References, Notes
Data compiled by: Coblentz Society, Inc.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Gas Chromatography, Site Links, NIST Free Links, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
NIST MS number | 121 |
Gas Chromatography
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Site Links, NIST Free Links, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Kovats' RI, non-polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | CP Sil 2 | 60. | 361.1 | Estel, Mohnke, et al., 1995 | 100. m/0.25 mm/0.25 μm |
Capillary | CP Sil 5 CB | 20. | 366. | Do and Raulin, 1992 | 25. m/0.15 mm/2. μm, H2 |
Capillary | Squalane | 50. | 366.7 | Lunskii and Paizanskaya, 1988 | He; Column length: 50. m; Column diameter: 0.22 mm |
Capillary | Squalane | 70. | 367.4 | Lunskii and Paizanskaya, 1988 | He; Column length: 50. m; Column diameter: 0.22 mm |
Capillary | SE-30 | 60. | 365. | Bredael, 1982 | Column length: 100. m; Column diameter: 0.5 mm |
Capillary | OV-1 | 20. | 365. | Nijs and Jacobs, 1981 | He; Column length: 150. m; Column diameter: 0.50 mm |
Capillary | Squalane | 50. | 364.6 | Schröder, 1980 | |
Capillary | Squalane | 100. | 366. | Lulova, Leont'eva, et al., 1976 | He; Column length: 120. m; Column diameter: 0.25 mm |
Capillary | Squalane | 40. | 371. | Matukuma, 1969 | N2; Column length: 91.4 m; Column diameter: 0.25 mm |
Packed | Squalane | 27. | 365. | Hively and Hinton, 1968 | He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm |
Packed | Squalane | 49. | 366. | Hively and Hinton, 1968 | He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm |
Packed | Squalane | 67. | 366. | Hively and Hinton, 1968 | He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm |
Packed | Squalane | 86. | 366. | Hively and Hinton, 1968 | He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm |
Packed | SE-30 | 70. | 369. | Widmer, 1967 | Diatoport S; Column length: 7.9 m |
Packed | Squalane | 26. | 363. | Zulaïca and Guiochon, 1966 | Column length: 10. m |
Kovats' RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Petrocol DH-100 | 366. | Haagen-Smit Laboratory, 1997 | He; Column length: 100. m; Column diameter: 0.2 mm; Program: 5C(10min) => 5C/min => 50C(48min) => 1.5C/min => 195C(91min) |
Capillary | DB-1 | 362. | Hoekman, 1993 | 60. m/0.32 mm/1.0 μm, He; Program: -40 C for 12 min; -40 - 125 C at 3 deg.min; 125-185 C at 6 deg/min; 185 - 220 C at 20 deg/min; hold 220 C for 2 min |
Kovats' RI, polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Packed | Carbowax 20M | 130. | 369. | Widmer, 1967 | Diatoport P; Column length: 7.9 m |
Packed | Carbowax 20M | 70. | 372. | Widmer, 1967 | Diatoport P; Column length: 7.9 m |
Van Den Dool and Kratz RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | OV-101 | 354.2 | Yin, Liu, et al., 2001 | N2, 1. K/min; Column length: 80. m; Column diameter: 0.22 mm; Tstart: 30. C; Tend: 130. C |
Capillary | Petrocol DH | 353.99 | Subramaniam, Bochniak, et al., 1994 | 100. m/0.25 mm/0.5 μm, He, 1. K/min; Tstart: 30. C; Tend: 220. C |
Capillary | Petrocol DH | 353.53 | White, Douglas, et al., 1992 | 100. m/0.25 mm/0.5 μm, He, 1. K/min; Tstart: 30. C; Tend: 220. C |
Capillary | Petrocol DH | 353.53 | White, Douglas, et al., 1992 | 100. m/0.25 mm/0.5 μm, He, 1. K/min; Tstart: 30. C; Tend: 220. C |
Capillary | Petrocol DH | 353. | White, Hackett, et al., 1992 | 100. m/0.25 mm/0.5 μm, He, 1. K/min; Tstart: 30. C; Tend: 220. C |
Van Den Dool and Kratz RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | OV-101 | 354. | Wu and Lu, 1984 | Program: not specified |
Normal alkane RI, non-polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | Methyl Silicone | 50. | 366. | N/A | N2; Column length: 74.6 m; Column diameter: 0.28 mm |
Packed | Methyl Silicone | 50. | 364. | Huguet, 1961 | Nitrogen, Celite C-22; Column length: 2.5 m |
Normal alkane RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Polydimethyl siloxane: CP-Sil 5 CB | 359. | Bramston-Cook, 2013 | 60. m/0.25 mm/1.0 μm, Helium, 45. C @ 1.45 min, 3.6 K/min, 210. C @ 2.72 min |
Capillary | Petrocol DH | 354. | Supelco, 2012 | 100. m/0.25 mm/0.50 μm, Helium, 20. C @ 15. min, 15. K/min, 220. C @ 30. min |
Capillary | PONA | 354. | Zhang, Ding, et al., 2009 | 50. m/0.20 mm/0.50 μm, Nitrogen, 35. C @ 15. min, 2. K/min, 200. C @ 10. min |
Capillary | OV-1 | 354.8 | Krkosova, Kubinec, et al., 2007 | 100. m/0.32 mm/0.25 μm, Helium, 5. K/min, 310. C @ 5. min; Tstart: 30. C |
Capillary | BP-1 | 364. | Health Safety Executive, 2000 | 50. m/0.22 mm/0.75 μm, He, 5. K/min; Tstart: 50. C; Tend: 200. C |
Capillary | DB-1 | 355. | Ciccioli, Cecinato, et al., 1992 | 60. m/0.32 mm/1.2 μm, He, 30. C @ 10. min, 3. K/min; Tend: 240. C |
Normal alkane RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Methyl Silicone | 366. | Chen and Feng, 2007 | Program: not specified |
Capillary | Methyl Silicone | 362. | Blunden, Aneja, et al., 2005 | 60. m/0.32 mm/1.0 μm, Helium; Program: -50 0C (2 min) 8 0C/min -> 200 0C (7.75 min) 25 0C -> 225 0C (8 min) |
Capillary | OV-101 | 366. | Du and Liang, 2003 | Program: not specified |
Capillary | PONA | 368. | Perkin Elmer Instruments, 2002 | Column length: 100. m; Phase thickness: 0.50 μm; Program: not specified |
Capillary | Polydimethyl siloxanes | 354. | Yin, Guo, et al., 2001 | Program: not specified |
Capillary | Methyl Silicone | 354. | Spieksma, 1999 | Program: not specified |
Capillary | SPB-1 | 354. | Flanagan, Streete, et al., 1997 | 60. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C |
Capillary | Polydimethyl siloxanes | 366. | Zenkevich and Chupalov, 1996 | Program: not specified |
Capillary | Polydimethyl siloxanes | 366. | Zenkevich and Chupalov, 1996 | Program: not specified |
Capillary | SPB-1 | 354. | Strete, Ruprah, et al., 1992 | 60. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C |
Capillary | SPB-1 | 370. | Strete, Ruprah, et al., 1992 | 60. m/0.53 mm/5.0 μm, Helium; Program: not specified |
Capillary | OV-1 | 370. | Ramsey and Flanagan, 1982 | Program: not specified |
Packed | Apieson L | 350. | Kojima, Fujii, et al., 1980 | Chromosorb W; Column length: 20. m; Program: not specified |
Packed | SE-30 | 368. | Robinson and Odell, 1971 | N2, Chromosorb W; Column length: 6.1 m; Program: 50C910min) => 20C/min => 90(6min) => 10C/min => 150C(hold) |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, Site Links, NIST Free Links, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Pittam and Pilcher, 1972
Pittam, D.A.; Pilcher, G.,
Measurements of heats of combustion by flame calorimetry. Part 8.-Methane, ethane, propane, n-butane and 2-methylpropane,
J. Chem. Soc. Faraday Trans. 1, 1972, 68, 2224-2229. [all data]
Prosen, Maron, et al., 1951
Prosen, E.J.; Maron, F.W.; Rossini, F.D.,
Heats of combustion, formation, and insomerization of ten C4 hydrocarbons,
J. Res. NBS, 1951, 46, 106-112. [all data]
Prosen and Rossini, 1945
Prosen, E.J.; Rossini, F.D.,
Heats of formation and combustion of 1,3-butadiene and styrene,
J. Res. NBS, 1945, 34, 59-63. [all data]
Rossini, 1935
Rossini, F.D.,
Heat of combustion of isobutane,
J. Res. NBS, 1935, 15, 357-361. [all data]
Chen S.S., 1975
Chen S.S.,
Ideal gas thermodynamic properties and isomerization of n-butane and isobutane,
J. Phys. Chem. Ref. Data, 1975, 4, 859-869. [all data]
Pitzer K.S., 1946
Pitzer K.S.,
The entropies and related properties of branched paraffin hydrocarbons,
Chem. Rev., 1946, 39, 435-447. [all data]
Ernst G., 1970
Ernst G.,
Ideal and real gas state heat capacities Cp of C3H8, i-C4H10, C2F5Cl, CH2ClCF3, CF2ClCFCl2, and CHF2Cl,
J. Chem. Thermodyn., 1970, 2, 787-791. [all data]
Sage B.H., 1937
Sage B.H.,
Phase equilibria in hydrocarbon systems. XX. Isobaric heat capacity of gaseous propane, n-butane, isobutane, and n-pentane,
Ind. Eng. Chem., 1937, 29, 1309-1314. [all data]
Sage B.H., 1938
Sage B.H.,
Phase equilibrium in hydrocarbon systems. Thermodynamic properties of isobutane,
Ind. Eng. Chem., 1938, 30, 673-681. [all data]
Dailey B.P., 1943
Dailey B.P.,
Heat capacities and hindered rotation in n-butane and isobutane,
J. Am. Chem. Soc., 1943, 65, 44-46. [all data]
Wacker P.F., 1947
Wacker P.F.,
Heat capacities of gaseous oxygen, isobutane, and 1-butene from -30 to +90 C,
J. Res. Nat. Bur. Stand., 1947, 38, 651-659. [all data]
Aston, Kennedy, et al., 1940
Aston, J.G.; Kennedy, R.M.; Schumann, S.C.,
The heat capacity and entropy, heats of fusion and vaporization and the vapor pressure of isobutane,
J. Am. Chem. Soc., 1940, 62, 2059-2063. [all data]
Parks, Shomate, et al., 1937
Parks, G.S.; Shomate, C.H.; Kennedy, W.D.; Crawford, B.L., Jr.,
The entropies of n-butane and isobutane, with some heat capacity data for isobutane,
J. Chem. Phys., 1937, 5, 359-363. [all data]
Younglove and Ely, 1987
Younglove, B.A.; Ely, J.F.,
Thermophysical Properties of Fluids II. Methane, Ethane, Propane, Isobutane, and Normal Butane,
J. Phys. Chem. Ref. Data, 1987, 16, 577. [all data]
Goodwin and Haynes, 1982
Goodwin, R.D.; Haynes, W.M.,
Thermophysical Properties of Propane from 85 to 700 K at Pressures to 70 MPa, NBS Monogr. (U. S.) No. 170, 249 pp., 1982. [all data]
Aston, Kennedy, et al., 1940, 2
Aston, J.G.; Kennedy, R.M.; Schumann, S.C.,
The Heat Capacity and Entropy of Fusion and Vaporization and the Vapor Pressure of Isobutane,
J. Am. Chem. Soc., 1940, 62, 2059. [all data]
Parks, Shomate, et al., 1937, 2
Parks, G.S.; Shomate, C.H.; Kennedy, W.D.; Crawford, B.L.,
The entropies of n-butane and isobutane with some heat capacity data for isobutane,
J. Chem. Phys., 1937, 5, 359-63. [all data]
Daubert, 1996
Daubert, T.E.,
Vapor-Liquid Critical Properties of Elements and Compounds. 5. Branched Alkanes and Cycloalkanes,
J. Chem. Eng. Data, 1996, 41, 365-372. [all data]
Levelt Sengers, Kamgar-Parsi, et al., 1983
Levelt Sengers, J.M.H.; Kamgar-Parsi, B.; Sengers, J.V.,
Thermodnamic Properties of Isobutane in the Critical Region,
J. Chem. Eng. Data, 1983, 28, 354-362. [all data]
Waxman and Gallagher, 1983
Waxman, M.; Gallagher, J.S.,
Thermodynamic Properties of Isobutane for Temperatures from 250 to 600 K and Pressures from 0.1 to 40 MPa,
J. Chem. Eng. Data, 1983, 28, 224. [all data]
Beattie, Edwards, et al., 1949
Beattie, J.A.; Edwards, D.G.; Marple, S.,
The Vapor Pressure, Orthobaric Liquid Density, and Critical Constants of Isobutane,
J. Chem. Phys., 1949, 17, 576. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Lim, Park, et al., 1999
Lim, Jong Sung; Park, Ji-Young; Lee, Byung-Gwon; Lee, Youn-Woo; Kim, Jae-Duck,
Phase Equilibria of CFC Alternative Refrigerant Mixtures: Binary Systems of Isobutane + 1,1,1,2-Tetrafluoroethane, + 1,1-Difluoroethane, and + Difluoromethane,
J. Chem. Eng. Data, 1999, 44, 6, 1226-1230, https://doi.org/10.1021/je9900777
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Steele, Poling, et al., 1976
Steele, Kevin; Poling, Bruce E.; Manley, David B.,
Vapor pressures for the system 1-butene, isobutane, and 1,3-butadiene,
J. Chem. Eng. Data, 1976, 21, 4, 399-403, https://doi.org/10.1021/je60071a006
. [all data]
Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E.,
The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]
Reid, 1972
Reid, Robert C.,
Handbook on vapor pressure and heats of vaporization of hydrocarbons and related compounds, R. C. Wilhort and B. J. Zwolinski, Texas A Research Foundation. College Station, Texas(1971). 329 pages.$10.00,
AIChE J., 1972, 18, 6, 1278-1278, https://doi.org/10.1002/aic.690180637
. [all data]
Aston, Kennedy, et al., 1940, 3
Aston, J.G.; Kennedy, R.M.; Schumann, S.C.,
The heat capacity and entropy, heats of fusion and vaporization and the vapor pressure of isobutane,
J. Am. Chem. Soc., 1940, 62, 2059-20. [all data]
Das, Reed, et al., 1973
Das, T.R.; Reed, C.O., Jr.; Eubank, P.T.,
PVT Surface and Thermodynamic Properties of Isobutane,
J. Chem. Eng. Data, 1973, 18, 3, 253-262, https://doi.org/10.1021/je60058a001
. [all data]
Perkins and Magee, 2009
Perkins, Richard A.; Magee, Joseph W.,
Molar Heat Capacity at Constant Volume for Isobutane at Temperatures from (114 to 345) K and at Pressures to 35 MPa «8224» «8225»,
J. Chem. Eng. Data, 2009, 54, 9, 2646-2655, https://doi.org/10.1021/je9001575
. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
DePuy, Gronert, et al., 1989
DePuy, C.H.; Gronert, S.; Barlow, S.E.; Bierbaum, V.M.; Damrauer, R.,
The Gas Phase Acidities of the Alkanes,
J. Am. Chem. Soc., 1989, 111, 6, 1968, https://doi.org/10.1021/ja00188a003
. [all data]
Peerboom, Rademaker, et al., 1992
Peerboom, R.A.L.; Rademaker, G.J.; Dekoning, L.J.; Nibbering, N.M.M.,
Stabilization of Cycloalkyl Carbanions in the Gas Phase,
Rapid Commun. Mass Spectrom., 1992, 6, 6, 394, https://doi.org/10.1002/rcm.1290060608
. [all data]
DePuy, Bierbaum, et al., 1984
DePuy, C.H.; Bierbaum, V.M.; Damrauer, R.,
Relative Gas-Phase Acidities of the Alkanes,
J. Am. Chem. Soc., 1984, 106, 4051. [all data]
Kistiakowsky, Ruhoff, et al., 1935
Kistiakowsky, G.B.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E.,
Heats of organic reactions. II. Hydrogenation of some simpler olefinic hydrocarbons,
J. Am. Chem. Soc., 1935, 57, 876-882. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Pines, Kvetinskas, et al., 1945
Pines, H.; Kvetinskas, B.; Kassel, L.S.; Ipatieff, V.N.,
Determination of equilibrium constants for butanes and pentanes,
J. Am. Chem. Soc., 1945, 67, 631-637. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Luo and Pacey, 1992
Luo, Y.-R.; Pacey, P.D.,
Effects of alkyl substitution on ionization energies of alkanes and haloalkanes and on heats of formation of their molecular cations. Part 2. Alkanes and chloro-, bromo- and iodoalkanes,
Int. J. Mass Spectrom. Ion Processes, 1992, 112, 63. [all data]
Flesch and Svec, 1973
Flesch, G.D.; Svec, H.J.,
Fragmentation reactions in the mass spectrometer for C2-C5 alkanes,
J. Chem. Soc. Faraday Trans. 2, 1973, 69, 1187. [all data]
Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D.,
Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation,
J. Chem. Phys., 1969, 50, 654. [all data]
Turner and Al-Joboury, 1964
Turner, D.W.; Al-Joboury, M.I.,
Molecular photoelectron spectroscopy,
Bull. Soc. Chim. Belges, 1964, 73, 428. [all data]
Al-Joboury and Turner, 1964
Al-Joboury, M.I.; Turner, D.W.,
Molecular photoelectron spectroscopy. Part II. A summary of ionization potentials,
J. Chem. Soc., 1964, 4434. [all data]
Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J.,
Ionization potentials of some molecules,
J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]
Steiner, Giese, et al., 1961
Steiner, B.; Giese, C.F.; Inghram, M.G.,
Photoionization of alkanes. Dissociation of excited molecular ions,
J. Chem. Phys., 1961, 34, 189. [all data]
Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S.,
Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules
in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]
Bieri, Burger, et al., 1977
Bieri, G.; Burger, F.; Heilbronner, E.; Maier, J.P.,
Valence ionization enrgies of hydrocarbons,
Helv. Chim. Acta, 1977, 60, 2213. [all data]
Murrell and Schmidt, 1972
Murrell, J.N.; Schmidt, W.,
Photoelectron spectroscopic correlation of the molecular orbitals of methane, ethane, propane, isobutane and neopentane,
J. Chem. Soc. Faraday Trans. 2, 1972, 68, 1709. [all data]
Olmsted, Street, et al., 1964
Olmsted, J., III; Street, K., Jr.; Newton, A.S.,
Excess-kinetic-energy ions in organic mass spectra,
J. Chem. Phys., 1964, 40, 2114. [all data]
Omura, 1961
Omura, I.,
Mass spectra at low ionizing voltage and bond dissociation energies of molecular ions from hydrocarbons,
Bull. Chem. Soc. Japan, 1961, 34, 1227. [all data]
Mead, Donchi, et al., 1980
Mead, P.T.; Donchi, K.F.; Traeger, J.C.; Christie, J.R.; Derrick, P.J.,
Secondary hydrogen isotope effect in the unimolecular decomposition of 2-methylpropane radical cations,
J. Am. Chem. Soc., 1980, 102, 3364. [all data]
Wolkoff and Holmes, 1978
Wolkoff, P.; Holmes, J.L.,
Fragmentations of alkane molecular ions,
J. Am. Chem. Soc., 1978, 100, 7346. [all data]
Williams and Hamill, 1968
Williams, J.M.; Hamill, W.H.,
Ionization potentials of molecules and free radicals and appearance potentials by electron impact in the mass spectrometer,
J. Chem. Phys., 1968, 49, 4467. [all data]
McLoughlin and Traeger, 1979
McLoughlin, R.G.; Traeger, J.C.,
Heat of formation for tert-butyl cation in the gas phase,
J. Am. Chem. Soc., 1979, 101, 5791. [all data]
Estel, Mohnke, et al., 1995
Estel, D.; Mohnke; Biermans; Rotzsche,
The analysis of C4-C11 hydrocarbons in naphtha and reformate with a new apolar fused silica column,
J. Hi. Res. Chromatogr., 1995, 18, 7, 403-412, https://doi.org/10.1002/jhrc.1240180703
. [all data]
Do and Raulin, 1992
Do, L.; Raulin, F.,
Gas chromatography of Titan's atmosphere. III. Analysis of low-molecular-weight hydrocarbons and nitriles with a CP-Sil-5 CB WCOT capillary column,
J. Chromatogr., 1992, 591, 1-2, 297-301, https://doi.org/10.1016/0021-9673(92)80247-R
. [all data]
Lunskii and Paizanskaya, 1988
Lunskii, M.Kh.; Paizanskaya, I.L.,
Identification of hydrocarbons C1-C9 of petrol fractions of oils and condensates in the use of capillary columns with dinonylphthalate,
Zh. Anal. Khim., 1988, 43, 127-135. [all data]
Bredael, 1982
Bredael, P.,
Retention indices of hydrocarbons on SE-30,
J. Hi. Res. Chromatogr. Chromatogr. Comm., 1982, 5, 6, 325-328, https://doi.org/10.1002/jhrc.1240050610
. [all data]
Nijs and Jacobs, 1981
Nijs, H.H.; Jacobs, P.A.,
On-Line Single Run Analysis of Effluents from a Fischer-Tropsch Reactor,
J. Chromatogr. Sci., 1981, 19, 1, 40-45, https://doi.org/10.1093/chromsci/19.1.40
. [all data]
Schröder, 1980
Schröder, I.H.,
Retention Indices of Hydrocarbons up to C14 for the Stationary Phase Squalane,
J. Hi. Res. Chromatogr. Chromatogr. Comm., 1980, 3, 1, 38-44, https://doi.org/10.1002/jhrc.1240030115
. [all data]
Lulova, Leont'eva, et al., 1976
Lulova, N.I.; Leont'eva, S.A.; Timofeeva, A.N.,
Gas-chromatographic method of determination of individual hydrocarbons in catalytic cracking gasolines
in Proceedings of All-Union Research Institute on Oil Processes. Vol.18, All-Union Research Institute on Oil Processes, Moscow, 1976, 30-53. [all data]
Matukuma, 1969
Matukuma, A.,
Retention indices of alkanes through C10 and alkenes through C8 and relation between boiling points and retention data,
Gas Chromatogr., Int. Symp. Anal. Instrum. Div Instrum Soc. Amer., 1969, 7, 55-75. [all data]
Hively and Hinton, 1968
Hively, R.A.; Hinton, R.E.,
Variation of the retention index with temperature on squalane substrates,
J. Gas Chromatogr., 1968, 6, 4, 203-217, https://doi.org/10.1093/chromsci/6.4.203
. [all data]
Widmer, 1967
Widmer, H.,
Gas chromatographic identification of hydrocarbons using retention indices,
J. Gas Chromatogr., 1967, 5, 10, 506-510, https://doi.org/10.1093/chromsci/5.10.506
. [all data]
Zulaïca and Guiochon, 1966
Zulaïca, J.; Guiochon, G.,
Analyse des hauts polymères par chromatographie en phase gazeuse de leurs produits de pyrolyse. II. Application à quelques hydrocarbures macromoléculaires purs,
Bull. Soc. Chim. Fr., 1966, 4, 1351-1363. [all data]
Haagen-Smit Laboratory, 1997
Haagen-Smit Laboratory,
Procedure for the detailed hydrocarbon analysis of gasolines by single column high efficiency (capillary) column gas chromatography, SOP NO. MLD 118, Revision No. 1.1, California Environmental Protection Agency, Air Resources Board, El Monte, California, 1997, 22. [all data]
Hoekman, 1993
Hoekman, S.K.,
Improved gas chromatography procedure for speciated hydrocarbon measurements of vehicle emissions,
J. Chromatogr., 1993, 639, 2, 239-253, https://doi.org/10.1016/0021-9673(93)80260-F
. [all data]
Yin, Liu, et al., 2001
Yin, C.; Liu, W.; Li, Z.; Pan, Z.; Lin, T.; Zhang, M.,
Chemometrics to chemical modeling: structural coding in hydrocarbons and retention indices of gas chromatography,
J. Sep. Sci., 2001, 24, 3, 213-220, https://doi.org/10.1002/1615-9314(20010301)24:3<213::AID-JSSC213>3.0.CO;2-4
. [all data]
Subramaniam, Bochniak, et al., 1994
Subramaniam, B.; Bochniak, D.; Snavely, K.,
Fischer-Tropsch synthesis in supercritical reaction media, Lawrence Department of Chemical and Petroleum Engineering (DOE/PC/92532--T7), United States Department of Energy, Pittsburgh, PA, 1994, 8, retrieved from http://www.NTIS.gov. [all data]
White, Douglas, et al., 1992
White, C.M.; Douglas, L.J.; Hackett, J.P.; Anderson, R.R.,
Characterization of synthetic gasoline from the chloromethane-zeolite reaction,
Energy Fuels, 1992, 6, 1, 76-82, https://doi.org/10.1021/ef00031a012
. [all data]
White, Hackett, et al., 1992
White, C.M.; Hackett, J.; Anderson, R.R.; Kail, S.; Spock, P.S.,
Linear temperature programmed retention indices of gasoline range hydrocarbons and chlorinated hydrocarbons on cross-linked polydimethylsiloxane,
J. Hi. Res. Chromatogr., 1992, 15, 2, 105-120, https://doi.org/10.1002/jhrc.1240150211
. [all data]
Wu and Lu, 1984
Wu, J.; Lu, W.,
Hydrocarbon analysis by open-tubular column chromatography with programmed temperature for straight run gasoline,
Anal. Chem., 1984, 12, 7, 572-578. [all data]
Huguet, 1961
Huguet, M.,
Kovats retention indices in the qualitative analysis of light hydrocarbons by gas chromatography, Journees internationales d'etude des methodes de separation immediate et de chromatographie, 1961, 69. [all data]
Bramston-Cook, 2013
Bramston-Cook, R.,
Kovats indices for C2-C13 hydrocarbons and selected oxygenated/halocarbons with 100 % dimethylpolysiloxane columns, 2013, retrieved from http://lotusinstruments.com/monographs/List .... [all data]
Supelco, 2012
Supelco, CatalogNo. 24160-U,
Petrocol DH Columns. Catalog No. 24160-U, 2012, retrieved from http://www.sigmaaldrich.com/etc/medialib/docs/Supelco/Datasheet/1/w97949.Par.0001.File.tmp/w97949.pdf. [all data]
Zhang, Ding, et al., 2009
Zhang, X.; Ding, L.; Sun, Z.; Song, L.; Sun, T.,
Study on quantitative structure-retention relationships for hydrocarbons in FCC gasoline,
Chromatographia, 2009, 70, 3/4, 511-518, https://doi.org/10.1365/s10337-009-1174-0
. [all data]
Krkosova, Kubinec, et al., 2007
Krkosova, Z.; Kubinec, R.; Addova, G.; Jurdakova, H.; Blasko, J.; Ostrovsky, I.; Sojak, L.,
Gas chromatographic - mass spectrometric characterization of monomethylalkanes from fuel diesel,
Petroleum Coal, 2007, 49, 3, 51-62. [all data]
Health Safety Executive, 2000
Health Safety Executive,
MDHS 96 Volatile organic compounds in air - Laboratory method using pumed solid sorbent tubes, solvent desorption and gas chromatography
in Methods for the Determination of Hazardous Substances (MDHS) guidance, Crown, Colegate, Norwich, 2000, 1-24, retrieved from http://www.hse.gov.uk/pubns/mdhs/pdfs/mdhs96.pdf. [all data]
Ciccioli, Cecinato, et al., 1992
Ciccioli, P.; Cecinato, A.; Brancaleoni, E.; Frattoni, M.; Liberti, A.,
Use of carbon adsorption traps combined with high resolution gas chromatography - mass spectrometry for the analysis of polar and non-polar C4-C14 hydrocarbons involved in photochemical smog formation,
J. Hi. Res. Chromatogr., 1992, 15, 2, 75-84, https://doi.org/10.1002/jhrc.1240150205
. [all data]
Chen and Feng, 2007
Chen, Y.; Feng, C.,
QSPR study on gas chromatography retention index of some organic pollutants,
Comput. Appl. Chem. (China), 2007, 24, 10, 1404-1408. [all data]
Blunden, Aneja, et al., 2005
Blunden, J.; Aneja, V.P.; Lonneman, W.A.,
Characterization of non-methane volatile organic compounds at swine facilities in eastern North Carolina,
Atm. Environ., 2005, 39, 36, 6707-6718, https://doi.org/10.1016/j.atmosenv.2005.03.053
. [all data]
Du and Liang, 2003
Du, Y.; Liang, Y.,
Data mining for seeking accurate quantitative relationship between molecular structure and GC retention indices of alkanes by projection pursuit,
Comput. Biol. Chem., 2003, 27, 3, 339-353, https://doi.org/10.1016/S1476-9271(02)00081-6
. [all data]
Perkin Elmer Instruments, 2002
Perkin Elmer Instruments,
Detailed hydrocarbon analysis (DHAX) Model 4015, 2002, retrieved from http://www.perkinelmer.com/instruments. [all data]
Yin, Guo, et al., 2001
Yin, C.; Guo, W.; Lin, T.; Liu, S.; Fu, R.; Pan, Z.; Wang, L.,
Application of wavelet neural network to the prediction of gas chromatographic retention indices of alkanes,
J. Chinese Chem. Soc., 2001, 48, 739-749. [all data]
Spieksma, 1999
Spieksma, W.,
Determination of vapor liquid equilibrium from the Kovats retention index on dimethylsilicone using the Wilson mixing tool,
J. Hi. Res. Chromatogr., 1999, 22, 10, 565-588, https://doi.org/10.1002/(SICI)1521-4168(19991001)22:10<565::AID-JHRC565>3.0.CO;2-2
. [all data]
Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D.,
Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]
Zenkevich and Chupalov, 1996
Zenkevich, I.G.; Chupalov, A.A.,
New Possibilities of Chromato Mass Pectrometric Identification of Organic Compounds Using Increments of Gas Chromatographic Retention Indices of Molecular Structural Fragments,
Zh. Org. Khim. (Rus.), 1996, 32, 5, 656-666. [all data]
Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J.,
Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning,
Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111
. [all data]
Ramsey and Flanagan, 1982
Ramsey, J.D.; Flanagan, R.J.,
Detection and Identification of Volatile Organic Compounds in Blood by Headspace Gas Chromatography as an Aid to the Diagnosis of Solvent Abuse,
J. Chromatogr., 1982, 240, 2, 423-444, https://doi.org/10.1016/S0021-9673(00)99622-5
. [all data]
Kojima, Fujii, et al., 1980
Kojima, T.; Fujii, T.; Hosaka, Y.,
Thermal decomposition products of sterepisomeric polypropylenes,
Mass Spectrometry, 1980, 28, 4, 335-341. [all data]
Robinson and Odell, 1971
Robinson, P.G.; Odell, A.L.,
A system of standard retention indices and its uses. The characterisation of stationary phases and the prediction of retention indices,
J. Chromatogr., 1971, 57, 1-10, https://doi.org/10.1016/0021-9673(71)80001-8
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, Site Links, NIST Free Links, References
- Symbols used in this document:
AE Appearance energy Cp,gas Constant pressure heat capacity of gas Cp,liquid Constant pressure heat capacity of liquid IE (evaluated) Recommended ionization energy Pc Critical pressure Ptriple Triple point pressure S°liquid Entropy of liquid at standard conditions Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature Vc Critical volume d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔcH°gas Enthalpy of combustion of gas at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ΔvapS Entropy of vaporization ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.