Methylene chloride

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Δfgas-22.83kcal/molReviewChase, 1998Data last reviewed in December, 1968
Δfgas-22.7 ± 0.60kcal/molReviewManion, 2002derived from recommended ΔfHliquid° and ΔvapH°; DRB
Δfgas-22.87 ± 0.32kcal/molChydLacher, Amador, et al., 1967Reanalyzed by Cox and Pilcher, 1970, Original value = -22.95 ± 0.32 kcal/mol; At 250 C; ALS
Quantity Value Units Method Reference Comment
gas,1 bar64.598cal/mol*KReviewChase, 1998Data last reviewed in December, 1968

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (cal/mol*K)
    H° = standard enthalpy (kcal/mol)
    S° = standard entropy (cal/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 1200.1200. to 6000.
A 4.58257922.73660
B 32.706601.606531
C -22.73660-0.307886
D 6.2215710.020470
E -0.028538-3.570471
F -25.55779-37.60770
G 61.1889181.39130
H -22.83010-22.83010
ReferenceChase, 1998Chase, 1998
Comment Data last reviewed in December, 1968 Data last reviewed in December, 1968

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
MS - José A. Martinho Simões

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

CHCl2- + Hydrogen cation = Methylene chloride

By formula: CHCl2- + H+ = CH2Cl2

Quantity Value Units Method Reference Comment
Δr375.7 ± 2.2kcal/molG+TSBorn, Ingemann, et al., 2000gas phase; D-EA from this reference yields BDE = 96.0±3.2 kcal/mol; B
Δr374.5 ± 3.1kcal/molG+TSBohme, Lee-Ruff, et al., 1972gas phase; Comparable to DMSO; value altered from reference due to change in acidity scale; B
Quantity Value Units Method Reference Comment
Δr368.0 ± 2.0kcal/molIMREBorn, Ingemann, et al., 2000gas phase; D-EA from this reference yields BDE = 96.0±3.2 kcal/mol; B
Δr369.00 ± 0.70kcal/molIMREPoutsma, Paulino, et al., 1997gas phase; relative to tBuOH at ΔGacid = 369.3; B
Δr366.8 ± 3.0kcal/molIMRBBohme, Lee-Ruff, et al., 1972gas phase; Comparable to DMSO; value altered from reference due to change in acidity scale; B

Chlorine anion + Methylene chloride = (Chlorine anion • Methylene chloride)

By formula: Cl- + CH2Cl2 = (Cl- • CH2Cl2)

Quantity Value Units Method Reference Comment
Δr15.8 ± 2.0kcal/molIMRELarson and McMahon, 1984gas phase; B,M
Δr14.8 ± 2.0kcal/molTDAsHiraoka, Mizuno, et al., 2001gas phase; B
Δr15.50 ± 0.30kcal/molTDEqDougherty, Dalton, et al., 1974gas phase; B,M
Quantity Value Units Method Reference Comment
Δr22.1cal/mol*KN/ALarson and McMahon, 1984gas phase; switching reaction(Cl-)t-C4H9OH, Entropy change calculated or estimated; Kebarle, 1977; M
Δr22.0cal/mol*KHPMSDougherty, Dalton, et al., 1974gas phase; M
Quantity Value Units Method Reference Comment
Δr9.2 ± 2.0kcal/molIMRELarson and McMahon, 1984gas phase; B,M
Δr8.84kcal/molTDAsHiraoka, Mizuno, et al., 2001gas phase; B
Δr8.90 ± 0.60kcal/molTDEqDougherty, Dalton, et al., 1974gas phase; B

CN- + Methylene chloride = (CN- • Methylene chloride)

By formula: CN- + CH2Cl2 = (CN- • CH2Cl2)

Quantity Value Units Method Reference Comment
Δr16.3 ± 3.5kcal/molIMRELarson and McMahon, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr24.2cal/mol*KN/ALarson and McMahon, 1987gas phase; switching reaction,Thermochemical ladder(CN-)H2O, Entropy change calculated or estimated; Payzant, Yamdagni, et al., 1971; M
Quantity Value Units Method Reference Comment
Δr9.0 ± 2.3kcal/molIMRELarson and McMahon, 1987gas phase; B,M

C2H5+ + Methylene chloride = (C2H5+ • Methylene chloride)

By formula: C2H5+ + CH2Cl2 = (C2H5+ • CH2Cl2)

Quantity Value Units Method Reference Comment
Δr36.0kcal/molPHPMSSharma, Meza de Hojer, et al., 1985gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr45.1cal/mol*KPHPMSSharma, Meza de Hojer, et al., 1985gas phase; Entropy change is questionable; M

2Hydrogen + Methylene chloride = Methane + 2Hydrogen chloride

By formula: 2H2 + CH2Cl2 = CH4 + 2HCl

Quantity Value Units Method Reference Comment
Δr-39.05 ± 0.30kcal/molChydLacher, Amador, et al., 1967gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -40.07 ± 0.30 kcal/mol; At 250 C; ALS

CH2Cl3- + 2Methylene chloride = C2H4Cl5-

By formula: CH2Cl3- + 2CH2Cl2 = C2H4Cl5-

Quantity Value Units Method Reference Comment
Δr13.10kcal/molN/AHiraoka, Mizuno, et al., 2001gas phase; B
Quantity Value Units Method Reference Comment
Δr6.54kcal/molTDAsHiraoka, Mizuno, et al., 2001gas phase; B

C2H4Cl5- + 3Methylene chloride = C3H6Cl7-

By formula: C2H4Cl5- + 3CH2Cl2 = C3H6Cl7-

Quantity Value Units Method Reference Comment
Δr9.70kcal/molN/AHiraoka, Mizuno, et al., 2001gas phase; B
Quantity Value Units Method Reference Comment
Δr4.63kcal/molTDAsHiraoka, Mizuno, et al., 2001gas phase; B

C3H6Cl7- + 4Methylene chloride = C4H8Cl9-

By formula: C3H6Cl7- + 4CH2Cl2 = C4H8Cl9-

Quantity Value Units Method Reference Comment
Δr9.00kcal/molN/AHiraoka, Mizuno, et al., 2001gas phase; B
Quantity Value Units Method Reference Comment
Δr3.63kcal/molTDAsHiraoka, Mizuno, et al., 2001gas phase; B

C4H8Cl9- + 5Methylene chloride = C5H10Cl11-

By formula: C4H8Cl9- + 5CH2Cl2 = C5H10Cl11-

Quantity Value Units Method Reference Comment
Δr7.70kcal/molN/AHiraoka, Mizuno, et al., 2001gas phase; B
Quantity Value Units Method Reference Comment
Δr2.63kcal/molTDAsHiraoka, Mizuno, et al., 2001gas phase; B

C3H7+ + Methylene chloride = (C3H7+ • Methylene chloride)

By formula: C3H7+ + CH2Cl2 = (C3H7+ • CH2Cl2)

Quantity Value Units Method Reference Comment
Δr15.6kcal/molPHPMSSharma, Meza de Hojer, et al., 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr31.0cal/mol*KPHPMSSharma, Meza de Hojer, et al., 1985gas phase; M

C6H11+ + Methylene chloride = (C6H11+ • Methylene chloride)

By formula: C6H11+ + CH2Cl2 = (C6H11+ • CH2Cl2)

Quantity Value Units Method Reference Comment
Δr10.6kcal/molPHPMSSharma, Meza de Hojer, et al., 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr31.1cal/mol*KPHPMSSharma, Meza de Hojer, et al., 1985gas phase; M

Lithium ion (1+) + Methylene chloride = (Lithium ion (1+) • Methylene chloride)

By formula: Li+ + CH2Cl2 = (Li+ • CH2Cl2)

Quantity Value Units Method Reference Comment
Δr29.kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 interpolated; M

C4H9+ + Methylene chloride = (C4H9+ • Methylene chloride)

By formula: C4H9+ + CH2Cl2 = (C4H9+ • CH2Cl2)

Quantity Value Units Method Reference Comment
Δr9.5kcal/molPHPMSSharma, Meza de Hojer, et al., 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr22.3cal/mol*KPHPMSSharma, Meza de Hojer, et al., 1985gas phase; M

C5H11+ + Methylene chloride = (C5H11+ • Methylene chloride)

By formula: C5H11+ + CH2Cl2 = (C5H11+ • CH2Cl2)

Quantity Value Units Method Reference Comment
Δr9.5kcal/molPHPMSSharma, Meza de Hojer, et al., 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr23.3cal/mol*KPHPMSSharma, Meza de Hojer, et al., 1985gas phase; M

C5H9+ + Methylene chloride = (C5H9+ • Methylene chloride)

By formula: C5H9+ + CH2Cl2 = (C5H9+ • CH2Cl2)

Quantity Value Units Method Reference Comment
Δr9.8kcal/molPHPMSSharma, Meza de Hojer, et al., 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr20.2cal/mol*KPHPMSSharma, Meza de Hojer, et al., 1985gas phase; M

C14H21MnO2 (solution) + Methylene chloride (solution) = C8H7Cl2MnO2 (solution) + Heptane (solution)

By formula: C14H21MnO2 (solution) + CH2Cl2 (solution) = C8H7Cl2MnO2 (solution) + C7H16 (solution)

Quantity Value Units Method Reference Comment
Δr-9.0 ± 1.0kcal/molPACYang and Yang, 1992solvent: Heptane; MS

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Ion clustering data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
MM - Michael M. Meot-Ner (Mautner)
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
LL - Sharon G. Lias and Joel F. Liebman

Quantity Value Units Method Reference Comment
IE (evaluated)11.33 ± 0.04eVN/AN/AL

Proton affinity at 298K

Proton affinity (kcal/mol) Reference Comment
150. ± 2.Cacace, de Petris, et al., 1999COS; C2H2. Paper reports PA although proton transfer reactivity brackets GB. Following authors, the GBs of CH2Cl2 and COS are equated given reversible proton transfer.; MM

Gas basicity at 298K

Gas basicity (review) (kcal/mol) Reference Comment
144. ± 2.Cacace, de Petris, et al., 1999COS; C2H2. Paper reports PA although proton transfer reactivity brackets GB. Following authors, the GBs of CH2Cl2 and COS are equated given reversible proton transfer.; MM

Ionization energy determinations

IE (eV) Method Reference Comment
11.32PEVon Niessen, Asbrink, et al., 1982LBLHLM
11.40PEKimura, Katsumata, et al., 1981LLK
11.32 ± 0.01PIWerner, Tsai, et al., 1974LLK
11.28EILossing, 1972LLK
11.33PEDewar and Worley, 1969RDSH
11.36CICermak, 1968RDSH
11.35 ± 0.02PIWatanabe, 1957RDSH
11.40PEDixon, Murrell, et al., 1971Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C+25.5 ± 0.1?EIReed and Snedden, 1956RDSH
CH+21.72 ± 0.04?EIReed and Snedden, 1956RDSH
CHCl2+13.00 ± 0.10HEIReed and Snedden, 1956RDSH
CH2+17.0Cl2EIHaney and Franklin, 1968RDSH
CH2Cl+12.10ClEIHolmes, Lossing, et al., 1988LL
CH2Cl+12.14 ± 0.02ClPIWerner, Tsai, et al., 1974LLK
CH2Cl+12.15ClEILossing, 1972LLK
CH2Cl+12.1 ± 0.1ClEIHarrison and Shannon, 1962RDSH
CH2Cl+12.89 ± 0.03ClEIReed and Snedden, 1956RDSH
CHC12+12.12 ± 0.05HEIMartin, Lampe, et al., 1966RDSH
Cl+17.4 ± 0.1CH2ClEIDeCorpo, Bafus, et al., 1971LLK
Cl+17.4CH2ClEIFranklin and Haney, 1970RDSH

De-protonation reactions

CHCl2- + Hydrogen cation = Methylene chloride

By formula: CHCl2- + H+ = CH2Cl2

Quantity Value Units Method Reference Comment
Δr375.7 ± 2.2kcal/molG+TSBorn, Ingemann, et al., 2000gas phase; D-EA from this reference yields BDE = 96.0±3.2 kcal/mol; B
Δr374.5 ± 3.1kcal/molG+TSBohme, Lee-Ruff, et al., 1972gas phase; Comparable to DMSO; value altered from reference due to change in acidity scale; B
Quantity Value Units Method Reference Comment
Δr368.0 ± 2.0kcal/molIMREBorn, Ingemann, et al., 2000gas phase; D-EA from this reference yields BDE = 96.0±3.2 kcal/mol; B
Δr369.00 ± 0.70kcal/molIMREPoutsma, Paulino, et al., 1997gas phase; relative to tBuOH at ΔGacid = 369.3; B
Δr366.8 ± 3.0kcal/molIMRBBohme, Lee-Ruff, et al., 1972gas phase; Comparable to DMSO; value altered from reference due to change in acidity scale; B

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

CH2Cl3- + 2Methylene chloride = C2H4Cl5-

By formula: CH2Cl3- + 2CH2Cl2 = C2H4Cl5-

Quantity Value Units Method Reference Comment
Δr13.10kcal/molN/AHiraoka, Mizuno, et al., 2001gas phase; B
Quantity Value Units Method Reference Comment
Δr6.54kcal/molTDAsHiraoka, Mizuno, et al., 2001gas phase; B

CN- + Methylene chloride = (CN- • Methylene chloride)

By formula: CN- + CH2Cl2 = (CN- • CH2Cl2)

Quantity Value Units Method Reference Comment
Δr16.3 ± 3.5kcal/molIMRELarson and McMahon, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr24.2cal/mol*KN/ALarson and McMahon, 1987gas phase; switching reaction,Thermochemical ladder(CN-)H2O, Entropy change calculated or estimated; Payzant, Yamdagni, et al., 1971; M
Quantity Value Units Method Reference Comment
Δr9.0 ± 2.3kcal/molIMRELarson and McMahon, 1987gas phase; B,M

C2H4Cl5- + 3Methylene chloride = C3H6Cl7-

By formula: C2H4Cl5- + 3CH2Cl2 = C3H6Cl7-

Quantity Value Units Method Reference Comment
Δr9.70kcal/molN/AHiraoka, Mizuno, et al., 2001gas phase; B
Quantity Value Units Method Reference Comment
Δr4.63kcal/molTDAsHiraoka, Mizuno, et al., 2001gas phase; B

C2H5+ + Methylene chloride = (C2H5+ • Methylene chloride)

By formula: C2H5+ + CH2Cl2 = (C2H5+ • CH2Cl2)

Quantity Value Units Method Reference Comment
Δr36.0kcal/molPHPMSSharma, Meza de Hojer, et al., 1985gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr45.1cal/mol*KPHPMSSharma, Meza de Hojer, et al., 1985gas phase; Entropy change is questionable; M

C3H6Cl7- + 4Methylene chloride = C4H8Cl9-

By formula: C3H6Cl7- + 4CH2Cl2 = C4H8Cl9-

Quantity Value Units Method Reference Comment
Δr9.00kcal/molN/AHiraoka, Mizuno, et al., 2001gas phase; B
Quantity Value Units Method Reference Comment
Δr3.63kcal/molTDAsHiraoka, Mizuno, et al., 2001gas phase; B

C3H7+ + Methylene chloride = (C3H7+ • Methylene chloride)

By formula: C3H7+ + CH2Cl2 = (C3H7+ • CH2Cl2)

Quantity Value Units Method Reference Comment
Δr15.6kcal/molPHPMSSharma, Meza de Hojer, et al., 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr31.0cal/mol*KPHPMSSharma, Meza de Hojer, et al., 1985gas phase; M

C4H8Cl9- + 5Methylene chloride = C5H10Cl11-

By formula: C4H8Cl9- + 5CH2Cl2 = C5H10Cl11-

Quantity Value Units Method Reference Comment
Δr7.70kcal/molN/AHiraoka, Mizuno, et al., 2001gas phase; B
Quantity Value Units Method Reference Comment
Δr2.63kcal/molTDAsHiraoka, Mizuno, et al., 2001gas phase; B

C4H9+ + Methylene chloride = (C4H9+ • Methylene chloride)

By formula: C4H9+ + CH2Cl2 = (C4H9+ • CH2Cl2)

Quantity Value Units Method Reference Comment
Δr9.5kcal/molPHPMSSharma, Meza de Hojer, et al., 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr22.3cal/mol*KPHPMSSharma, Meza de Hojer, et al., 1985gas phase; M

C5H9+ + Methylene chloride = (C5H9+ • Methylene chloride)

By formula: C5H9+ + CH2Cl2 = (C5H9+ • CH2Cl2)

Quantity Value Units Method Reference Comment
Δr9.8kcal/molPHPMSSharma, Meza de Hojer, et al., 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr20.2cal/mol*KPHPMSSharma, Meza de Hojer, et al., 1985gas phase; M

C5H11+ + Methylene chloride = (C5H11+ • Methylene chloride)

By formula: C5H11+ + CH2Cl2 = (C5H11+ • CH2Cl2)

Quantity Value Units Method Reference Comment
Δr9.5kcal/molPHPMSSharma, Meza de Hojer, et al., 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr23.3cal/mol*KPHPMSSharma, Meza de Hojer, et al., 1985gas phase; M

C6H11+ + Methylene chloride = (C6H11+ • Methylene chloride)

By formula: C6H11+ + CH2Cl2 = (C6H11+ • CH2Cl2)

Quantity Value Units Method Reference Comment
Δr10.6kcal/molPHPMSSharma, Meza de Hojer, et al., 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr31.1cal/mol*KPHPMSSharma, Meza de Hojer, et al., 1985gas phase; M

Chlorine anion + Methylene chloride = (Chlorine anion • Methylene chloride)

By formula: Cl- + CH2Cl2 = (Cl- • CH2Cl2)

Quantity Value Units Method Reference Comment
Δr15.8 ± 2.0kcal/molIMRELarson and McMahon, 1984gas phase; B,M
Δr14.8 ± 2.0kcal/molTDAsHiraoka, Mizuno, et al., 2001gas phase; B
Δr15.50 ± 0.30kcal/molTDEqDougherty, Dalton, et al., 1974gas phase; B,M
Quantity Value Units Method Reference Comment
Δr22.1cal/mol*KN/ALarson and McMahon, 1984gas phase; switching reaction(Cl-)t-C4H9OH, Entropy change calculated or estimated; Kebarle, 1977; M
Δr22.0cal/mol*KHPMSDougherty, Dalton, et al., 1974gas phase; M
Quantity Value Units Method Reference Comment
Δr9.2 ± 2.0kcal/molIMRELarson and McMahon, 1984gas phase; B,M
Δr8.84kcal/molTDAsHiraoka, Mizuno, et al., 2001gas phase; B
Δr8.90 ± 0.60kcal/molTDEqDougherty, Dalton, et al., 1974gas phase; B

Lithium ion (1+) + Methylene chloride = (Lithium ion (1+) • Methylene chloride)

By formula: Li+ + CH2Cl2 = (Li+ • CH2Cl2)

Quantity Value Units Method Reference Comment
Δr29.kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 interpolated; M

Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW-5526
NIST MS number 228003

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryHP-10.553.5Wang, Liu, et al., 200530. m/0.25 mm/0.25 μm
CapillaryHP-110.555.9Wang, Liu, et al., 200530. m/0.25 mm/0.25 μm
CapillaryHP-140.553.7Wang, Liu, et al., 200530. m/0.25 mm/0.25 μm
CapillaryHP-150.548.4Wang, Liu, et al., 200530. m/0.25 mm/0.25 μm
CapillaryHP-160.542.2Wang, Liu, et al., 200530. m/0.25 mm/0.25 μm
PackedC78, Branched paraffin130.506.3Dallos, Sisak, et al., 2000He; Column length: 3.3 m
CapillaryOV-170.518.Annino and Villalobos, 199922.6 m/0.53 mm/2.78 μm
PackedC78, Branched paraffin130.504.9Reddy, Dutoit, et al., 1992Chromosorb G HP; Column length: 3.3 m
PackedApolane130.508.Dutoit, 1991Column length: 3.7 m
CapillaryOV-160.516.9Guan, Kiraly, et al., 198925. m/0.31 mm/0.52 μm, He
CapillaryOV-175.516.5Guan, Kiraly, et al., 198925. m/0.31 mm/0.52 μm, He
CapillarySE-5460.537.8Guan, Kiraly, et al., 198925. m/0.31 mm/0.52 μm, He
CapillarySE-5475.537.9Guan, Kiraly, et al., 198925. m/0.31 mm/0.52 μm, He
PackedOV-1100.519.Castello and Gerbino, 1988He, Chromosorb W DMCS; Column length: 3. m
PackedOV-1125.520.Castello and Gerbino, 1988He, Chromosorb W DMCS; Column length: 3. m
PackedOV-175.518.Castello and Gerbino, 1988He, Chromosorb W DMCS; Column length: 3. m
PackedSqualane80.486.Pacáková, Vojtechová, et al., 1988N2, Chezasorb AW-HMDS; Column length: 1.2 m
PackedSE-30100.524.Winskowski, 1983Gaschrom Q; Column length: 2. m
PackedApolane70.497.9Riedo, Fritz, et al., 1976He, Chromosorb; Column length: 2.4 m
PackedSqualane50.477.Vernon, 1971N2
PackedApiezon L130.511.von Kováts, 1958Celite (40:60 Gewichtsverhaltnis)
PackedApiezon L70.513.von Kováts, 1958Celite (40:60 Gewichtsverhaltnis)

Kovats' RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillarySE-54531.Rembold, Wallner, et al., 198930. m/0.25 mm/0.25 μm, He, 0. C @ 12. min, 12. K/min; Tend: 250. C
CapillaryOV-101540.Ohnishi and Shibamoto, 19842. K/min; Column length: 50. m; Column diameter: 0.23 mm; Tstart: 80. C; Tend: 200. C
CapillaryOV-101540.Ohnishi and Shibamoto, 19842. K/min; Column length: 50. m; Column diameter: 0.23 mm; Tstart: 80. C; Tend: 200. C

Kovats' RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
PackedSE-30510.Minyard, Tumlinson, et al., 1967He, Chromasorb W; Column length: 6.1 m; Program: 150C (10min) => 15C/min => 200C(16min) => 10C/min => 240C

Kovats' RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryCarbowax 20M70.948.Annino and Villalobos, 199931.3 m/0.53 mm/0.54 μm
CapillarySupelcowax-1060.946.Castello, Vezzani, et al., 1991N2; Column length: 60. m; Column diameter: 0.75 mm
PackedSP-1000100.935.7Castello and Gerbino, 1988He, Chromosorb W DMCS; Column length: 3. m
PackedSP-1000125.932.62Castello and Gerbino, 1988He, Chromosorb W DMCS; Column length: 3. m
PackedSP-100075.926.65Castello and Gerbino, 1988He, Chromosorb W DMCS; Column length: 3. m
PackedCarbowax 20M75.933.Goebel, 1982N2, Kieselgur (60-100 mesh); Column length: 2. m

Kovats' RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryCBP-20933.Shimadzu, 200325. m/0.2 mm/0.25 μm, He, 50. C @ 5. min, 4. K/min; Tend: 200. C
CapillaryDB-Wax914.Shimoda and Shibamoto, 1990He, 40. C @ 6. min, 3. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 190. C
CapillaryDB-Wax925.Tatsuka, Suekane, et al., 199060. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 3. K/min; Tend: 200. C
CapillaryDB-Wax931.Tatsuka, Suekane, et al., 199060. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 3. K/min; Tend: 200. C
CapillaryDB-Wax948.Umano and Shibamoto, 198840. C @ 10. min, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 220. C
CapillaryDB-Wax948.Umano and Shibamoto, 198840. C @ 10. min, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 220. C
CapillaryDB-Wax905.Umano, Shoji, et al., 1986N2, 60. C @ 10. min, 2. K/min; Column length: 30. m; Column diameter: 0.25 mm; Tend: 200. C

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryPetrocol DH512.7Censullo, Jones, et al., 200350. m/0.25 mm/0.5 μm, He, 35. C @ 10. min, 3. K/min, 200. C @ 10. min
CapillaryDB-5531.6Xu, van Stee, et al., 200330. m/0.25 mm/1. μm, He, 2.5 K/min; Tstart: 50. C; Tend: 200. C
CapillaryDB-1524.Helmig, Pollock, et al., 199630. m/0.25 mm/1. μm, 6. K/min; Tstart: -50. C; Tend: 180. C

Van Den Dool and Kratz RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryCarbowax937.2Censullo, Jones, et al., 200360. m/0.25 mm/0.5 μm, He, 50. C @ 10. min, 5. K/min, 250. C @ 10. min
CapillaryFFAP936.Ott, Fay, et al., 199730. m/0.25 mm/0.25 μm, He, 20. C @ 1. min, 4. K/min, 200. C @ 1. min

Van Den Dool and Kratz RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillarySupelcowax-10927.Bianchi, Careri, et al., 200730. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 4C/min => 60C => 6C/min => 160C => 20C/min => 200C(1min)
CapillarySupelcowax-10933.Bianchi, Careri, et al., 200730. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 4C/min => 60C => 6C/min => 160C => 20C/min => 200C(1min)

Normal alkane RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryDB-160.520.Shimadzu, 2003, 260. m/0.32 mm/1. μm, He
PackedSynachrom150.480.Dufka, Malinsky, et al., 1971Helium, Synachrom (60-80 mesh); Column length: 1.5 m
PackedSqualane100.488.Vernon, 1971N2

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-5 MS531.Kotowska, Zalikowski, et al., 201230. m/0.25 mm/0.25 μm, Helium, 35. C @ 5. min, 3. K/min, 300. C @ 15. min
CapillarySPB-5531.Vasta, Ratel, et al., 200760. m/0.32 mm/1. μm, 40. C @ 5. min, 3. K/min, 230. C @ 5. min
CapillarySPB-5528.Pérès, Begnaud, et al., 200260. m/0.32 mm/1. μm, 40. C @ 5. min, 3. K/min, 200. C @ 5. min
CapillaryBP-1514.Health Safety Executive, 200050. m/0.22 mm/0.75 μm, He, 5. K/min; Tstart: 50. C; Tend: 200. C
CapillaryUltra-2520.King, Matthews, et al., 199550. m/0.32 mm/0.52 μm, He, 40. C @ 3. min, 4. K/min, 250. C @ 30. min
CapillaryDB-1511.Habu, Flath, et al., 19853. K/min; Column length: 50. m; Column diameter: 0.32 mm; Tstart: 0. C; Tend: 250. C
CapillarySF-96527.Donetzhuber, Johansson, et al., 1976Nitrogen, 3. K/min, 130. C @ 40. min; Column length: 111. m; Column diameter: 0.76 mm; Initial hold: 8. min

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-5 MS528.Kotowska, Zalikowski, et al., 201230. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillaryHP-5529.Rotsatschakul, Visesanguan, et al., 200960. m/0.25 mm/0.25 μm, Helium; Program: 30 0C (2 min) 2 0Cmin -> 60 0C 10 0C/min -> 100 0C 20 0C/min -> 140 0C 10 0C/min -> 200 0C (10 min)
CapillaryPolydimethyl siloxanes515.Zenkevich, Eliseenkov, et al., 2006Program: not specified
CapillaryMethyl Silicone519.Blunden, Aneja, et al., 200560. m/0.32 mm/1.0 μm, Helium; Program: -50 0C (2 min) 8 0C/min -> 200 0C (7.75 min) 25 0C -> 225 0C (8 min)
CapillaryMethyl Silicone515.Zenkevich, 1998Program: not specified
CapillarySPB-1515.Flanagan, Streete, et al., 199760. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C
CapillaryDB-5531.Sorimachi, Tanabe, et al., 1995He; Column length: 30. m; Program: not specified
CapillaryMethyl Silicone515.Zenkevich, Korolenko, et al., 1995Program: not specified
CapillaryDB-1512.Ciccioli, Cecinato, et al., 199460. m/0.32 mm/0.25 μm; Program: not specified
CapillarySPB-1515.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C
CapillarySPB-1515.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: not specified
CapillaryDB-1504.Kawai, Ishida, et al., 199160. m/0.25 mm/0.25 μm; Program: not specified
CapillaryDB-1510.Kawai, Ishida, et al., 199160. m/0.25 mm/0.25 μm; Program: not specified
CapillaryMethyl Silicone527.Zenkevich and Kuznetsova, 1990Program: not specified
CapillaryCP Sil 8 CB530.Weller and Wolf, 198940. m/0.25 mm/0.25 μm, He; Program: 30 0C (1 min) 15 0C/min -> 45 0C 3 0C/min -> 120 0C
CapillaryOV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc.524.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryOV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc.524.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryOV-1515.Ramsey and Flanagan, 1982Program: not specified

Normal alkane RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryDB-Wax60.953.Shimadzu, 2003, 250. m/0.32 mm/1. μm, He

Normal alkane RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax944.Shimadzu, 201230. m/0.32 mm/0.50 μm, Helium, 4. K/min; Tstart: 40. C; Tend: 260. C
CapillaryDB-Wax932.Rochat, Egger, et al., 200930. m/0.25 mm/0.25 μm, Helium, 60. C @ 3. min, 8. K/min, 200. C @ 9.5 min
CapillaryDB-Wax937.Rochat, Egger, et al., 200930. m/0.25 mm/0.25 μm, Helium, 60. C @ 3. min, 8. K/min, 200. C @ 9.5 min
CapillaryDB-Wax944.Shimadzu Corporation, 200330. m/0.32 mm/0.5 μm, He, 4. K/min; Tstart: 40. C; Tend: 260. C
CapillaryDB-Wax933.Fu, Yoon, et al., 200230. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 8. K/min, 250. C @ 5. min
CapillaryDB-Wax919.Duque, Bonilla, et al., 200130. m/0.25 mm/0.25 μm, Helium, 4. K/min, 220. C @ 30. min; Tstart: 25. C
CapillaryDB-Wax925.Takeoka, Flath, et al., 198860. m/0.25 mm/0.25 μm, H2, 30. C @ 2. min, 2. K/min; Tend: 180. C
CapillaryDB-Wax928.Takeoka, Flath, et al., 198860. m/0.25 mm/0.25 μm, H2, 30. C @ 2. min, 2. K/min; Tend: 180. C

Normal alkane RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillarySupelcowax 10912.Soria, Martinez-Castro, et al., 200850. m/0.25 mm/0.25 μm, Helium; Program: 45 0C (15 min) 3 0C/min -> 75 0C 5 0C/min -> 180 0C (10 min)
CapillarySupelcowax-10927.Berard, Bianchi, et al., 200730. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 6C/min => 60C => 4C/min => 160C => 20C/min => 200C(1min)
CapillarySupelcowax-10933.Berard, Bianchi, et al., 200730. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 6C/min => 60C => 4C/min => 160C => 20C/min => 200C(1min)
CapillaryPolyethylene Glycol914.Zenkevich, Korolenko, et al., 1995Program: not specified
CapillaryCarbowax 20M917.Ramsey and Flanagan, 1982Program: not specified

References

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Manion, 2002
Manion, J.A., Evaluated Enthalpies of Formation of the Stable Closed Shell C1 and C2 Chlorinated Hydrocarbons, J. Phys. Chem. Ref. Data, 2002, 31, 1, 123-172, https://doi.org/10.1063/1.1420703 . [all data]

Lacher, Amador, et al., 1967
Lacher, J.R.; Amador, A.; Park, J.D., Reaction heats of organic compounds. Part 5.-Heats of hydrogenation of dichloromethane, 1,1- and 1,2-dichloroethane and 1,2-dichloropropane, Trans. Faraday Soc., 1967, 63, 1608-1611. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Born, Ingemann, et al., 2000
Born, M.; Ingemann, S.; Nibbering, N.M.M., Thermochemical properties of halogen-substituted methanes, methyl radicals, and carbenes in the gas phase, Int. J. Mass Spectrom., 2000, 194, 2-3, 103-113, https://doi.org/10.1016/S1387-3806(99)00125-6 . [all data]

Bohme, Lee-Ruff, et al., 1972
Bohme, D.K.; Lee-Ruff, E.; Young, L.B., Acidity order of selected bronsted acids in the gas phase at 300K, J. Am. Chem. Soc., 1972, 94, 5153. [all data]

Poutsma, Paulino, et al., 1997
Poutsma, J.C.; Paulino, J.A.; Squires, R.R., Absolute Heats of Formation of CHCl, CHF, and CClF. A Gas-Phase Experimental and G2 Theoretical Study., J. Phys. Chem. A, 1997, 101, 29, 5327, https://doi.org/10.1021/jp970778f . [all data]

Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria, J. Am. Chem. Soc., 1984, 106, 517. [all data]

Hiraoka, Mizuno, et al., 2001
Hiraoka, K.; Mizuno, T.; Iino, T.; Eguchi, D.; Yamabe, S., Characteristic changes of bond energies for gas-phase cluster ions of halide ions with methane and chloromethanes, J. Phys. Chem. A, 2001, 105, 20, 4887-4893, https://doi.org/10.1021/jp010143n . [all data]

Dougherty, Dalton, et al., 1974
Dougherty, R.C.; Dalton, J.; Roberts, J.D., SN2 reactions in the gas phase: Structure of the transition state, Org. Mass Spectrom., 1974, 8, 77. [all data]

Kebarle, 1977
Kebarle, P., Ion Thermochemistry and Solvation from Gas Phase Ion Equilibria, Ann. Rev. Phys. Chem., 1977, 28, 1, 445, https://doi.org/10.1146/annurev.pc.28.100177.002305 . [all data]

Larson and McMahon, 1987
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. The energetics of interaction between cyanide ion and bronsted acids, J. Am. Chem. Soc., 1987, 109, 6230. [all data]

Payzant, Yamdagni, et al., 1971
Payzant, J.D.; Yamdagni, R.; Kebarle, P., Hydration of CN-, NO2-, NO3-, and HO- in the gas phase, Can. J. Chem., 1971, 49, 3308. [all data]

Sharma, Meza de Hojer, et al., 1985
Sharma, D.M.S.; Meza de Hojer, S.; Kebarle, P., Stabilities of halonium ions from a study of gas-phase equilibria R+ + XR' = (RXR')+, J. Am. Chem. Soc., 1985, 107, 13, 3757, https://doi.org/10.1021/ja00299a002 . [all data]

Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L., Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases, J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050 . [all data]

Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P., Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n, J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013 . [all data]

Yang and Yang, 1992
Yang, P.-F.; Yang, K.G., J. Am. Chem. Soc., 1992, 114, 6937. [all data]

Cacace, de Petris, et al., 1999
Cacace, F.; de Petris, G.; Pepi, F.; Rosi, M.; Troiani, A., Gaseous [H3C-Cl-Cl](+) ions from the reaction of methane with Cl-3(+), the first example of a new dihalogenation process: Formation and characterization of CH3Cl2+ isomers by experimental and theoretical methods, Chemistry - A European Journal, 1999, 5, 2750. [all data]

Von Niessen, Asbrink, et al., 1982
Von Niessen, W.; Asbrink, L.; Bieri, G., 30.4 nm He(II) Photoelectron spectra of organic molecules. Part VI. Halogeno-compounds (C,H,X: X = Cl, Br, I), J. Electron Spectrosc. Relat. Phenom., 1982, 26, 173. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Werner, Tsai, et al., 1974
Werner, A.S.; Tsai, B.P.; Baer, T., Photoionization study of the ionization potentials fragmentation paths of the chlorinated methanes carbon tetrabromide, J. Chem. Phys., 1974, 60, 3650. [all data]

Lossing, 1972
Lossing, F.P., Free radicals by mass spectrometry. XLIV. Ionization potentials bond dissociation energies for chloro-and fluoromethyl radicals, Bull. Soc. Chim. Belg., 1972, 81, 125. [all data]

Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D., Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation, J. Chem. Phys., 1969, 50, 654. [all data]

Cermak, 1968
Cermak, V., Penning ionization electron spectroscopy. I. Determination of ionization potentials of polyatomic molecules, Collection Czech. Chem. Commun., 1968, 33, 2739. [all data]

Watanabe, 1957
Watanabe, K., Ionization potentials of some molecules, J. Chem. Phys., 1957, 26, 542. [all data]

Dixon, Murrell, et al., 1971
Dixon, R.N.; Murrell, J.N.; Narayan, B., The photoelectron spectra of the halomethanes, Mol. Phys., 1971, 20, 611. [all data]

Reed and Snedden, 1956
Reed, R.I.; Snedden, W., Studies in electron impact methods. Part 6.-The formation of the methine and carbon ions, J. Chem. Soc. Faraday Trans., 1956, 55, 876. [all data]

Haney and Franklin, 1968
Haney, M.A.; Franklin, J.L., Correlation of excess energies of electron-impact dissociations with the translational energies of the products, J.Chem. Phys., 1968, 48, 4093. [all data]

Holmes, Lossing, et al., 1988
Holmes, J.L.; Lossing, F.P.; McFarlane, R.A., Stabilization energy and positional effects in halogen-substituted alkyl ions., Int. J. Mass Spectrom. Ion Phys., 1988, 86, 209. [all data]

Harrison and Shannon, 1962
Harrison, A.G.; Shannon, T.W., An electron impact study of chloromethyl and dichloromethyl derivatives, Can. J. Chem., 1962, 40, 1730. [all data]

Martin, Lampe, et al., 1966
Martin, R.H.; Lampe, F.W.; Taft, R.W., An electron-impact study of ionization and dissociation in methoxy- and halogen- substituted methanes, J. Am. Chem. Soc., 1966, 88, 1353. [all data]

DeCorpo, Bafus, et al., 1971
DeCorpo, J.J.; Bafus, D.A.; Franklin, J.L., Enthalpies of formation of the monohalomethyl radicals from mass spectrometric studies of the dihalomethanes, J. Chem. Thermodyn., 1971, 3, 125. [all data]

Franklin and Haney, 1970
Franklin, J.L.; Haney, M.A., Energy distribution in ionic decomposition processes, Recent Developments in Mass Spectroscopy, ed. K. Ogata and T. Hayakawa Baltimore Univ. Park Press, Baltimore, MD, 1970, 909. [all data]

Wang, Liu, et al., 2005
Wang, Y.; Liu, J.; Li, N.; Shi, G.; Jiang, G.; Ma, W., Preliminary study of the retention behavior for different compounds using cryogenic chromatography at different initial temperatures, Microchem. J., 2005, 81, 2, 184-190, https://doi.org/10.1016/j.microc.2005.02.003 . [all data]

Dallos, Sisak, et al., 2000
Dallos, A.; Sisak, A.; Kulcsár, Z.; Kováts, E., Pair-wise interactions by gas chromatography VII. Interaction free enthalpies of solutes with secondary alcohol groups, J. Chromatogr. A, 2000, 904, 2, 211-242, https://doi.org/10.1016/S0021-9673(00)00908-0 . [all data]

Annino and Villalobos, 1999
Annino, R.; Villalobos, R., A strategy for the simplification and solution of complex chromatographic analysis problems utilizing two-dimensional mapping of retention indexes followed by computer modeling of heart cuts from serially coupled columns containing different stationary phases, J. Hi. Res. Chromatogr., 1999, 22, 10, 589-593. [all data]

Reddy, Dutoit, et al., 1992
Reddy, K.S.; Dutoit, J.-Cl.; Kovats, E. sz., Pair-wise interactions by gas chromatography. I. Interaction free enthalpies of solutes with non-associated primary alcohol groups, J. Chromatogr., 1992, 609, 1-2, 229-259, https://doi.org/10.1016/0021-9673(92)80167-S . [all data]

Dutoit, 1991
Dutoit, J., Gas chromatographic retention behaviour of some solutes on structurally similar polar and non-polar stationary phases, J. Chromatogr., 1991, 555, 1-2, 191-204, https://doi.org/10.1016/S0021-9673(01)87179-X . [all data]

Guan, Kiraly, et al., 1989
Guan, Y.; Kiraly, J.; Rijks, J.A., Interactive retention index database for compound identification in temperature-programmed capillary gas chromatography, J. Chromatogr., 1989, 472, 129-143, https://doi.org/10.1016/S0021-9673(00)94101-3 . [all data]

Castello and Gerbino, 1988
Castello, G.; Gerbino, T.C., Effect of Temperature on the Gas Chromatographic Separation of Halogenated Compounds on Polar and Non-Polar Stationary Phases, J. Chromatogr., 1988, 437, 33-45, https://doi.org/10.1016/S0021-9673(00)90369-8 . [all data]

Pacáková, Vojtechová, et al., 1988
Pacáková, V.; Vojtechová, H.; Coufal, P., Reaction gas chromatography: study of the photodecomposition of halogenated hydrocarbons, Chromatographia, 1988, 25, 7, 621-626, https://doi.org/10.1007/BF02327659 . [all data]

Winskowski, 1983
Winskowski, J., Gaschromatographische Identifizierung von Stoffen anhand von Indexziffem und unterschiedlichen Detektoren, Chromatographia, 1983, 17, 3, 160-165, https://doi.org/10.1007/BF02271041 . [all data]

Riedo, Fritz, et al., 1976
Riedo, F.; Fritz, D.; Tarján, G.; Kováts, E.Sz., A tailor-made C87 hydrocarbon as a possible non-polar standard stationary phase for gas chromatography, J. Chromatogr., 1976, 126, 63-83, https://doi.org/10.1016/S0021-9673(01)84063-2 . [all data]

Vernon, 1971
Vernon, F., An investigation into hydrogen bonding in gas-liquid chromatography, J. Chromatogr., 1971, 63, 249-257, https://doi.org/10.1016/S0021-9673(01)85637-5 . [all data]

von Kováts, 1958
von Kováts, E., 206. Gas-chromatographische Charakterisierung organischer Verbindungen. Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone, Helv. Chim. Acta, 1958, 41, 7, 1915-1932, https://doi.org/10.1002/hlca.19580410703 . [all data]

Rembold, Wallner, et al., 1989
Rembold, H.; Wallner, P.; Nitz, S.; Kollmannsberger, H.; Drawert, F., Volatile components of chickpea (Cicer arietinum L.) seed, J. Agric. Food Chem., 1989, 37, 3, 659-662, https://doi.org/10.1021/jf00087a018 . [all data]

Ohnishi and Shibamoto, 1984
Ohnishi, S.; Shibamoto, T., Volatile compounds from heated beef fat and beef fat with glycine, J. Agric. Food Chem., 1984, 32, 5, 987-992, https://doi.org/10.1021/jf00125a008 . [all data]

Minyard, Tumlinson, et al., 1967
Minyard, J.P.; Tumlinson, J.H.; Thompson, A.C.; Hedin, P.A., Constituents of the cotton bud. The carbonyl compounds, J. Agric. Food Chem., 1967, 15, 3, 517-524, https://doi.org/10.1021/jf60151a021 . [all data]

Castello, Vezzani, et al., 1991
Castello, G.; Vezzani, S.; Gerbino, T., Gas chromatographic separation and automatic identification of complex mixtures of organic solvents in indrustrial wates, J. Chromatogr., 1991, 585, 2, 273-280, https://doi.org/10.1016/0021-9673(91)85088-W . [all data]

Goebel, 1982
Goebel, K.-J., Gaschromatographische Identifizierung Niedrig Siedender Substanzen Mittels Retentionsindices und Rechnerhilfe, J. Chromatogr., 1982, 235, 1, 119-127, https://doi.org/10.1016/S0021-9673(00)95793-5 . [all data]

Shimadzu, 2003
Shimadzu, Gas chromatography analysis of organic solvents using capillary columns (No. 2), 2003, retrieved from http://www.shimadzu.com/apps/form.cfm. [all data]

Shimoda and Shibamoto, 1990
Shimoda, M.; Shibamoto, T., Isolation and identification of headspace volatiles from brewed coffee with an on-column GC/MS method, J. Agric. Food Chem., 1990, 38, 3, 802-804, https://doi.org/10.1021/jf00093a045 . [all data]

Tatsuka, Suekane, et al., 1990
Tatsuka, K.; Suekane, S.; Sakai, Y.; Sumitani, H., Volatile constituents of kiwi fruit flowers: simultaneous distillation and extraction versus headspace sampling, J. Agric. Food Chem., 1990, 38, 12, 2176-2180, https://doi.org/10.1021/jf00102a015 . [all data]

Umano and Shibamoto, 1988
Umano, K.; Shibamoto, T., A new method of headspace sampling: grapefruit volatiles in Flavors and Fragrances: A World Perspective. Proceedings of the 10th International Congress of Essential Oils, Fragrances and Flavors, Lawrence,B.M.; Mookherjee,B.D.; Willis,B.J., ed(s)., Elsevier, New York, 1988, 981-998. [all data]

Umano, Shoji, et al., 1986
Umano, K.; Shoji, A.; Hagi, Y.; Shibamoto, T., Volatile constituents of peel of quince fruit, Cydonia oblonga Miller, J. Agric. Food Chem., 1986, 34, 4, 593-596, https://doi.org/10.1021/jf00070a003 . [all data]

Censullo, Jones, et al., 2003
Censullo, A.C.; Jones, D.R.; Wills, M.T., Speciation of the volatile organic compounds (VOCs) in solventborne aerosol coatings by solid phase microextraction-gas chromatography, J. Coat. Technol., 2003, 75, 936, 47-53, https://doi.org/10.1007/BF02697922 . [all data]

Xu, van Stee, et al., 2003
Xu, X.; van Stee, L.L.P.; Williams, J.; Beens, J.; Adahchour, M.; Vreuls, R.J.J.; Brinkman, U.A.Th.; Lelieveld, J., Comprehensive two-dimensional gas chromatography (GC×GC) measurements of volatile organic compounds in the atmosphere, Atmos. Chem. Phys., 2003, 3, 3, 665-682, https://doi.org/10.5194/acp-3-665-2003 . [all data]

Helmig, Pollock, et al., 1996
Helmig, D.; Pollock, W.; Greenberg, J.; Zimmerman, P., Gas chromatography mass spectrometry analysis of volatile organic trace gases at Mauna Loa Observatory, Hawaii, J. Geophys. Res., 1996, 101, D9, 14697-14710, https://doi.org/10.1029/96JD00212 . [all data]

Ott, Fay, et al., 1997
Ott, A.; Fay, L.B.; Chaintreau, A., Determination and origin of the aroma impact compounds of yogurt flavor, J. Agric. Food Chem., 1997, 45, 3, 850-858, https://doi.org/10.1021/jf960508e . [all data]

Bianchi, Careri, et al., 2007
Bianchi, F.; Careri, M.; Mangia, A.; Musci, M., Retention indices in the analysis of food aroma volatile compounds in temperature-programmed gas chromatography: Database creation and evaluation of precision and robustness, J. Sep. Sci., 2007, 39, 4, 563-572, https://doi.org/10.1002/jssc.200600393 . [all data]

Shimadzu, 2003, 2
Shimadzu, Gas chromatography analysis of organic solvents using capillary columns (No. 3), 2003, retrieved from http://www.shimadzu.com/apps/form.cfm. [all data]

Dufka, Malinsky, et al., 1971
Dufka, O.; Malinsky, J.; Vladyka, J., Sorpcni materialy pro plynovou chromatographii - III, Chemicky promysl., 1971, 21/46, 9, 459-463. [all data]

Kotowska, Zalikowski, et al., 2012
Kotowska, U.; Zalikowski, M.; Isidorov, V.A., HS-SPME/GC-MS analysis of volatile and semi-volatile organic compounds emitted from municipal sewage sludge, Environ. Monit. Asses., 2012, 184, 5, 2893-2907, https://doi.org/10.1007/s10661-011-2158-8 . [all data]

Vasta, Ratel, et al., 2007
Vasta, V.; Ratel, J.; Engel, E., Mass Spectrometry Analysis of Volatile Compounds in Raw Meat for the Authentication of the Feeding Background of Farm Animals, J. Agric. Food Chem., 2007, 55, 12, 4630-4639, https://doi.org/10.1021/jf063432n . [all data]

Pérès, Begnaud, et al., 2002
Pérès, C.; Begnaud, F.; Berdagué, J.-L., Fast characterization of Camembert cheeses by static headspace-mass spectrometry, Sens. Actuators, 2002, 87, 3, 491-497, https://doi.org/10.1016/S0925-4005(02)00298-8 . [all data]

Health Safety Executive, 2000
Health Safety Executive, MDHS 96 Volatile organic compounds in air - Laboratory method using pumed solid sorbent tubes, solvent desorption and gas chromatography in Methods for the Determination of Hazardous Substances (MDHS) guidance, Crown, Colegate, Norwich, 2000, 1-24, retrieved from http://www.hse.gov.uk/pubns/mdhs/pdfs/mdhs96.pdf. [all data]

King, Matthews, et al., 1995
King, M.-F.; Matthews, M.A.; Rule, D.C.; Field, R.A., Effect of beef packaging method on volatile compounds developed by oven roasting or microwave cooking, J. Agric. Food Chem., 1995, 43, 3, 773-778, https://doi.org/10.1021/jf00051a039 . [all data]

Habu, Flath, et al., 1985
Habu, T.; Flath, R.A.; Mon, T.R.; Morton, J.F., Volatile components of Rooibos tea (Aspalathus linearis), J. Agric. Food Chem., 1985, 33, 2, 249-254, https://doi.org/10.1021/jf00062a024 . [all data]

Donetzhuber, Johansson, et al., 1976
Donetzhuber, A.; Johansson, K.; Sandstroem, C., Gas phase characterization of wood, pulp, and paper, Appl. Polymer Symp., 1976, 28, 889-901. [all data]

Rotsatschakul, Visesanguan, et al., 2009
Rotsatschakul, P.; Visesanguan, W.; Smitinont, T.; Chaiseri, S., Changes in volatile compounds during fermentation of nham (Thai fermented sausage), Int. Food Res. J., 2009, 16, 391-414. [all data]

Zenkevich, Eliseenkov, et al., 2006
Zenkevich, I.G.; Eliseenkov, E.V.; Kasatochkin, A.N., Application of Retention Indices in GC-MS Identification of Halogenated Organic Compounds, Mass Spectromery (Rus.), 2006, 3, 2, 131-140. [all data]

Blunden, Aneja, et al., 2005
Blunden, J.; Aneja, V.P.; Lonneman, W.A., Characterization of non-methane volatile organic compounds at swine facilities in eastern North Carolina, Atm. Environ., 2005, 39, 36, 6707-6718, https://doi.org/10.1016/j.atmosenv.2005.03.053 . [all data]

Zenkevich, 1998
Zenkevich, I.G., Reciprocally Unambiguous Conformity Between GC Retention Indices and Boiling Points within Two- and Multidimensional Taxonomic Groups of Organic Compounds, J. Hi. Res. Chromatogr., 1998, 21, 10, 565-568, https://doi.org/10.1002/(SICI)1521-4168(19981001)21:10<565::AID-JHRC565>3.0.CO;2-6 . [all data]

Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D., Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]

Sorimachi, Tanabe, et al., 1995
Sorimachi, J.; Tanabe, A.; Mitobe, H.; Kuniaki, K.; Masaaki, S., Programmed temperature retention indices for volatile organic compounds on headspace GC/MS analysis, Niigata-ken Eisei Kogai Kenkyusho Nenpo, 1995, 11, 75-79. [all data]

Zenkevich, Korolenko, et al., 1995
Zenkevich, I.G.; Korolenko, L.I.; Khralenkova, N.B., Desorption with solvent vapor as a method of sample preparation in the sorption preconcentration of organic-compounds from the air of a working area and from industrial-waste gases, J. Appl. Chem. USSR (Engl. Transl.), 1995, 50, 10, 937-944. [all data]

Ciccioli, Cecinato, et al., 1994
Ciccioli, P.; Cecinato, A.; Brancaleoni, E.; Brachetti, A.; Frattoni, M.; Sparapani, R., Composition and Distribution of Polar and Non-Polar VOCs in Urban, Rural, Forest and Remote Areas, Eur Commission EUR, 1994, 549-568. [all data]

Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J., Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning, Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111 . [all data]

Kawai, Ishida, et al., 1991
Kawai, T.; Ishida, Y.; Kakiuchi, H.; Ikeda, N.; Higashida, T.; Nakamura, S., Flavor components of dried squid, J. Agric. Food Chem., 1991, 39, 4, 770-777, https://doi.org/10.1021/jf00004a031 . [all data]

Zenkevich and Kuznetsova, 1990
Zenkevich, I.G.; Kuznetsova, L.M., Logic Criteria on Prediction of Gas Chromatographic Retention Indices from Physico-Chemical Properties of Organic Compounds, Dokl. Akad. Nauk SSSR, 1990, 315, 4, 881-885. [all data]

Weller and Wolf, 1989
Weller, J.-P.; Wolf, M., Massenspektroskopie und Headspace-GC, Beitr. Gerichtl. Med., 1989, 47, 525-532. [all data]

Waggott and Davies, 1984
Waggott, A.; Davies, I.W., Identification of organic pollutants using linear temperature programmed retention indices (LTPRIs) - Part II, 1984, retrieved from http://dwi.defra.gov.uk/research/completed-research/reports/dwi0383.pdf. [all data]

Ramsey and Flanagan, 1982
Ramsey, J.D.; Flanagan, R.J., Detection and Identification of Volatile Organic Compounds in Blood by Headspace Gas Chromatography as an Aid to the Diagnosis of Solvent Abuse, J. Chromatogr., 1982, 240, 2, 423-444, https://doi.org/10.1016/S0021-9673(00)99622-5 . [all data]

Shimadzu, 2012
Shimadzu, Pharmaceutical Related, Analysis of pharmaceutical residual solvent (observation of separation) (1) - GC, 2012, retrieved from www.shimadzu.ru/applications/Applicationspdf/GC/Pharma/Pharmaceutical residual solvents GC.pdf. [all data]

Rochat, Egger, et al., 2009
Rochat, S.; Egger, J.; Chaintreau, A., Strategy for the identification of key odorants: application to shrimp aroma, J. Chromatogr. A, 2009, 1216, 36, 6424-6432, https://doi.org/10.1016/j.chroma.2009.07.014 . [all data]

Shimadzu Corporation, 2003
Shimadzu Corporation, Analysis of pharmaceutical residual solvent (observation of separation), 2003, retrieved from http://www.shimadzu.com.br/analitica/aplicacoes/book/pharm69.pdf. [all data]

Fu, Yoon, et al., 2002
Fu, S.-G.; Yoon, Y.; Basemore, R., Aroma-actie components in fermented bamboo shoots, J. Agric. Food Chem., 2002, 50, 3, 549-554, https://doi.org/10.1021/jf010883t . [all data]

Duque, Bonilla, et al., 2001
Duque, C.; Bonilla, A.; Bautista, E.; Zea, S., Exudation of low molecular wight compounds (thiobismethane, methyl isocyanide, amd methyl isothiocyanate) as a possible chemical defense mechanism in the marine sponge Ircinia felix, Biochem. Systematics Ecol., 2001, 29, 5, 459-467, https://doi.org/10.1016/S0305-1978(00)00081-8 . [all data]

Takeoka, Flath, et al., 1988
Takeoka, G.R.; Flath, R.A.; Güntert, M.; Jennings, W., Nectarine volatiles: vacuum steam distillation versus headspace sampling, J. Agric. Food Chem., 1988, 36, 3, 553-560, https://doi.org/10.1021/jf00081a037 . [all data]

Soria, Martinez-Castro, et al., 2008
Soria, A.C.; Martinez-Castro, I.; Sanz, J., Some aspects of dynamic headspace analysis of volatile components in honey, Foog Res. International, 2008, 41, 8, 838-848, https://doi.org/10.1016/j.foodres.2008.07.010 . [all data]

Berard, Bianchi, et al., 2007
Berard, J.; Bianchi, F.; Careri, M.; Chatel, A.; Mangia, A.; Musci, M., Characterization of the volatile fraction and of free fatty acids of Fontina Valle d'Aosta, a protected designation of origin Italian cheese, Food Chem., 2007, 105, 1, 293-300, https://doi.org/10.1016/j.foodchem.2006.11.041 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Gas Chromatography, References