Acetaldehyde

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-40.80 ± 0.35kcal/molChydWiberg, Crocker, et al., 1991ALS

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
8.49250.Thermodynamics Research Center, 19971 bar. Recommended heat capacity and entropy values are in good agreement with statistically calculated values of [ Pitzer K.S., 1949, 66LIP/WAG]. Discrepancies with results of calculation [ Della Vedova C.O., 1991] amount to 1.4 J/mol*K for S(300 K) and 3.4 J/mol*K for Cp(900 K). S(298.15 K) value calculated by high accuracy ab initio method [ East A.L.L., 1997] is in close agreement with selected one. Please also see Chao J., 1980, Chao J., 1986.; GT
9.625100.
10.34150.
11.11200.
12.62273.15
13.22 ± 0.02298.15
13.27300.
15.84400.
18.33500.
20.54600.
22.48700.
24.156800.
25.619900.
26.8861000.
27.9831100.
28.9341200.
29.7561300.
30.4711400.
31.0921500.
32.3181750.
33.2072000.
33.8622250.
34.3572500.
34.7392750.
35.0363000.

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
13.14298.1Chao J., 1986These ideal gas heat capacity values were obtained from the observed values of [ Coleman C.F., 1949] using the second virial coefficient data from [ Pitzer K.S., 1949].; GT
13.87322.9
14.92372.7
16.12422.4

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-46.95 ± 0.35kcal/molChydWiberg, Crocker, et al., 1991ALS
Quantity Value Units Method Reference Comment
liquid28.04cal/mol*KN/ALebedev and Vasil'ev, 1988DH

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
21.28298.15Lebedev and Vasil'ev, 1988T = 15 to 300 K.; DH
22.99273.Connor, Elving, et al., 1947DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
DRB - Donald R. Burgess, Jr.
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis

Quantity Value Units Method Reference Comment
Tboil294.0 ± 0.8KAVGN/AAverage of 25 out of 27 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus151. ± 3.KAVGN/AAverage of 15 values; Individual data points
Quantity Value Units Method Reference Comment
Tc466.0KN/ATeja and Anselme, 1990Uncertainty assigned by TRC = 2. K; TRC
Tc461.KN/AHollmann, 1903Uncertainty assigned by TRC = 2. K; TRC
Tc454.7KN/AVan der Waals, 1881Uncertainty assigned by TRC = 6. K; TRC
Quantity Value Units Method Reference Comment
ρc6.49mol/lN/ATeja and Anselme, 1990Uncertainty assigned by TRC = 0.1 mol/l; TRC
Quantity Value Units Method Reference Comment
Δvap6.243kcal/molN/AMajer and Svoboda, 1985 
Δvap6.14kcal/molN/AWiberg, Crocker, et al., 1991DRB
Δvap6.43kcal/molEBBull, Seregrennaja, et al., 1963Based on data from 293. to 377. K. See also Verevkin, Krasnykh, et al., 2003.; AC

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
6.157293.3N/AMajer and Svoboda, 1985 
6.21308.AStephenson and Malanowski, 1987Based on data from 293. to 377. K.; AC
6.60283.AStephenson and Malanowski, 1987Based on data from 272. to 294. K. See also Dykyj, 1970.; AC
6.29308.N/AKim and Kim, 1977Based on data from 293. to 345. K.; AC
6.45307.N/AColes and Popper, 1950Based on data from 273. to 307. K.; AC
6.15 ± 0.05294.VColeman and DeVries, 1949ALS

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
293.4 to 377.53.68068822.894-69.899Bull, Seregrennaja, et al., 1963, 2Coefficents calculated by NIST from author's data.
272.9 to 307.65.18261637.08322.317Coles and Popper, 1950Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Reference Comment
0.5521149.78Lebedev and Vasil'ev, 1988DH
0.411242.9Domalski and Hearing, 1996AC

Entropy of fusion

ΔfusS (cal/mol*K) Temperature (K) Reference Comment
3.688149.78Lebedev and Vasil'ev, 1988DH

Entropy of fusion

ΔfusS (cal/mol*K) Temperature (K) Reference Comment
3.685149.8Domalski and Hearing, 1996CAL
1.69242.9

Enthalpy of phase transition

ΔHtrs (kcal/mol) Temperature (K) Initial Phase Final Phase Reference Comment
0.4101242.9liquidliquidLebedev and Vasil'ev, 1988Lambda type transition.; DH

Entropy of phase transition

ΔStrs (cal/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
1.76242.9liquidliquidLebedev and Vasil'ev, 1988Lambda; DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C2H3O- + Hydrogen cation = Acetaldehyde

By formula: C2H3O- + H+ = C2H4O

Quantity Value Units Method Reference Comment
Δr366.42 ± 0.81kcal/molD-EAMead, Lykke, et al., 1984gas phase; Uncertainty: 6 millical/mol (0.26 micro-eV).Dipolebound state at ca. 14.3 cal/mol (5 cm-1); B
Δr365.8 ± 2.2kcal/molG+TSBartmess, Scott, et al., 1979gas phase; Acid: ethanal. The enol is 9.6 kcal/mol more acidic: Holmes and Lossing, 1982; value altered from reference due to change in acidity scale; B
Δr366.5 ± 2.9kcal/molG+TSCumming and Kebarle, 1978gas phase; B
Quantity Value Units Method Reference Comment
Δr359.6 ± 1.2kcal/molH-TSMead, Lykke, et al., 1984gas phase; Uncertainty: 6 millical/mol (0.26 micro-eV).Dipolebound state at ca. 14.3 cal/mol (5 cm-1); B
Δr359.0 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; Acid: ethanal. The enol is 9.6 kcal/mol more acidic: Holmes and Lossing, 1982; value altered from reference due to change in acidity scale; B
Δr359.7 ± 2.0kcal/molIMRECumming and Kebarle, 1978gas phase; B

C2H5O+ + Acetaldehyde = (C2H5O+ • Acetaldehyde)

By formula: C2H5O+ + C2H4O = (C2H5O+ • C2H4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr29.0kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr26.2cal/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr21.2kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

C2H7O+ + Acetaldehyde = (C2H7O+ • Acetaldehyde)

By formula: C2H7O+ + C2H4O = (C2H7O+ • C2H4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr31.2kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr26.9cal/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr23.2kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

C2H5O+ + Acetaldehyde = (C2H5O+ • Acetaldehyde)

By formula: C2H5O+ + C2H4O = (C2H5O+ • C2H4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr31.9kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M
Quantity Value Units Method Reference Comment
Δr29.0cal/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M
Quantity Value Units Method Reference Comment
Δr23.3kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M

C2H3O- + Hydrogen cation = Acetaldehyde

By formula: C2H3O- + H+ = C2H4O

Quantity Value Units Method Reference Comment
Δr393.19 ± 0.96kcal/molD-EANimlos, Soderquist, et al., 1989gas phase; B
Δr391.0 ± 2.1kcal/molG+TSDePuy, Bierbaum, et al., 1985gas phase; B
Δr387.0 ± 8.0kcal/molCIDTGraul and Squires, 1990gas phase; B
Δr<382.00kcal/molCIDTGraul and Squires, 1988gas phase; B
Quantity Value Units Method Reference Comment
Δr385.4 ± 1.1kcal/molH-TSNimlos, Soderquist, et al., 1989gas phase; B
Δr383.3 ± 2.0kcal/molIMRBDePuy, Bierbaum, et al., 1985gas phase; B
Δr<374.25 ± 0.60kcal/molH-TSGraul and Squires, 1988gas phase; B

Chlorine anion + Acetaldehyde = (Chlorine anion • Acetaldehyde)

By formula: Cl- + C2H4O = (Cl- • C2H4O)

Quantity Value Units Method Reference Comment
Δr14.4 ± 2.0kcal/molIMRELarson and McMahon, 1984gas phase; B,M
Quantity Value Units Method Reference Comment
Δr21.7cal/mol*KN/ALarson and McMahon, 1984gas phase; switching reaction(Cl-)t-C4H9F, Entropy change calculated or estimated; Larson and McMahon, 1984, 2; M
Quantity Value Units Method Reference Comment
Δr7.9 ± 2.0kcal/molIMRELarson and McMahon, 1984gas phase; B,M

MeCO2 anion + Acetaldehyde = (MeCO2 anion • Acetaldehyde)

By formula: C2H3O2- + C2H4O = (C2H3O2- • C2H4O)

Bond type: Hydrogen bonds of deprotonated acids to ketones/

Quantity Value Units Method Reference Comment
Δr16.3 ± 1.0kcal/molTDAsMeot-ner, 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Δr21.7cal/mol*KPHPMSMeot-ner, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr9.8 ± 2.0kcal/molTDAsMeot-ner, 1988gas phase; B

Hydrogen + Acetaldehyde = Ethanol

By formula: H2 + C2H4O = C2H6O

Quantity Value Units Method Reference Comment
Δr-19.44 ± 0.34kcal/molChydWiberg, Crocker, et al., 1991liquid phase; solvent: Triglyme; ALS
Δr-16.51 ± 0.10kcal/molChydDolliver, Gresham, et al., 1938gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -16.8 ± 0.1 kcal/mol; At 355 °K; ALS

(C2H5O- • 4294967295Acetaldehyde) + Acetaldehyde = C2H5O-

By formula: (C2H5O- • 4294967295C2H4O) + C2H4O = C2H5O-

Quantity Value Units Method Reference Comment
Δr37.7 ± 1.0kcal/molN/ARamond, Davico, et al., 2000gas phase; B
Δr39.5 ± 2.2kcal/molTherBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B

Nitric oxide anion + Acetaldehyde = (Nitric oxide anion • Acetaldehyde)

By formula: NO- + C2H4O = (NO- • C2H4O)

Quantity Value Units Method Reference Comment
Δr39.1kcal/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Lithium ion (1+) + Acetaldehyde = (Lithium ion (1+) • Acetaldehyde)

By formula: Li+ + C2H4O = (Li+ • C2H4O)

Quantity Value Units Method Reference Comment
Δr41.3kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, Keesee and Castleman, 1986 from Berman and Beauchamp, 1986; Dzidic and Kebarle, 1970 interpolated; M

3Acetaldehyde = Paraldehyde

By formula: 3C2H4O = C6H12O3

Quantity Value Units Method Reference Comment
Δr-21. ± 1.kcal/molCmKrasnov, Ozherel'eva, et al., 1983liquid phase; solvent: Nonaqueous; Trimerization; ALS
Δr-23.4kcal/molEqkBusfield, Lee, et al., 1973gas phase; ALS

Magnesium ion (1+) + Acetaldehyde = (Magnesium ion (1+) • Acetaldehyde)

By formula: Mg+ + C2H4O = (Mg+ • C2H4O)

Quantity Value Units Method Reference Comment
Δr63. ± 5.kcal/molICROperti, Tews, et al., 1988gas phase; switching reaction,Thermochemical ladder(Mg+)CH3OH; M

Ethane, 1,1-dimethoxy- + Water = 2Methyl Alcohol + Acetaldehyde

By formula: C4H10O2 + H2O = 2CH4O + C2H4O

Quantity Value Units Method Reference Comment
Δr8.622 ± 0.015kcal/molCmWiberg, 1980liquid phase; solvent: Water; Hydrolysis; ALS

1,1-Dimethoxyethane + Water = 2Methyl Alcohol + Acetaldehyde

By formula: C4H10O2 + H2O = 2CH4O + C2H4O

Quantity Value Units Method Reference Comment
Δr8.54 ± 0.07kcal/molCmBirley and Skinner, 1970liquid phase; Heat of hydrolysis; ALS

Ethane, 1,2-dimethoxy- + Water = 2Methyl Alcohol + Acetaldehyde

By formula: C4H10O2 + H2O = 2CH4O + C2H4O

Quantity Value Units Method Reference Comment
Δr8.6 ± 0.2kcal/molEqkWiberg, Morgan, et al., 1994liquid phase; ALS

2Methyl Alcohol + Acetaldehyde = Ethane, 1,2-dimethoxy- + Water

By formula: 2CH4O + C2H4O = C4H10O2 + H2O

Quantity Value Units Method Reference Comment
Δr-14.8 ± 0.3kcal/molCmWiberg, Morgan, et al., 1994gas phase; ALS

Acetaldehyde + Iodine = Hydrogen iodide + Acetyl iodide

By formula: C2H4O + I2 = HI + C2H3IO

Quantity Value Units Method Reference Comment
Δr0.7 ± 0.5kcal/molEqkWalsh and Benson, 1966gas phase; ALS

Water + Acetaldehyde, phenylhydrazone = Hydrazine, phenyl- + Acetaldehyde

By formula: H2O + C8H10N2 = C6H8N2 + C2H4O

Quantity Value Units Method Reference Comment
Δr-14.6kcal/molCmLandrieu, 1905solid phase; ALS

Paraldehyde = 3Acetaldehyde

By formula: C6H12O3 = 3C2H4O

Quantity Value Units Method Reference Comment
Δr23.4kcal/molEqkBusfield, Lee, et al., 1973gas phase; At 292-313 K; ALS

Sodium ion (1+) + Acetaldehyde = (Sodium ion (1+) • Acetaldehyde)

By formula: Na+ + C2H4O = (Na+ • C2H4O)

Quantity Value Units Method Reference Comment
Δr27.1 ± 0.8kcal/molCIDTArmentrout and Rodgers, 2000RCD

Silver ion (1+) + Acetaldehyde = (Silver ion (1+) • Acetaldehyde)

By formula: Ag+ + C2H4O = (Ag+ • C2H4O)

Quantity Value Units Method Reference Comment
Δr43.5 ± 4.5kcal/molRAKHo, Yang, et al., 1997RCD

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
14.5600.LN/A 
13.5700.MN/A 
9.8 QN/A missing citation give several references for the Henry's law constants but don't assign them to specific species.
17.5000.MN/AThe data from Table 1 by missing citation was used to redo the regression analysis. The data for acetone in their Table 2 is wrong.
11.6300.MN/A missing citation list effective values that take into account hydration of the aldehydes: kH = ([RCHO] + [RCH(OH)2]) / p(RCHO)
1.74500.XN/A 
13.5800.MN/A 
15. XN/AValue given here as quoted by missing citation.
17.4700.XN/A 
15. MButtery, Ling, et al., 1969 
15. XN/AValue given here as quoted by missing citation.

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Ion clustering data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C2H4O+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)10.229 ± 0.0007eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)183.7kcal/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity176.0kcal/molN/AHunter and Lias, 1998HL

Electron affinity determinations

EA (eV) Method Reference Comment
0.00035EFDDesfrancois, Abdoul-Carime, et al., 1994EA: 0.36 meV. Dipole-bound state.; B

Ionization energy determinations

IE (eV) Method Reference Comment
10.22PITraeger, 1985LBLHLM
10.22PITraeger, McLouglin, et al., 1982LBLHLM
10.14 ± 0.02EIEl-Sherbini, Allam, et al., 1981LLK
10.22PIJochims, Lohr, et al., 1978LLK
10.20PIStaley, Wieting, et al., 1977LLK
10.227 ± 0.005PEHernandez, Masclet, et al., 1977LLK
10.23EIHolmes, Terlouw, et al., 1976LLK
10.20PEMeeks, Arnett, et al., 1975LLK
10.20PEMcGlynn and Meeks, 1975LLK
10.20 ± 0.02PIWarneck, 1974LLK
10.21PETam, Yee, et al., 1974LLK
10.19SOgata, Kitayama, et al., 1974LLK
10.22 ± 0.01PIKrassig, Reinke, et al., 1974LLK
10.2298 ± 0.0007PIKnowles and Nicholson, 1974LLK
10.24 ± 0.02PEChadwick and Katrib, 1974LLK
10.22 ± 0.01PIPotapov and Sorokin, 1972LLK
10.22 ± 0.01PECocksey, Eland, et al., 1971LLK
10.20 ± 0.02PIMatthews and Warneck, 1969RDSH
10.20PEDewar and Worley, 1969RDSH
10.22 ± 0.01PIPotapov, Filyugina, et al., 1968RDSH
10.20 ± 0.03PIVilesov, 1960RDSH
10.25 ± 0.03PIHurzeler, Inghram, et al., 1958RDSH
10.21 ± 0.01PIWatanabe, 1957RDSH
10.20 ± 0.03PIVilesov and Terenin, 1957RDSH
10.2291 ± 0.0007SWalsh, 1946RDSH
10.24PIPECOJohnson, Powis, et al., 1982Vertical value; LBLHLM
10.3PEBieri, Asbrink, et al., 1982Vertical value; LBLHLM
10.23PEBenoit and Harrison, 1977Vertical value; LLK
10.9PERao, 1975Vertical value; LLK
10.26PEKimura, Katsumata, et al., 1975Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
CHO+11.78CH3PITraeger, 1985LBLHLM
CHO+11.79 ± 0.03CH3PIWarneck, 1974LLK
CHO+11.79 ± 0.03CH3PIMatthews and Warneck, 1969RDSH
CH2+15.08 ± 0.09?PIKrassig, Reinke, et al., 1974LLK
CH3+13.9 ± 0.1CHOPIPECOBombach, Stadelmann, et al., 1981LLK
CH3+14.08CO+HPIJochims, Lohr, et al., 1978LLK
CH3+14.11 ± 0.05CO+HPIWarneck, 1974LLK
CH3+14.08 ± 0.05CO+HPIKrassig, Reinke, et al., 1974LLK
CH3+14.53CHO?EIHaney and Franklin, 1969RDSH
CH4+12.61COPIJochims, Lohr, et al., 1978LLK
CH4+12.61 ± 0.06COPIKrassig, Reinke, et al., 1974LLK
CO+14.0 ± 0.1CH4EIShigorin, Filyugina, et al., 1966RDSH
CO+13.9 ± 0.1CH4EIDorman, 1965RDSH
C2H2O+13.06 ± 0.09H2?PIKrassig, Reinke, et al., 1974LLK
C2H2O+10.7 ± 0.1H2EIShigorin, Filyugina, et al., 1966RDSH
C2H3+14.17 ± 0.13OHPIKrassig, Reinke, et al., 1974LLK
C2H3O+10.67HPITraeger, McLouglin, et al., 1982LBLHLM
C2H3O+11.0 ± 0.1HEIBurgers and Holmes, 1982LBLHLM
C2H3O+10.50 ± 0.05HPIPECOBombach, Stadelmann, et al., 1981LLK
C2H3O+10.90HPIJochims, Lohr, et al., 1978LLK
C2H3O+10.82HPIStaley, Wieting, et al., 1977LLK
C2H3O+10.82 ± 0.03HPIWarneck, 1974LLK
C2H3O+10.90 ± 0.03HPIKrassig, Reinke, et al., 1974LLK
C2H3O+10.89 ± 0.03HPIPotapov and Sorokin, 1972LLK
C2H3O+10.89HPIPotapov, Filyugina, et al., 1968RDSH
C2H3O+10.75 ± 0.08HEIShigorin, Filyugina, et al., 1966RDSH
C2H3O+10.5 ± 0.2HEIDorman, 1965RDSH

De-protonation reactions

C2H3O- + Hydrogen cation = Acetaldehyde

By formula: C2H3O- + H+ = C2H4O

Quantity Value Units Method Reference Comment
Δr366.42 ± 0.81kcal/molD-EAMead, Lykke, et al., 1984gas phase; Uncertainty: 6 millical/mol (0.26 micro-eV).Dipolebound state at ca. 14.3 cal/mol (5 cm-1); B
Δr365.8 ± 2.2kcal/molG+TSBartmess, Scott, et al., 1979gas phase; Acid: ethanal. The enol is 9.6 kcal/mol more acidic: Holmes and Lossing, 1982; value altered from reference due to change in acidity scale; B
Δr366.5 ± 2.9kcal/molG+TSCumming and Kebarle, 1978gas phase; B
Quantity Value Units Method Reference Comment
Δr359.6 ± 1.2kcal/molH-TSMead, Lykke, et al., 1984gas phase; Uncertainty: 6 millical/mol (0.26 micro-eV).Dipolebound state at ca. 14.3 cal/mol (5 cm-1); B
Δr359.0 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; Acid: ethanal. The enol is 9.6 kcal/mol more acidic: Holmes and Lossing, 1982; value altered from reference due to change in acidity scale; B
Δr359.7 ± 2.0kcal/molIMRECumming and Kebarle, 1978gas phase; B

C2H3O- + Hydrogen cation = Acetaldehyde

By formula: C2H3O- + H+ = C2H4O

Quantity Value Units Method Reference Comment
Δr393.19 ± 0.96kcal/molD-EANimlos, Soderquist, et al., 1989gas phase; B
Δr391.0 ± 2.1kcal/molG+TSDePuy, Bierbaum, et al., 1985gas phase; B
Δr387.0 ± 8.0kcal/molCIDTGraul and Squires, 1990gas phase; B
Δr<382.00kcal/molCIDTGraul and Squires, 1988gas phase; B
Quantity Value Units Method Reference Comment
Δr385.4 ± 1.1kcal/molH-TSNimlos, Soderquist, et al., 1989gas phase; B
Δr383.3 ± 2.0kcal/molIMRBDePuy, Bierbaum, et al., 1985gas phase; B
Δr<374.25 ± 0.60kcal/molH-TSGraul and Squires, 1988gas phase; B

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
RCD - Robert C. Dunbar
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Silver ion (1+) + Acetaldehyde = (Silver ion (1+) • Acetaldehyde)

By formula: Ag+ + C2H4O = (Ag+ • C2H4O)

Quantity Value Units Method Reference Comment
Δr43.5 ± 4.5kcal/molRAKHo, Yang, et al., 1997RCD

MeCO2 anion + Acetaldehyde = (MeCO2 anion • Acetaldehyde)

By formula: C2H3O2- + C2H4O = (C2H3O2- • C2H4O)

Bond type: Hydrogen bonds of deprotonated acids to ketones/

Quantity Value Units Method Reference Comment
Δr16.3 ± 1.0kcal/molTDAsMeot-ner, 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Δr21.7cal/mol*KPHPMSMeot-ner, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr9.8 ± 2.0kcal/molTDAsMeot-ner, 1988gas phase; B

C2H5O+ + Acetaldehyde = (C2H5O+ • Acetaldehyde)

By formula: C2H5O+ + C2H4O = (C2H5O+ • C2H4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr31.9kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M
Quantity Value Units Method Reference Comment
Δr29.0cal/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M
Quantity Value Units Method Reference Comment
Δr23.3kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M

C2H5O+ + Acetaldehyde = (C2H5O+ • Acetaldehyde)

By formula: C2H5O+ + C2H4O = (C2H5O+ • C2H4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr29.0kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr26.2cal/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr21.2kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

(C2H5O- • 4294967295Acetaldehyde) + Acetaldehyde = C2H5O-

By formula: (C2H5O- • 4294967295C2H4O) + C2H4O = C2H5O-

Quantity Value Units Method Reference Comment
Δr37.7 ± 1.0kcal/molN/ARamond, Davico, et al., 2000gas phase; B
Δr39.5 ± 2.2kcal/molTherBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B

C2H7O+ + Acetaldehyde = (C2H7O+ • Acetaldehyde)

By formula: C2H7O+ + C2H4O = (C2H7O+ • C2H4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr31.2kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr26.9cal/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr23.2kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

Chlorine anion + Acetaldehyde = (Chlorine anion • Acetaldehyde)

By formula: Cl- + C2H4O = (Cl- • C2H4O)

Quantity Value Units Method Reference Comment
Δr14.4 ± 2.0kcal/molIMRELarson and McMahon, 1984gas phase; B,M
Quantity Value Units Method Reference Comment
Δr21.7cal/mol*KN/ALarson and McMahon, 1984gas phase; switching reaction(Cl-)t-C4H9F, Entropy change calculated or estimated; Larson and McMahon, 1984, 2; M
Quantity Value Units Method Reference Comment
Δr7.9 ± 2.0kcal/molIMRELarson and McMahon, 1984gas phase; B,M

Lithium ion (1+) + Acetaldehyde = (Lithium ion (1+) • Acetaldehyde)

By formula: Li+ + C2H4O = (Li+ • C2H4O)

Quantity Value Units Method Reference Comment
Δr41.3kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, Keesee and Castleman, 1986 from Berman and Beauchamp, 1986; Dzidic and Kebarle, 1970 interpolated; M

Magnesium ion (1+) + Acetaldehyde = (Magnesium ion (1+) • Acetaldehyde)

By formula: Mg+ + C2H4O = (Mg+ • C2H4O)

Quantity Value Units Method Reference Comment
Δr63. ± 5.kcal/molICROperti, Tews, et al., 1988gas phase; switching reaction,Thermochemical ladder(Mg+)CH3OH; M

Nitric oxide anion + Acetaldehyde = (Nitric oxide anion • Acetaldehyde)

By formula: NO- + C2H4O = (NO- • C2H4O)

Quantity Value Units Method Reference Comment
Δr39.1kcal/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Sodium ion (1+) + Acetaldehyde = (Sodium ion (1+) • Acetaldehyde)

By formula: Na+ + C2H4O = (Na+ • C2H4O)

Quantity Value Units Method Reference Comment
Δr27.1 ± 0.8kcal/molCIDTArmentrout and Rodgers, 2000RCD

Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW-9104
NIST MS number 227634

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryHP-1110.360.88Héberger, Görgényi, et al., 200250. m/0.32 mm/1.05 μm
CapillaryHP-120.364.0Héberger, Görgényi, et al., 200250. m/0.32 mm/1.05 μm
CapillaryHP-130.362.6Héberger, Görgényi, et al., 200250. m/0.32 mm/1.05 μm
CapillaryHP-140.361.6Héberger, Görgényi, et al., 200250. m/0.32 mm/1.05 μm
CapillaryHP-150.360.37Héberger, Görgényi, et al., 200250. m/0.32 mm/1.05 μm
CapillaryHP-160.360.5Héberger, Görgényi, et al., 200250. m/0.32 mm/1.05 μm
CapillaryHP-170.360.64Héberger, Görgényi, et al., 200250. m/0.32 mm/1.05 μm
CapillaryHP-190.360.37Héberger, Görgényi, et al., 200250. m/0.32 mm/1.05 μm
CapillaryHP-1110.361.Héberger and Görgényi, 199950. m/0.32 mm/1.05 μm, N2
CapillaryHP-150.360.Héberger and Görgényi, 199950. m/0.32 mm/1.05 μm, N2
CapillaryHP-170.361.Héberger and Görgényi, 199950. m/0.32 mm/1.05 μm, N2
CapillaryHP-190.360.Héberger and Görgényi, 199950. m/0.32 mm/1.05 μm, N2
CapillaryOV-3170.410.Buttery, Ling, et al., 1983Column length: 150. m; Column diameter: 0.64 mm
PackedSE-30100.369.Winskowski, 1983Gaschrom Q; Column length: 2. m
PackedSE-30150.367.Haken, Nguyen, et al., 1979Celatom AW silanized; Column length: 3.7 m
PackedSqualane50.346.Mira and Sanchez, 1970Chromosorb G
PackedApiezon L70.343.von Kováts, 1958Celite (40:60 Gewichtsverhaltnis)

Kovats' RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryBP-1363.Bartley and Schwede, 1989He, 30. C @ 2. min, 2. K/min; Column length: 50. m; Column diameter: 0.23 mm; Tend: 200. C
CapillaryBP-1380.Bartley, 1988He, 2. K/min; Column length: 50. m; Tstart: -100. C; Tend: 200. C
CapillaryOV-101363.Morales and Duque, 1987He, 2. K/min; Column length: 25. m; Column diameter: 0.31 mm; Tstart: 60. C; Tend: 200. C
CapillaryOV-101389.Ohnishi and Shibamoto, 19842. K/min; Column length: 50. m; Column diameter: 0.23 mm; Tstart: 80. C; Tend: 200. C
CapillaryOV-101363.Shibamoto, Kamiya, et al., 1981N2, 1. K/min; Column length: 80. m; Column diameter: 0.28 mm; Tstart: 80. C; Tend: 200. C
CapillaryOV-101363.Shibamoto, Kamiya, et al., 1981N2, 1. K/min; Column length: 80. m; Column diameter: 0.28 mm; Tstart: 80. C; Tend: 200. C
CapillaryOV-101358.Yamaguchi and Shibamoto, 1981N2, 2. K/min; Column length: 70. m; Column diameter: 0.28 mm; Tstart: 80. C; Tend: 200. C
CapillaryOV-101363.Yamaguchi and Shibamoto, 1981N2, 2. K/min; Column length: 70. m; Column diameter: 0.28 mm; Tstart: 80. C; Tend: 200. C

Kovats' RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryHP-Innowax110.718.8Héberger and Görgényi, 199930. m/0.32 mm/0.5 μm
CapillaryHP-Innowax50.715.8Héberger and Görgényi, 199930. m/0.32 mm/0.5 μm
CapillaryHP-Innowax70.716.6Héberger and Görgényi, 199930. m/0.32 mm/0.5 μm
CapillaryHP-Innowax90.717.8Héberger and Görgényi, 199930. m/0.32 mm/0.5 μm
PackedCarbowax 20M75.723.Goebel, 1982N2, Kieselgur (60-100 mesh); Column length: 2. m

Kovats' RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax714.Umano, Hagi, et al., 1994He, 40. C @ 2. min, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 200. C
CapillaryCarbowax 20M690.Nishimura, Yamaguchi, et al., 19892. K/min; Column length: 50. m; Column diameter: 0.22 mm; Tstart: 80. C; Tend: 200. C
CapillaryDB-Wax744.Umano, Shoji, et al., 1986N2, 60. C @ 10. min, 2. K/min; Column length: 30. m; Column diameter: 0.25 mm; Tend: 200. C
PackedPEG-20M690.Galt and MacLeod, 1984N2, Celite, 70. C @ 9. min, 10. K/min; Column length: 5.5 m; Tend: 175. C
CapillaryCarbowax 20M689.Shibamoto, Kamiya, et al., 1981N2, 2. K/min; Column length: 50. m; Column diameter: 0.28 mm; Tstart: 80. C; Tend: 200. C
CapillaryCarbowax 20M690.Shibamoto, Kamiya, et al., 1981N2, 2. K/min; Column length: 50. m; Column diameter: 0.28 mm; Tstart: 80. C; Tend: 200. C
CapillaryCarbowax 20M690.Yamaguchi and Shibamoto, 1981N2, 2. K/min; Column length: 70. m; Column diameter: 0.28 mm; Tstart: 80. C; Tend: 200. C
CapillaryCarbowax 20M692.Yamaguchi and Shibamoto, 1981N2, 2. K/min; Column length: 70. m; Column diameter: 0.28 mm; Tstart: 80. C; Tend: 200. C

Kovats' RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
PackedCarbowax 20M681.Kevei and Kozma, 1976Chromosorb; Program: not specified

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryCP Sil 5 CB381.Pino, Marbot, et al., 200230. m/0.25 mm/0.25 μm, H2, 60. C @ 10. min, 2. K/min, 280. C @ 40. min
CapillaryCP Sil 5 CB381.Pino, Marbot, et al., 2002, 250. m/0.32 mm/0.4 μm, He, 60. C @ 10. min, 3. K/min, 280. C @ 60. min
CapillaryCP Sil 5 CB381.Pino and Marbot, 200150. m/0.32 mm/0.4 μm, He, 60. C @ 10. min, 3. K/min, 280. C @ 60. min
CapillaryCP Sil 5 CB381.Pino, Marbot, et al., 200150. m/0.32 mm/0.4 μm, He, 60. C @ 10. min, 3. K/min, 280. C @ 60. min
CapillaryDB-1359.Bartelt, 199730. m/0.32 mm/5. μm, He, 35. C @ 1. min, 10. K/min; Tend: 270. C
CapillaryHP-101418.Chung, Eiserich, et al., 1993N2, 3. K/min; Column length: 50. m; Column diameter: 0.25 mm; Tstart: 70. C; Tend: 200. C

Van Den Dool and Kratz RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax714.Mahattanatawee K., Perez-Cacho P.R., et al., 200730. m/0.32 mm/0.5 μm, He, 7. K/min, 240. C @ 5. min; Tstart: 40. C
CapillaryHP-Innowax689.Quijano, Linares, et al., 200760. m/0.25 mm/0.25 μm, He, 50. C @ 4. min, 4. K/min, 220. C @ 10. min
CapillaryDB-Wax692.Gurbuz O., Rouseff J.M., et al., 200660. m/0.25 mm/0.25 μm, He, 7. K/min, 265. C @ 5. min; Tstart: 40. C
CapillaryDB-Wax715.Malliaa, Fernandez-Garcia, et al., 200560. m/0.32 mm/1. μm, He, 45. C @ 1. min, 5. K/min, 250. C @ 12. min
CapillaryDB-Wax677.Rega, Fournier, et al., 200430. m/0.32 mm/0.5 μm, He, 40. C @ 5. min, 5. K/min; Tend: 240. C
CapillaryAT-Wax724.Pino, Almora, et al., 200360. m/0.32 mm/0.25 μm, He, 65. C @ 10. min, 2. K/min, 250. C @ 60. min
CapillaryDB-Wax677.Rega, Fournier, et al., 200330. m/0.32 mm/0.5 μm, 35. C @ 5. min, 5. K/min, 240. C @ 5. min
CapillaryZB-Wax694.Brunton, Cronin, et al., 200260. m/0.32 mm/0.25 μm, He, 3. K/min; Tstart: 40. C; Tend: 220. C
CapillaryAT-Wax669.Pino, Marbot, et al., 2002, 260. m/0.32 mm/0.25 μm, He, 65. C @ 10. min, 2. K/min, 250. C @ 60. min
CapillaryDB-Wax677.Wu and Cadwallader, 200230. m/0.53 mm/1. μm, He, 40. C @ 5. min, 10. K/min, 200. C @ 30. min
CapillaryDB-Wax655.Lee, Suriyaphan, et al., 200160. m/0.25 mm/0.25 μm, He, 2. K/min; Tstart: 40. C; Tend: 200. C
CapillaryCP-Wax 52CB668.Liu, Yang, et al., 2001H2, 2. K/min; Column length: 50. m; Column diameter: 0.32 mm; Tstart: 50. C; Tend: 200. C
CapillaryAT-Wax669.Pino and Marbot, 200160. m/0.32 mm/0.25 μm, He, 65. C @ 10. min, 2. K/min, 250. C @ 60. min
CapillaryAT-Wax669.Pino, Marbot, et al., 200160. m/0.32 mm/0.25 μm, He, 65. C @ 10. min, 2. K/min, 250. C @ 60. min
CapillaryFFAP709.Ott, Fay, et al., 199730. m/0.25 mm/0.25 μm, He, 20. C @ 1. min, 4. K/min, 200. C @ 1. min
CapillaryDB-Wax710.Ott, Fay, et al., 199760. m/0.53 mm/1. μm, He, 20. C @ 5. min, 4. K/min, 200. C @ 10. min
CapillaryDB-Wax716.Ott, Fay, et al., 199760. m/0.53 mm/1. μm, He, 20. C @ 5. min, 4. K/min, 200. C @ 10. min
CapillaryDB-Wax716.Ott, Fay, et al., 199760. m/0.53 mm/1. μm, He, 20. C @ 5. min, 4. K/min, 200. C @ 10. min
CapillaryDB-Wax686.Shimoda, Peralta, et al., 199660. m/0.25 mm/0.25 μm, He, 3. K/min; Tstart: 50. C; Tend: 230. C
CapillaryHP-20M714.Chung, Eiserich, et al., 1993He, 3. K/min; Column length: 50. m; Column diameter: 0.25 mm; Tstart: 60. C; Tend: 190. C
CapillaryHP-FFAP718.Chung, Eiserich, et al., 1993He, 3. K/min; Column length: 50. m; Column diameter: 0.25 mm; Tstart: 60. C; Tend: 210. C
CapillaryCP-Wax 52CB700.Yu, Wu, et al., 199350. m/0.32 mm/0.25 μm, H2, 40. C @ 10. min, 1.5 K/min, 200. C @ 60. min

Van Den Dool and Kratz RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryFFAP700.Ranau, Kleeberg, et al., 200560. m/0.25 mm/0.5 μm, He; Program: 50C(3min) => 3C/min => 100C => 10C/min => 220C(13.5min)
CapillaryFFAP700.Ranau and Steinhart, 200560. m/0.25 mm/0.5 μm, He; Program: 50C(3min) => 3C/min => 100C => 10C/min => 220C (13.5min)
CapillaryFFAP700.Ranau and Steinhart, 200560. m/0.25 mm/0.5 μm, He; Program: 50C(3min) => 3C/min => 100C => 10C/min => 220C (13.5min)
CapillaryDB-Wax727.Klesk and Qian, 200330. m/0.25 mm/0.5 μm, He; Program: 40C(2min) => 2C/min => 100C => 10C/min => 230C (5min)

Normal alkane RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryOV-160.360.Amboni, Junkes, et al., 2002 
PackedSynachrom150.356.Dufka, Malinsky, et al., 1971Helium, Synachrom (60-80 mesh); Column length: 1.5 m
PackedSynachrom150.365.Dufka, Malinsky, et al., 1971Helium, Synachrom (60-80 mesh); Column length: 1.5 m

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
PackedSE-30372.MHA, 9999Nitrogen, Chromosorb G AW DMCS (80-100 mesh); Column length: 2. m; Tstart: 100. C; Tend: 300. C
CapillaryVF-5 MS412.Leffingwell and Alford, 201160. m/0.32 mm/0.25 μm, Helium, 2. K/min, 260. C @ 28. min; Tstart: 30. C
CapillaryVF-5 MS412.Leffingwell and Alford, 201160. m/0.32 mm/0.25 μm, Helium, 2. K/min, 260. C @ 28. min; Tstart: 30. C
CapillaryOV-101360.Zenkevich, 200525. m/0.20 mm/0.10 μm, N2/He, 6. K/min; Tstart: 50. C; Tend: 250. C
CapillaryDB-1400.Buttery, Ling, et al., 199730. C @ 25. min, 4. K/min, 200. C @ 20. min; Column length: 60. m; Column diameter: 0.25 mm
CapillaryBP-1363.MacLeod, MacLeod, et al., 1988Hydrogen, 70. C @ 5. min, 3. K/min; Column length: 25. m; Column diameter: 0.20 mm; Tend: 180. C

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillarySLB-5MS381.Risticevic, Carasek, et al., 200810. m/0.18 mm/0.18 μm, Helium; Program: not specified
CapillaryNonpolar427.Staples and Zeiger, 2008Program: not specified
CapillaryMethyl Silicone372.Blunden, Aneja, et al., 200560. m/0.32 mm/1.0 μm, Helium; Program: -50 0C (2 min) 8 0C/min -> 200 0C (7.75 min) 25 0C -> 225 0C (8 min)
CapillaryHP-1360.Junkes, Amboni, et al., 2004Program: not specified
CapillarySE-30373.Vinogradov, 2004Program: not specified
CapillarySPB-1352.Flanagan, Streete, et al., 199760. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C
CapillaryDB-1342.Schuberth, 199430. m/0.25 mm/1. μm, He; Program: 40C (4min) => 10C/min => 200C => 50C/min => 250C
CapillarySPB-1352.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C
CapillarySPB-1372.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: not specified
CapillaryCP Sil 8 CB404.Weller and Wolf, 198940. m/0.25 mm/0.25 μm, He; Program: 30 0C (1 min) 15 0C/min -> 45 0C 3 0C/min -> 120 0C
CapillaryDB-1400.Takeoka, Flath, et al., 198830. m/0.25 mm/0.25 μm, H2; Program: 30C (2min) => 2C/min => 150C => 4C/min => 250C
CapillaryOV-101363.Morales and Duque, 1987He; Column length: 25. m; Column diameter: 0.31 mm; Program: not specified
CapillaryOV-101363.Shibamoto, 1987Program: not specified
CapillarySF96+Igepal410.Flath, Altieri, et al., 1984Column length: 152. m; Column diameter: 0.76 mm; Program: 25C(1min) => 5C/min => 50C (4min) => 1.25C/min => 180C
CapillaryOV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc.363.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryOV-1372.Ramsey and Flanagan, 1982Program: not specified

Normal alkane RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedCarbowax 20M100.695.Yabumoto, Jennings, et al., 1977 

Normal alkane RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-Innowax714.Feng, Zhuang, et al., 201160. m/0.25 mm/0.25 μm, Helium, 60. C @ 1. min, 3. K/min, 220. C @ 5. min
CapillaryZB-Wax712.Marin, Pozrl, et al., 200860. m/0.32 mm/0.50 μm, Helium, 40. C @ 5. min, 4. K/min, 220. C @ 5. min
CapillaryDB-Wax713.Xu, Fan, et al., 200730. m/0.25 mm/0.25 μm, He, 40. C @ 2. min, 4. K/min, 230. C @ 5. min
CapillaryDB-Wax713.Fan and Qian, 200530. m/0.32 mm/0.25 μm, N2, 40. C @ 2. min, 4. K/min, 230. C @ 5. min
CapillaryDB-Wax690.Rizzolo, Cambiaghi, et al., 200560. m/0.53 mm/1. μm, 50. C @ 10. min, 3. K/min; Tend: 180. C
CapillarySupelcowax-10712.Rochat and Chaintreau, 200560. m/0.53 mm/1. μm, He, 40. C @ 2. min, 4. K/min, 240. C @ 20. min
CapillarySupelcowax-10728.Rochat and Chaintreau, 200560. m/0.53 mm/1. μm, He, 40. C @ 2. min, 4. K/min, 240. C @ 20. min
CapillaryDB-Wax703.Chida, Sone, et al., 200460. m/0.25 mm/0.5 μm, 35. C @ 5. min, 4. K/min, 240. C @ 10. min
CapillaryTC-Wax718.Ishikawa, Ito, et al., 200460. m/0.25 mm/0.5 μm, He, 40. C @ 8. min, 3. K/min; Tend: 230. C
CapillaryDB-Wax677.Fu, Yoon, et al., 200230. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 8. K/min, 250. C @ 5. min
CapillarySupelcowax-10700.Girard and Durance, 200060. m/0.25 mm/0.25 μm, He, 35. C @ 10. min, 4. K/min; Tend: 200. C
CapillaryDB-Wax750.Kotseridis and Baumes, 200030. m/0.32 mm/0.5 μm, H2, 60. C @ 3. min, 3. K/min, 245. C @ 20. min
CapillaryDB-Wax701.Tamura, Boonbumrung, et al., 2000Nitrogen, 40. C @ 10. min, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 200. C
CapillaryDB-Wax704.Schlüter, Steinhart, et al., 199960. m/0.32 mm/0.25 μm, He, 34. C @ 3. min, 5. K/min, 200. C @ 10. min
CapillaryDB-Wax690.Umano, Nakahara, et al., 199960. m/0.25 mm/0.25 μm, He, 40. C @ 2. min, 2. K/min; Tend: 200. C
CapillarySupelcowax-10703.Campeanu, Burcea, et al., 199860. m/0.32 mm/0.5 μm, H2, 35. C @ 5. min, 5. K/min, 250. C @ 20. min
CapillaryDB-Wax714.Umano, Hagi, et al., 1995He, 40. C @ 2. min, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 200. C
CapillaryFFAP680.Vernin, Metzger, et al., 1988He, 60. C @ 5. min, 2. K/min; Column length: 50. m; Column diameter: 0.28 mm; Tend: 240. C

Normal alkane RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryCarbowax 20M732.Lee, Chong, et al., 2012Program: not specified
CapillaryDB-Wax700.Welke, Manfroi, et al., 201230. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillaryDB-Wax715.Welke, Manfroi, et al., 201230. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillaryDB-Wax735.Welke, Manfroi, et al., 201230. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillaryHP-Innowax724.Feng, Zhuang, et al., 201160. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillarySOLGel-Wax727.Johanningsmeier and McFeeters, 201130. m/0.25 mm/0.25 μm, Helium; Program: 40 0C (2 min) 5 0C/min -> 140 0C 10 0C/min -> 250 0C (3 min)
CapillarySOLGel-Wax727.Johanningsmeier and McFeeters, 201130. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillaryDB-Wax659.Miyazaki, Plotto, et al., 201160. m/0.25 mm/0.50 μm, Helium; Program: 40 0C 4 0C/min -> 230 0C 100 0C/min -> 260 0C (11.7 min)
CapillaryHP-Innowax707.Xiao, Dai, et al., 201160. m/0.25 mm/0.25 μm, Helium; Program: 40 0C (2 min) 3 0C/min -> 150 0C 5 0C/min -> 220 0C (5 min)
CapillaryDB-Wax Etr692.Loskos, Hernandez-Orte, et al., 200760. m/0.25 mm/0.5 μm, He; Program: 40C(3min) => 10C/min => 90C => 2C/min => 230C (37min)
CapillaryHP-Innowax702.Viegas and Bassoli, 200760. m/0.32 mm/0.25 μm, Helium; Program: 40 0C (5 min) 4 0C/min -> 60 0C (5 min) 8 0C/min -> 250 0C (3 min)
CapillaryHP-Innowax690.Viegas and Bassoli, 200760. m/0.32 mm/0.25 μm, Helium; Program: not specified
CapillaryInnowax716.Junkes, Amboni, et al., 2004Program: not specified
CapillaryDB-Wax702.Kim. J.H., Ahn, et al., 200460. m/0.25 mm/0.25 μm, Helium; Program: 60 0C (3 min) 2 0C/min -> 150 0C 4 0C/min -> 200 0C
CapillaryCarbowax 20M690.Vinogradov, 2004Program: not specified
CapillarySupelcowax-10748.Forney and Jordan, 199860. m/0.53 mm/1. μm, He; Program: 40C (2min) => 16C/min => 120C => 15C/min => 240C(3min)
CapillaryCarbowax 20M690.Shibamoto, 1987Program: not specified
CapillaryCarbowax 400, Carbowax 20M, Carbowax 1540, Carbowax 4000, Superox 06, PEG 20M, etc.690.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryCarbowax 400, Carbowax 20M, Carbowax 1540, Carbowax 4000, Superox 06, PEG 20M, etc.723.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryCarbowax 20M695.Ramsey and Flanagan, 1982Program: not specified

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Wiberg, Crocker, et al., 1991
Wiberg, K.B.; Crocker, L.S.; Morgan, K.M., Thermochemical studies of carbonyl compounds. 5. Enthalpies of reduction of carbonyl groups, J. Am. Chem. Soc., 1991, 113, 3447-3450. [all data]

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Pitzer K.S., 1949
Pitzer K.S., Jr., Thermodynamics and vibrational spectrum of acetaldehyde, J. Am. Chem. Soc., 1949, 71, 2842-2844. [all data]

Della Vedova C.O., 1991
Della Vedova C.O., Raman and infrared spectra and photochemical behavior of acetaldehyde isolated in matrixes, J. Raman Spectrosc., 1991, 22, 505-507. [all data]

East A.L.L., 1997
East A.L.L., Ab initio statistical thermodynamical models for the computation of third-law entropies, J. Chem. Phys., 1997, 106, 6655-6674. [all data]

Chao J., 1980
Chao J., Perfect gas thermodynamic properties of methanal, ethanal and their deuterated species, Thermochim. Acta, 1980, 41, 41-54. [all data]

Chao J., 1986
Chao J., Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties, J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]

Coleman C.F., 1949
Coleman C.F., The heat capacity of organic vapors. V. Acetaldehyde, J. Am. Chem. Soc., 1949, 71, 2839-2841. [all data]

Lebedev and Vasil'ev, 1988
Lebedev, B.V.; Vasil'ev, V.G., Thermodynamics of ethanal at 0-300 K, Zhur. Fiz. Khim., 1988, 62, 3099-3102. [all data]

Connor, Elving, et al., 1947
Connor, A.Z.; Elving, P.J.; Steingiser, S., Specific heat of acetaldehyde and acetaldehyde dibutyl acetal, J. Am. Chem. Soc., 1947, 69, 1532. [all data]

Teja and Anselme, 1990
Teja, A.S.; Anselme, M.J., The critical properties of thermally stable and unstable fluids. I. 1985 results, AIChE Symp. Ser., 1990, 86, 279, 115-21. [all data]

Hollmann, 1903
Hollmann, R., Physical and natural equilibria between the modifications of aldehyde, Z. Phys. Chem., Stoechiom. Verwandtschaftsl., 1903, 43, 129-59. [all data]

Van der Waals, 1881
Van der Waals, J.D., Continuity of Gas and Liquid Data, 1881,, 1881, Leipzig, p 168. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Bull, Seregrennaja, et al., 1963
Bull, S.S.; Seregrennaja, I.I.; Tsherbakora, P.R., Khim. Prom. (Moscow), 1963, 7, 507. [all data]

Verevkin, Krasnykh, et al., 2003
Verevkin, Sergey P.; Krasnykh, Eugen L.; Vasiltsova, Tatiana V.; Koutek, Bohumir; Doubsky, Jan; Heintz, Andreas, Vapor pressures and enthalpies of vaporization of a series of the linear aliphatic aldehydes, Fluid Phase Equilibria, 2003, 206, 1-2, 331-339, https://doi.org/10.1016/S0378-3812(03)00035-9 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Dykyj, 1970
Dykyj, J., Petrochemica, 1970, 10, 2, 51. [all data]

Kim and Kim, 1977
Kim, B.C.; Kim, D.H., Hwahak Kwa Hwahak Kongop, 1977, 20, 232. [all data]

Coles and Popper, 1950
Coles, K.F.; Popper, Felix, Vapor-Liquid Equilibria. Ethylene Oxide - Acetaldehyde and Ethylene Oxide - Water Systems, Ind. Eng. Chem., 1950, 42, 7, 1434-1438, https://doi.org/10.1021/ie50487a046 . [all data]

Coleman and DeVries, 1949
Coleman, C.F.; DeVries, T., The heat capacity of organic vapors. V. Acetaldehyde, J. Am. Chem. Soc., 1949, 71, 2839-28. [all data]

Bull, Seregrennaja, et al., 1963, 2
Bull, S.Sh.; Seregrennaja, I.I.; Tsherbakora, P.R., Isothermic Equilibrium of Liquid-Steam in System Water-Acetoaldehyde, Khim. Prom. (Moscow), 1963, 7, 507-509. [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Mead, Lykke, et al., 1984
Mead, R.D.; Lykke, K.R.; Lineberger, W.C.; Marks, J.; Brauman, J.I., Spectroscopy and Dynamics of the Dipole-Bound State of Acetaldehyde Enolate., J. Chem. Phys., 1984, 81, 11, 4883., https://doi.org/10.1063/1.447515 . [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Holmes and Lossing, 1982
Holmes, J.L.; Lossing, F.P., Heats of formation of the ionic and neutral enols of acetaldehyde and acetone, J. Am. Chem. Soc., 1982, 104, 2648. [all data]

Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P., Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A), Can. J. Chem., 1978, 56, 1. [all data]

Larson and McMahon, 1982
Larson, J.W.; McMahon, T.B., Formation, Thermochemistry, and Relative Stabilities of Proton - Bound dimers of Oxygen n - Donor Bases from Ion Cyclotron Resonance Solvent - Exchange Equilibria Measurements, J. Am. Chem. Soc., 1982, 104, 23, 6255, https://doi.org/10.1021/ja00387a016 . [all data]

Grimsrud and Kebarle, 1973
Grimsrud, E.P.; Kebarle, P., Gas Phase Ion Equilibria Studies of the Solvation of the Hydrogen Ion by Methanol, Dimethyl Ether and Water. Effect of Hydrogen Bonding, J. Am. Chem. Soc., 1973, 95, 24, 7939, https://doi.org/10.1021/ja00805a002 . [all data]

Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D., Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules, J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]

Keesee and Castleman, 1986
Keesee, R.G.; Castleman, A.W., Jr., Thermochemical data on Ggs-phase ion-molecule association and clustering reactions, J. Phys. Chem. Ref. Data, 1986, 15, 1011. [all data]

Nimlos, Soderquist, et al., 1989
Nimlos, M.R.; Soderquist, J.A.; Ellison, G.B., Spectroscopy of CH3CO- and CH3CO, J. Am. Chem. Soc., 1989, 111, 20, 7675, https://doi.org/10.1021/ja00202a001 . [all data]

DePuy, Bierbaum, et al., 1985
DePuy, C.H.; Bierbaum, V.M.; Damrauer, R.; Soderquist, J.A., Gas-phase reactions of the acetyl anion, J. Am. Chem. Soc., 1985, 107, 3385. [all data]

Graul and Squires, 1990
Graul, S.T.; Squires, R.R., Gas-Phase Acidities Derived from Threshold Energies for Activated Reactions, J. Am. Chem. Soc., 1990, 112, 7, 2517, https://doi.org/10.1021/ja00163a007 . [all data]

Graul and Squires, 1988
Graul, S.T.; Squires, R.R., On the Existence of Alkyl Carbanions in the Gas Phase, J. Am. Chem. Soc., 1988, 110, 2, 607, https://doi.org/10.1021/ja00210a054 . [all data]

Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria, J. Am. Chem. Soc., 1984, 106, 517. [all data]

Larson and McMahon, 1984, 2
Larson, J.W.; McMahon, T.B., Gas phase negative ion chemistry of alkylchloroformates, Can. J. Chem., 1984, 62, 675. [all data]

Meot-ner, 1988
Meot-ner, M., Ionic Hydrogen Bond and Ion Solvation. 6. Interaction Energies of the Acetate Ion with Organic Molecules. Comparison of CH3COO- with Cl-, CN-, and SH-, J. Am. Chem. Soc., 1988, 110, 12, 3854, https://doi.org/10.1021/ja00220a022 . [all data]

Dolliver, Gresham, et al., 1938
Dolliver, M.A.; Gresham, T.L.; Kistiakowsky, G.B.; Smith, E.A.; Vaughan, W.E., Heats of organic reactions. VI. Heats of hydrogenation of some oxygen-containing compounds, J. Am. Chem. Soc., 1938, 60, 440-450. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Ramond, Davico, et al., 2000
Ramond, T.M.; Davico, G.E.; Schwartz, R.L.; Lineberger, W.C., Vibronic structure of alkoxy radicals via photoelectron spectroscopy, J. Chem. Phys., 2000, 112, 3, 1158-1169, https://doi.org/10.1063/1.480767 . [all data]

Reents and Freiser, 1981
Reents, W.D.; Freiser, B.S., Gas-Phase Binding Energies and Spectroscopic Properties of NO+ Charge-Transfer Complexes, J. Am. Chem. Soc., 1981, 103, 2791. [all data]

Farid and McMahon, 1978
Farid, R.; McMahon, T.B., Gas-Phase Ion-Molecule Reactions of Alkyl Nitrites by Ion Cyclotron Resonance Spectroscopy, Int. J. Mass Spectrom. Ion Phys., 1978, 27, 2, 163, https://doi.org/10.1016/0020-7381(78)80037-0 . [all data]

Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L., Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases, J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050 . [all data]

Berman and Beauchamp, 1986
Berman, D.W.; Beauchamp, J.L., Quoted in Keesee and Castleman, 1986, 1986. [all data]

Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P., Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n, J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013 . [all data]

Krasnov, Ozherel'eva, et al., 1983
Krasnov, V.L.; Ozherel'eva, N.K.; Trub, E.P.; Tsvetkov, V.G.; Bodrikov, I.V., Trimerization of aldehydes under the action of sulfur dioxide, J. Gen. Chem. USSR, 1983, 53, 2135-2138. [all data]

Busfield, Lee, et al., 1973
Busfield, W.K.; Lee, R.M.; Merifold, D., Gas phase equilibrium between acetaldehyde and paraldehyde, thermodynamic values for the trimerisation of acetaldehyde and the polymerisability of paraldehyde, J. Chem. Soc. Faraday Trans. 1, 1973, 69, 936-940. [all data]

Operti, Tews, et al., 1988
Operti, L.; Tews, E.C.; Freiser, B.S., Determination of Gas-Phase Ligand Binding Energies to Mg+ by FTMS Techniques, J. Am. Chem. Soc., 1988, 110, 12, 3847, https://doi.org/10.1021/ja00220a020 . [all data]

Wiberg, 1980
Wiberg, K.B., Energies of organic compounds, Rept. DOE-E(11-1)4060 Prepared for US Dept. of Energy by Yale Univ., New Haven, CT. Avail. NTIS, 1980, 1-24. [all data]

Birley and Skinner, 1970
Birley, G.I.; Skinner, H.A., Enthalpies of hydrolysis of dimethoxymethane and 1,1-dimethoxyethane, Trans. Faraday Soc., 1970, 66, 791-793. [all data]

Wiberg, Morgan, et al., 1994
Wiberg, K.B.; Morgan, K.M.; Maltz, H., Thermochemistry of carbonyl reactions. 6. A study of hydration equilibria, J. Am. Chem. Soc., 1994, 116, 11067-11077. [all data]

Walsh and Benson, 1966
Walsh, R.; Benson, S.W., The heats of formation of acetyl iodide and the acetyl radical, J. Phys. Chem., 1966, 70, 3751-3753. [all data]

Landrieu, 1905
Landrieu, M.Ph., Thermochimie. - Thermochimie des hydrazones, Compt. Rend., 1905, 141, 358-361. [all data]

Armentrout and Rodgers, 2000
Armentrout, P.B.; Rodgers, M.T., An Absolute Sodium Cation Affinity Scale: Threshold Collision-Induced Dissociation Experiments and ab Initio Theory, J. Phys. Chem A, 2000, 104, 11, 2238, https://doi.org/10.1021/jp991716n . [all data]

Ho, Yang, et al., 1997
Ho, Y.-P.; Yang, Y.-C.; Klippenstein, S.J.; Dunbar, R.C., Binding Energies of Ag+ and Cd+ Complexes from Analysis of Radiative Association Kinetics, J. Phys. Chem. A, 1997, 101, 18, 3338, https://doi.org/10.1021/jp9637284 . [all data]

Buttery, Ling, et al., 1969
Buttery, R.G.; Ling, L.C.; Guadagni, D.G., Volatilities Aldehydes, Ketones, and Esters in Dilute Water Solution, J. Agric. Food Chem., 1969, 17, 385-389. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Desfrancois, Abdoul-Carime, et al., 1994
Desfrancois, C.; Abdoul-Carime, H.; Khelifa, N.; Schermann, J.P., Fork 1/r to 1/r2 Potentials: Electron Exchange between Rydberg Atoms and Polar Molecules, Phys. Rev. Lett., 1994, 73, 18, 2436, https://doi.org/10.1103/PhysRevLett.73.2436 . [all data]

Traeger, 1985
Traeger, J.C., Heat of formation for the formyl cation by photoionization mass spectrometry, Int. J. Mass Spectrom. Ion Processes, 1985, 66, 271. [all data]

Traeger, McLouglin, et al., 1982
Traeger, J.C.; McLouglin, R.G.; Nicholson, A.J.C., Heat of formation for acetyl cation in the gas phase, J. Am. Chem. Soc., 1982, 104, 5318. [all data]

El-Sherbini, Allam, et al., 1981
El-Sherbini, T.M.; Allam, S.H.; Migahed, M.D.; Dawoud, A.M., Mass spectrometric investigation of aliphatic aldehydes, Z. Naturforsch. A:, 1981, 36, 1334. [all data]

Jochims, Lohr, et al., 1978
Jochims, H.-W.; Lohr, W.; Baumgartel, H., Photoionization mass spectrometry studies of deuterated acetaldehydes CH3CDO and CD3CHO, Chem. Phys. Lett., 1978, 54, 594. [all data]

Staley, Wieting, et al., 1977
Staley, R.H.; Wieting, R.D.; Beauchamp, J.L., Carbenium ion stabilities in the gas phase and solution. An ion cyclotron resonance study of bromide transfer reactions involving alkali ions, alkyl carbenium ions, acyl cations and cyclic halonium ions, J. Am. Chem. Soc., 1977, 99, 5964. [all data]

Hernandez, Masclet, et al., 1977
Hernandez, R.; Masclet, P.; Mouvier, G., Spectroscopie de photoelectrons d'aldehydes et de cetones aliphatiques, J. Electron Spectrosc. Relat. Phenom., 1977, 10, 333. [all data]

Holmes, Terlouw, et al., 1976
Holmes, J.L.; Terlouw, J.K.; Lossing, F.P., The thermochemistry of C2H4O+ ions, J. Phys. Chem., 1976, 80, 2860. [all data]

Meeks, Arnett, et al., 1975
Meeks, J.L.; Arnett, J.F.; Larson, D.; McGlynn, S.P., Photoelectron spectroscopy of carbonyls. Ionization assignments, Chem. Phys. Lett., 1975, 30, 190. [all data]

McGlynn and Meeks, 1975
McGlynn, S.P.; Meeks, J.L., Photoelectron spectra of carbonyls: Acetaldehyde, acetamide, biacetyl, pyruvic acid, methyl pyruvate and vamide, J. Electron Spectrosc. Relat. Phenom., 1975, 6, 269. [all data]

Warneck, 1974
Warneck, P., Heat of formation of the HCO radical, Z. Naturforsch. A:, 1974, 29, 350. [all data]

Tam, Yee, et al., 1974
Tam, W.-C.; Yee, D.; Brion, C.E., Photoelectron spectra of some aldehydes and ketones, J. Electron Spectrosc. Relat. Phenom., 1974, 4, 77. [all data]

Ogata, Kitayama, et al., 1974
Ogata, H.; Kitayama, J.; Koto, M.; Kojima, S.; Nihei, Y.; Kamada, H., Vacuum ultraviolet absorption and photoelectron spectra of aliphatic ketones, Bull. Chem. Soc. Jpn., 1974, 47, 958. [all data]

Krassig, Reinke, et al., 1974
Krassig, R.; Reinke, D.; Baumgartel, H., Photo-reaktionen kleiner organischer molekule II. Die photoionenspektren der Isomeren propylen-cyclopropan und acetaldehyd-athylenoxyd, Ber. Bunsen-Ges. Phys. Chem., 1974, 78, 425. [all data]

Knowles and Nicholson, 1974
Knowles, D.J.; Nicholson, A.J.C., Ionization energies of formic and acetic acid monomers, J. Chem. Phys., 1974, 60, 1180. [all data]

Chadwick and Katrib, 1974
Chadwick, D.; Katrib, A., Photoelectron spectra of acetaldehyde and acetyl halides, J. Electron Spectrosc. Relat. Phenom., 1974, 3, 39. [all data]

Potapov and Sorokin, 1972
Potapov, V.K.; Sorokin, V.V., Kinetic energies of products of dissociative photoionization of molecules. I. Aliphatic ketones and alcohols, Khim. Vys. Energ., 1972, 6, 387. [all data]

Cocksey, Eland, et al., 1971
Cocksey, B.J.; Eland, J.H.D.; Danby, C.J., The effect of alkyl substitution on ionisation potential, J. Chem. Soc., 1971, (B), 790. [all data]

Matthews and Warneck, 1969
Matthews, C.S.; Warneck, P., Heats of formation of CHO+ and C3H3+ by photoionization, J. Chem. Phys. 5, 1969, 1, 854. [all data]

Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D., Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation, J. Chem. Phys., 1969, 50, 654. [all data]

Potapov, Filyugina, et al., 1968
Potapov, V.K.; Filyugina, A.D.; Shigorin, D.N.; Ozerova, G.A., Photoionization of some compounds containing the carbonyl and amino groups, Dokl. Akad. Nauk SSSR, 1968, 180, 398, In original 352. [all data]

Vilesov, 1960
Vilesov, F.I., The photoionization of vapors of compounds whose molecules contain carbonyl groups, Dokl. Phys. Chem., 1960, 132, 521, In original 1332. [all data]

Hurzeler, Inghram, et al., 1958
Hurzeler, H.; Inghram, M.G.; Morrison, J.D., Photon impact studies of molecules using a mass spectrometer, J. Chem. Phys., 1958, 28, 76. [all data]

Watanabe, 1957
Watanabe, K., Ionization potentials of some molecules, J. Chem. Phys., 1957, 26, 542. [all data]

Vilesov and Terenin, 1957
Vilesov, F.I.; Terenin, A.N., The photoionization of the vapors of certain organic compounds, Dokl. Akad. Nauk SSSR, 1957, 115, 744, In original 539. [all data]

Walsh, 1946
Walsh, A.D., The absorption spectrum of acetaldehyde in the vacuum ultra-violet, Proc. Roy. Soc. (London), 1946, A185, 176. [all data]

Johnson, Powis, et al., 1982
Johnson, K.; Powis, I.; Danby, C.J., A photoelectron-photoion coincidence study of acetaldehyde and ethylene oxide molecular ions, Chem. Phys., 1982, 70, 329. [all data]

Bieri, Asbrink, et al., 1982
Bieri, G.; Asbrink, L.; Von Niessen, W., 30.4-nm He(II) photoelectron spectra of organic molecules, J. Electron Spectrosc. Relat. Phenom., 1982, 27, 129. [all data]

Benoit and Harrison, 1977
Benoit, F.M.; Harrison, A.G., Predictive value of proton affinity. Ionization energy correlations involving oxygenated molecules, J. Am. Chem. Soc., 1977, 99, 3980. [all data]

Rao, 1975
Rao, C.N.R., Lone-pair ionization bands of chromophores in the photoelectron spectra of organic molecules, Indian J. Chem., 1975, 13, 950. [all data]

Kimura, Katsumata, et al., 1975
Kimura, K.; Katsumata, S.; Yamazaki, T.; Wakabayashi, H., UV photoelectron spectra and sum rule consideration; out-of-plane orbitals of unsaturated compounds with planar-skeleton structure, J. Electron Spectrosc. Relat. Phenom., 1975, 6, 41. [all data]

Bombach, Stadelmann, et al., 1981
Bombach, R.; Stadelmann, J.P.; Vogt, J., The fragmentation and isomerization of internal energy selected acetaldehyde molecular cations, Chem. Phys., 1981, 60, 293. [all data]

Haney and Franklin, 1969
Haney, M.A.; Franklin, J.L., Excess energies in mass spectra of some oxygen-containing organic compounds, J. Chem. Soc. Faraday Trans., 1969, 65, 1794. [all data]

Shigorin, Filyugina, et al., 1966
Shigorin, D.N.; Filyugina, A.D.; Potapov, V.K., Ionization and dissociation of molecules of acetaldehyde, acetone, and acetic acid on electron impact, Teor. i Eksperim. Khim., 1966, 2, 554, In original 417. [all data]

Dorman, 1965
Dorman, F.H., Fragment ions from CH3CHO and (CH3)2CO by electron impact, J. Chem. Phys., 1965, 42, 65. [all data]

Burgers and Holmes, 1982
Burgers, P.C.; Holmes, J.L., Metastable ion studies. XIII. The measurement of appearance energies of metastable peaks, Org. Mass Spectrom., 1982, 17, 123. [all data]

Héberger, Görgényi, et al., 2002
Héberger, K.; Görgényi, M.; Kowalska, T., Temperature dependence of Kováts indices in gas chromatography revisited, J. Chromatogr. A, 2002, 973, 1-2, 135-142, https://doi.org/10.1016/S0021-9673(02)01198-6 . [all data]

Héberger and Görgényi, 1999
Héberger, K.; Görgényi, M., Principal component analysis of Kováts indices for carbonyl compounds in capillary gas chromatography, J. Chromatogr., 1999, 845, 1-2, 21-31, https://doi.org/10.1016/S0021-9673(99)00323-4 . [all data]

Buttery, Ling, et al., 1983
Buttery, R.G.; Ling, L.C.; Teranishi, R.; Mon, T.R., Insect attractants: volatiles of hydrolizyed protein insect baits, J. Agric. Food Chem., 1983, 31, 4, 689-692, https://doi.org/10.1021/jf00118a003 . [all data]

Winskowski, 1983
Winskowski, J., Gaschromatographische Identifizierung von Stoffen anhand von Indexziffem und unterschiedlichen Detektoren, Chromatographia, 1983, 17, 3, 160-165, https://doi.org/10.1007/BF02271041 . [all data]

Haken, Nguyen, et al., 1979
Haken, J.K.; Nguyen, A.; Wainwright, M.S., Application of linear extrathermodynamic relationships to alcohols, aldehydes, ketones, amd ethoxy alcohols, J. Chromatogr., 1979, 179, 1, 75-85, https://doi.org/10.1016/S0021-9673(00)80658-5 . [all data]

Mira and Sanchez, 1970
Mira, J.M.; Sanchez, L.G., Polarity of the Gas Chromatographic Stationary Phases and Retention Indices of Aliphatic Esters, Ketones and Alcohols, Anal. Chim. Acta., 1970, 50, 2, 315-321, https://doi.org/10.1016/0003-2670(70)80071-X . [all data]

von Kováts, 1958
von Kováts, E., 206. Gas-chromatographische Charakterisierung organischer Verbindungen. Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone, Helv. Chim. Acta, 1958, 41, 7, 1915-1932, https://doi.org/10.1002/hlca.19580410703 . [all data]

Bartley and Schwede, 1989
Bartley, J.P.; Schwede, A.M., Production of volatile componds in ripening kiwi fruit (Actinidia chinensis), J. Agric. Food Chem., 1989, 37, 4, 1023-1025, https://doi.org/10.1021/jf00088a046 . [all data]

Bartley, 1988
Bartley, J.P., Volatile flavours of Australian tropical fruits, Biomed. Environ. Mass Spectrom., 1988, 16, 1-12, 201-205, https://doi.org/10.1002/bms.1200160136 . [all data]

Morales and Duque, 1987
Morales, A.L.; Duque, C., Aroma constituents of the fruit of the moutain papaya (Carica pubescens) from Colombia, J. Agric. Food Chem., 1987, 35, 4, 538-540, https://doi.org/10.1021/jf00076a024 . [all data]

Ohnishi and Shibamoto, 1984
Ohnishi, S.; Shibamoto, T., Volatile compounds from heated beef fat and beef fat with glycine, J. Agric. Food Chem., 1984, 32, 5, 987-992, https://doi.org/10.1021/jf00125a008 . [all data]

Shibamoto, Kamiya, et al., 1981
Shibamoto, T.; Kamiya, Y.; Mihara, S., Isolation and identification of volatile compounds in cooked meat: sukiyaki, J. Agric. Food Chem., 1981, 29, 1, 57-63, https://doi.org/10.1021/jf00103a015 . [all data]

Yamaguchi and Shibamoto, 1981
Yamaguchi, K.; Shibamoto, T., Volatile constituents of green tea, Gyokuro (Camellia sinensis L. var Yabukita), J. Agric. Food Chem., 1981, 29, 2, 366-370, https://doi.org/10.1021/jf00104a035 . [all data]

Goebel, 1982
Goebel, K.-J., Gaschromatographische Identifizierung Niedrig Siedender Substanzen Mittels Retentionsindices und Rechnerhilfe, J. Chromatogr., 1982, 235, 1, 119-127, https://doi.org/10.1016/S0021-9673(00)95793-5 . [all data]

Umano, Hagi, et al., 1994
Umano, K.; Hagi, Y.; Tamura, T.; Shoji, A.; Shibamoto, T., Identification of volatile compounds isolated from round kumquat (Fortunella japonica Swingle), J. Agric. Food Chem., 1994, 42, 9, 1888-1890, https://doi.org/10.1021/jf00045a011 . [all data]

Nishimura, Yamaguchi, et al., 1989
Nishimura, O.; Yamaguchi, K.; Mihara, S.; Shibamoto, T., Volatile Constituents of Guava Fruits (Psidium guajava L.) and Canned Puree, J. Agric. Food Chem., 1989, 37, 1, 139-142, https://doi.org/10.1021/jf00085a033 . [all data]

Umano, Shoji, et al., 1986
Umano, K.; Shoji, A.; Hagi, Y.; Shibamoto, T., Volatile constituents of peel of quince fruit, Cydonia oblonga Miller, J. Agric. Food Chem., 1986, 34, 4, 593-596, https://doi.org/10.1021/jf00070a003 . [all data]

Galt and MacLeod, 1984
Galt, A.M.; MacLeod, G., Headspace sampling of cooked beef aroma using Tenax GC, J. Agric. Food Chem., 1984, 32, 1, 59-64, https://doi.org/10.1021/jf00121a016 . [all data]

Kevei and Kozma, 1976
Kevei, E.; Kozma, E., Gaschromatographische Untersuchungsmethoden zur Aromaprüfung in gekochtem Schweinefleisch (M. semimembranosus), Nahrung, 1976, 20, 3, 243-252, https://doi.org/10.1002/food.19760200303 . [all data]

Pino, Marbot, et al., 2002
Pino, J.A.; Marbot, R.; Bello, A., Volatile compounds of Psidium salutare (H.B.K.) Berg. fruit, J. Agric. Food Chem., 2002, 50, 18, 5146-5148, https://doi.org/10.1021/jf0116303 . [all data]

Pino, Marbot, et al., 2002, 2
Pino, J.A.; Marbot, R.; Vázquez, C., Characterization of volatile in Cosa Rican Guava [Psidium friedrichsthalianum (Berg) Niedenzu] fruit, J. Agric. Food Chem., 2002, 50, 21, 6023-6026, https://doi.org/10.1021/jf011456i . [all data]

Pino and Marbot, 2001
Pino, J.A.; Marbot, R., Volatile flavor constituents of acerola (Malpighia emarginata DC.) fruit, J. Agric. Food Chem., 2001, 49, 12, 5880-5882, https://doi.org/10.1021/jf010270g . [all data]

Pino, Marbot, et al., 2001
Pino, J.A.; Marbot, R.; Vázquez, C., Characterization of volatiles in strawberry guava (Psidium cattleianum Sabine) fruit, J. Agric. Food Chem., 2001, 49, 12, 5883-5887, https://doi.org/10.1021/jf010414r . [all data]

Bartelt, 1997
Bartelt, R.J., Calibration of a commercial solid-phase microextraction device for measuring headspace concentrations of organic volatiles, Anal. Chem., 1997, 69, 3, 364-372, https://doi.org/10.1021/ac960820n . [all data]

Chung, Eiserich, et al., 1993
Chung, T.Y.; Eiserich, J.P.; Shibamoto, T., Volatile compounds isolated from edible Korean chamchwi (Aster scaber Thunb), J. Agric. Food Chem., 1993, 41, 10, 1693-1697, https://doi.org/10.1021/jf00034a033 . [all data]

Mahattanatawee K., Perez-Cacho P.R., et al., 2007
Mahattanatawee K.; Perez-Cacho P.R.; Davenport T.; Rouseff R., Comparison of three lychee cultivar odor profiles using gas chromatography-olfactometry and gas chromatography-sulfur detection, J. Agric. Food Chem., 2007, 55, 5, 1939-1944, https://doi.org/10.1021/jf062925p . [all data]

Quijano, Linares, et al., 2007
Quijano, C.E.; Linares, D.; Pino, J.A., Changes in volatile compounds of fermented cereza agria [Phyllanthus acidus (L.) Skeels] fruit, Flavour Fragr. J., 2007, 22, 5, 392-394, https://doi.org/10.1002/ffj.1810 . [all data]

Gurbuz O., Rouseff J.M., et al., 2006
Gurbuz O.; Rouseff J.M.; Rouseff R.L., Comparison of aroma volatiles in commercial Merlot and Cabernet Sauvignon wines using gas chromatography - Olfactometry and gas chromatography - Mass spectrometry, J. Agric. Food Chem., 2006, 54, 11, 3990-3996, https://doi.org/10.1021/jf053278p . [all data]

Malliaa, Fernandez-Garcia, et al., 2005
Malliaa, S.; Fernandez-Garcia, E.; Bosset, J.O., Comparison of purge and trap and solid phase microextraction techniques for studying the volatile aroma compounds of three European PDO hard cheeses, Int. Dairy J., 2005, 15, 6-9, 741-758, https://doi.org/10.1016/j.idairyj.2004.11.007 . [all data]

Rega, Fournier, et al., 2004
Rega, B.; Fournier, N.; Nicklaus, S.; Guichard, E., Role of pulp in flavor release and sensory perception in orange juice, J. Agric. Food Chem., 2004, 52, 13, 4204-4212, https://doi.org/10.1021/jf035361n . [all data]

Pino, Almora, et al., 2003
Pino, J.; Almora, K.; Marbot, R., Volatile components of papaya (Carica papaya L., maradol variety) fruit, Flavour Fragr. J., 2003, 18, 6, 492-496, https://doi.org/10.1002/ffj.1248 . [all data]

Rega, Fournier, et al., 2003
Rega, B.; Fournier, N.; Guichard, E., Solid phase microextraction (SPME) of orange juice flavor: odor representativeness by direct gas chromatography olfactometry (D-GC-O), J. Agric. Food Chem., 2003, 51, 24, 7092-7099, https://doi.org/10.1021/jf034384z . [all data]

Brunton, Cronin, et al., 2002
Brunton, N.P.; Cronin, D.A.; Monahan, F.J., Volatile components associated with freshly cooked and oxidized off-flavours in turkey breast meat, Flavour Fragr. J., 2002, 17, 5, 327-334, https://doi.org/10.1002/ffj.1087 . [all data]

Wu and Cadwallader, 2002
Wu, Y.-F.G.; Cadwallader, K.R., Characterization of the aroma of a meatlike process flavoring from soybean-based enzyme-hydrolyzed vegetable protein, J. Agric. Food Chem., 2002, 50, 10, 2900-2907, https://doi.org/10.1021/jf0114076 . [all data]

Lee, Suriyaphan, et al., 2001
Lee, G.-H.; Suriyaphan, O.; Cadwallader, K.R., Aroma components of cooked tail meat of American lobster (Homarus americanus), J. Agric. Food Chem., 2001, 49, 9, 4324-4332, https://doi.org/10.1021/jf001523t . [all data]

Liu, Yang, et al., 2001
Liu, T.-T.; Yang, T.-S.; Wu, C.-M., Changes of volatiles in soy sauce-stewed pork during cold storage and reheating, J. Sci. Food Agric., 2001, 81, 15, 1547-1552, https://doi.org/10.1002/jsfa.978 . [all data]

Ott, Fay, et al., 1997
Ott, A.; Fay, L.B.; Chaintreau, A., Determination and origin of the aroma impact compounds of yogurt flavor, J. Agric. Food Chem., 1997, 45, 3, 850-858, https://doi.org/10.1021/jf960508e . [all data]

Shimoda, Peralta, et al., 1996
Shimoda, M.; Peralta, R.R.; Osajima, Y., Headspace gas analysis of fish sauce, J. Agric. Food Chem., 1996, 44, 11, 3601-3605, https://doi.org/10.1021/jf960345u . [all data]

Yu, Wu, et al., 1993
Yu, T.-H.; Wu, C.-M.; Ho, C.-T., Volatile compounds of deep-oil fried, microwave-heated, and oven-baked garlic slices, J. Agric. Food Chem., 1993, 41, 5, 800-805, https://doi.org/10.1021/jf00029a023 . [all data]

Ranau, Kleeberg, et al., 2005
Ranau, R.; Kleeberg, K.K.; Schlegelmilch, M.; Streese, J.; Stegmann, R.; Steinhart, H., Analytical determination of the suitability of different processes for the treatment of odorous waste gas, Waste Management, 2005, 25, 9, 908-916, https://doi.org/10.1016/j.wasman.2005.07.004 . [all data]

Ranau and Steinhart, 2005
Ranau, R.; Steinhart, H., Identification and evaluation of volatile odor-active pollutants from different odor emission sources in the food industry, Eur. Food Res. Technol., 2005, 220, 2, 226-231, https://doi.org/10.1007/s00217-004-1073-4 . [all data]

Klesk and Qian, 2003
Klesk, K.; Qian, M., Preliminary aroma comparison of Marion (Rubus spp. hyb) and Evergreen (R. laciniatus L.) blackberries by dynamic headspace/OSME technique, J. Food Sci., 2003, 68, 2, 697-700, https://doi.org/10.1111/j.1365-2621.2003.tb05734.x . [all data]

Amboni, Junkes, et al., 2002
Amboni, R.D.DeM.C.; Junkes, B. daS.; Yunes, R.A.; Heinzen, V.E.F., Quantitative structure-property relationships study of chromatographic retention indices and normal boiling points for oxo compounds using the semi-empirical topological method, J. Mol. Struct. (Theochem), 2002, 586, 1-3, 71-80, https://doi.org/10.1016/S0166-1280(02)00062-3 . [all data]

Dufka, Malinsky, et al., 1971
Dufka, O.; Malinsky, J.; Vladyka, J., Sorpcni materialy pro plynovou chromatographii - III, Chemicky promysl., 1971, 21/46, 9, 459-463. [all data]

MHA, 9999
MHA, Directorate of ForensicScience., Forensic Toxicology, 9999. [all data]

Leffingwell and Alford, 2011
Leffingwell, J.; Alford, E.D., Volatile constituents of the giant pufball mushroom (Calvatia gigantea), Leffingwell Rep., 2011, 4, 1-17. [all data]

Zenkevich, 2005
Zenkevich, I.G., Experimentally measured retention indices., 2005. [all data]

Buttery, Ling, et al., 1997
Buttery, R.G.; Ling, L.C.; Stern, D.J., Studies on popcorn aroma and flavor volatiles, J. Agric. Food Chem., 1997, 45, 3, 837-843, https://doi.org/10.1021/jf9604807 . [all data]

MacLeod, MacLeod, et al., 1988
MacLeod, A.J.; MacLeod, G.; Subramanian, G., Volatile aroma constitutents of celery, Phytochemistry, 1988, 27, 2, 373-375, https://doi.org/10.1016/0031-9422(88)83101-7 . [all data]

Risticevic, Carasek, et al., 2008
Risticevic, S.; Carasek, E.; Pawliszyn, J., Headspace solid-phase microextraction-gas chromatographic-time-of-flight mass spectrometric methodology for geographical origin verification of coffee, Anal. Chim. Acta, 2008, 617, 1-2, 72-84, https://doi.org/10.1016/j.aca.2008.04.009 . [all data]

Staples and Zeiger, 2008
Staples, E.; Zeiger, K., On-Site Measurements of VOCs and Odors from Metal Casting Operations Using an Ultra-Fast Gas Chromatograph, 2008, retrieved from http://www.estcal.com/TechPapers/Industrial/FoundryOdors.doc. [all data]

Blunden, Aneja, et al., 2005
Blunden, J.; Aneja, V.P.; Lonneman, W.A., Characterization of non-methane volatile organic compounds at swine facilities in eastern North Carolina, Atm. Environ., 2005, 39, 36, 6707-6718, https://doi.org/10.1016/j.atmosenv.2005.03.053 . [all data]

Junkes, Amboni, et al., 2004
Junkes, B.S.; Amboni, R.D.M.C.; Yunes, R.A.; Heinzen, V.E.F., Application of the semi-empirical topological index in quantitative structure-chromatographic retention relationship (QSRR) studies of aliphatic ketones and aldehydes on stationary phases of different polarity, J. Braz. Chem. Soc., 2004, 15, 2, 183-189, https://doi.org/10.1590/S0103-50532004000200005 . [all data]

Vinogradov, 2004
Vinogradov, B.A., Production, composition, properties and application of essential oils, 2004, retrieved from http://viness.narod.ru. [all data]

Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D., Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]

Schuberth, 1994
Schuberth, J., Joint use of retention index and mass spectrum in postmortem tests for volatile organics by headspace capillary gas chromatography with ion-trap detection, J. Chromatogr. A, 1994, 674, 1-2, 63-71, https://doi.org/10.1016/0021-9673(94)85217-0 . [all data]

Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J., Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning, Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111 . [all data]

Weller and Wolf, 1989
Weller, J.-P.; Wolf, M., Massenspektroskopie und Headspace-GC, Beitr. Gerichtl. Med., 1989, 47, 525-532. [all data]

Takeoka, Flath, et al., 1988
Takeoka, G.R.; Flath, R.A.; Güntert, M.; Jennings, W., Nectarine volatiles: vacuum steam distillation versus headspace sampling, J. Agric. Food Chem., 1988, 36, 3, 553-560, https://doi.org/10.1021/jf00081a037 . [all data]

Shibamoto, 1987
Shibamoto, T., Retention Indices in Essential Oil Analysis in Capillary Gas Chromatography in Essential Oil Analysis, Sandra, P.; Bicchi, C., ed(s)., Hutchig Verlag, Heidelberg, New York, 1987, 259-274. [all data]

Flath, Altieri, et al., 1984
Flath, R.A.; Altieri, M.A.; Mon, T.R., Volatile constituents of Amaranthus retroflexus L., J. Agric. Food Chem., 1984, 32, 1, 92-94, https://doi.org/10.1021/jf00121a024 . [all data]

Waggott and Davies, 1984
Waggott, A.; Davies, I.W., Identification of organic pollutants using linear temperature programmed retention indices (LTPRIs) - Part II, 1984, retrieved from http://dwi.defra.gov.uk/research/completed-research/reports/dwi0383.pdf. [all data]

Ramsey and Flanagan, 1982
Ramsey, J.D.; Flanagan, R.J., Detection and Identification of Volatile Organic Compounds in Blood by Headspace Gas Chromatography as an Aid to the Diagnosis of Solvent Abuse, J. Chromatogr., 1982, 240, 2, 423-444, https://doi.org/10.1016/S0021-9673(00)99622-5 . [all data]

Yabumoto, Jennings, et al., 1977
Yabumoto, K.; Jennings, W.G.; Yamaguchi, M., Gas chromatographic retention as identification criteria, Anal. Biochem., 1977, 78, 1, 244-251, https://doi.org/10.1016/0003-2697(77)90029-X . [all data]

Feng, Zhuang, et al., 2011
Feng, T.; Zhuang, H.; Ye, R.; Jin, Z.; Xu, X.; Xie, Z., Analysis of volatile compounds of Mesona Blumes gum/rice extrudates via GC-MS and electronic nose, Sensors and Actuators B: Chemical, 2011, 160, 1, 964-973, https://doi.org/10.1016/j.snb.2011.09.013 . [all data]

Marin, Pozrl, et al., 2008
Marin, K.; Pozrl, T.; Zlatic, E.; Plestenjak, A., A new aroma index to determine the aroma quality of roasted and ground coffee during storage, Food Technol. Biotechnol., 2008, 46, 4, 442-447. [all data]

Xu, Fan, et al., 2007
Xu, Y.; Fan, W.; Qian, M.C., Characterization of Aroma Compounds in Apple Cider Using Solvent-Assisted Flavor Evaporation and Headspace Solid-Phase Microextraction, J. Agric. Food Chem., 2007, 55, 8, 3051-3057, https://doi.org/10.1021/jf0631732 . [all data]

Fan and Qian, 2005
Fan, W.; Qian, M.C., Headspace Solid Phase Microextraction and Gas Chromatography-Olfactometry Dilution Analysis of Young and Aged Chinese Yanghe Daqu Liquors, J. Agric. Food Chem., 2005, 53, 20, 7931-7938, https://doi.org/10.1021/jf051011k . [all data]

Rizzolo, Cambiaghi, et al., 2005
Rizzolo, A.; Cambiaghi, P.; Grassi, M.; Zerbini, P.E., Influence of 1-Methylcyclopropene and Storage Atmosphere on Changes in Volatile Compounds and Fruit Quality of Conference Pears, J. Agric. Food Chem., 2005, 53, 25, 9781-9789, https://doi.org/10.1021/jf051339d . [all data]

Rochat and Chaintreau, 2005
Rochat, S.; Chaintreau, A., Carbonyl Odorants Contributing to the In-Oven Roast Beef Top Note, J. Agric. Food Chem., 2005, 53, 24, 9578-9585, https://doi.org/10.1021/jf058089l . [all data]

Chida, Sone, et al., 2004
Chida, M.; Sone, Y.; Tamura, H., Aroma characteristics of stored tobacco cut leaves analyzed by a high vacuum distillation and canister system, J. Agric. Food Chem., 2004, 52, 26, 7918-7924, https://doi.org/10.1021/jf049223p . [all data]

Ishikawa, Ito, et al., 2004
Ishikawa, M.; Ito, O.; Ishizaki, S.; Kurobayashi, Y.; Fujita, A., Solid-phase aroma concentrate extraction (SPACE ): a new headspace technique for more sensitive analysis of volatiles, Flavour Fragr. J., 2004, 19, 3, 183-187, https://doi.org/10.1002/ffj.1322 . [all data]

Fu, Yoon, et al., 2002
Fu, S.-G.; Yoon, Y.; Basemore, R., Aroma-actie components in fermented bamboo shoots, J. Agric. Food Chem., 2002, 50, 3, 549-554, https://doi.org/10.1021/jf010883t . [all data]

Girard and Durance, 2000
Girard, B.; Durance, T., Headspace volatiles of sockeye and pink salmon as affected by retort process, Food Chem. Toxicol., 2000, 65, 1, 34-39. [all data]

Kotseridis and Baumes, 2000
Kotseridis, Y.; Baumes, R., Identification of impact odorants in Bordeaux red grape juice, in the commercial yeast used for its fermentation, and in the produced wine, J. Agric. Food Chem., 2000, 48, 2, 400-406, https://doi.org/10.1021/jf990565i . [all data]

Tamura, Boonbumrung, et al., 2000
Tamura, H.; Boonbumrung, S.; Yoshizawa, T.; Varanyanond, W., Volatile components of the essential oil in the pulp of four yellow mangoes (Mangifera indica L.) in Thailand, Food Sci. Technol. Res., 2000, 6, 1, 68-73, https://doi.org/10.3136/fstr.6.68 . [all data]

Schlüter, Steinhart, et al., 1999
Schlüter, S.; Steinhart, H.; Schwarz, F.J.; Kirchgessner, M., Changes in the odorants of boiled carp fillet (Cyprinus carpio L.) as affected by increasing methionine levels in feed, J. Agric. Food Chem., 1999, 47, 12, 5146-5150, https://doi.org/10.1021/jf9902604 . [all data]

Umano, Nakahara, et al., 1999
Umano, K.; Nakahara, K.; Shoji, A.; Shibamoto, T., Aroma chemicals isolated and identified from leaves of aloe arborescens Mill. Var. natalensis Berger, J. Agric. Food Chem., 1999, 47, 9, 3702-3705, https://doi.org/10.1021/jf990116i . [all data]

Campeanu, Burcea, et al., 1998
Campeanu, G.; Burcea, M.; Doneanu, C.; Namolosanu, I.; Visan, L., GC/MS characterization of the volatiles isolated from the wines obtained from the indigenous cultivar Feteasca Regala, Analusis, 1998, 26, 2, 93-97, https://doi.org/10.1051/analusis:1998117 . [all data]

Umano, Hagi, et al., 1995
Umano, K.; Hagi, Y.; Nakahara, K.; Shyoji, A.; Shibamoto, T., Volatile chemicals formed in the headspace of a heated D-glucose/L-cysteine Maillard model system, J. Agric. Food Chem., 1995, 43, 8, 2212-2218, https://doi.org/10.1021/jf00056a046 . [all data]

Vernin, Metzger, et al., 1988
Vernin, G.; Metzger, J.; Obretenov, T.; Suon, K.-N.; Fraisse, D., GC/MS (EI,PCI,SIM)-data bank analysis of volatile compounds arising from thermal degradation of glucose-valine amadori intermediates in Flavors and Fragrances: A World Perspective. Proceedings of the 10th International Congress of Essential Oils, Fragrances and Flavors, Lawrence,B.M.; Mookherjee,B.D.; Willis,B.J., ed(s)., Elsevier, New York, 1988, 999-1028. [all data]

Lee, Chong, et al., 2012
Lee, P.-R.; Chong, I.S.-M.; Yu, B.; Curran, P.; Liu, S.-Q., Effect of precursors on volatile compounds in Papaya wine fermented by mixed yeasts, Uncorrected proof, 2012, 000-000. [all data]

Welke, Manfroi, et al., 2012
Welke, J.E.; Manfroi, V.; Zanus, M.; Lazarotto, M.; Zini, C.A., Characterization of the volatile profile of Brazilian merlot wines through comprehensive two dimensional gas chromatography time-of-flight mass spectrometric detection, J. Chromatogr. A, 2012, 1226, 124-139, https://doi.org/10.1016/j.chroma.2012.01.002 . [all data]

Johanningsmeier and McFeeters, 2011
Johanningsmeier, S.D.; McFeeters, R.F., Detection of volatile spoilage metabolites in fermented cucumbers using nontargeted, comprehensive 2-dimensional gas chromatography-time-of-flight mass spectrometry (GCxGCxTOFMS), J. Food Sci., 2011, 76, 1, c168-c177, https://doi.org/10.1111/j.1750-3841.2010.01918.x . [all data]

Miyazaki, Plotto, et al., 2011
Miyazaki, T.; Plotto, A.; Goodner, K.; Gmitter F.G., Distribution of aroma volatile compounds in tangerine hybrids and proposed inheritance, J. Sci. Food Agric., 2011, 91, 3, 449-460, https://doi.org/10.1002/jsfa.4205 . [all data]

Xiao, Dai, et al., 2011
Xiao, Z.; Dai, S.; Niu, Y.; Yu, H.; Zhu, J.; Tian, H.; Gu, Y., Discrimination of Chinese vinegars based on headspace solid-phase microextraction - gas chromatography mass spectrometry of volatile compounds and multivariate analysis, J. Food Sci., 2011, 76, 8, c1125-c1135, https://doi.org/10.1111/j.1750-3841.2011.02356.x . [all data]

Loskos, Hernandez-Orte, et al., 2007
Loskos, N.; Hernandez-Orte, P.; Cacho, J.; Ferreira, V., Release and formation of varietal aroma compounds during alcoholic fermentation from nonfloral grape odorless flavor precursors fractions, J. Agric. Food Chem., 2007, 55, 16, 6674-6684, https://doi.org/10.1021/jf0702343 . [all data]

Viegas and Bassoli, 2007
Viegas, M.C.; Bassoli, D.G., Utilizacao do indice de retencao linear para caracterizacao de compostos volateis em cafe soluvel utilizando GC-MS e coluna HP-Innowax, Quim. Nova, 2007, 30, 8, 2031-2034, https://doi.org/10.1590/S0100-40422007000800040 . [all data]

Kim. J.H., Ahn, et al., 2004
Kim. J.H.; Ahn, H.J.; Yook, H.S.; Kim, K.S.; Rhee, M.S.; Ryu, G.H.; Byun, M.W., Color, flavor, and sensory characteristics of gamma-irradiated salted and fermented anchovy sauce, Radiation Phys. Chem., 2004, 69, 2, 179-187, https://doi.org/10.1016/S0969-806X(03)00400-6 . [all data]

Forney and Jordan, 1998
Forney, C.F.; Jordan, M.A., Induction of volatile compounds in broccoli by postharvest hot-water dips, J. Agric. Food Chem., 1998, 46, 12, 5295-5301, https://doi.org/10.1021/jf980443a . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Gas Chromatography, References