Methanethiol
- Formula: CH4S
- Molecular weight: 48.107
- IUPAC Standard InChIKey: LSDPWZHWYPCBBB-UHFFFAOYSA-N
- CAS Registry Number: 74-93-1
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Methyl mercaptan; Mercaptomethane; CH3SH; Methyl sulfhydrate; Methyl thioalcohol; Mercaptan methylique; Methaanthiol; Methanthiol; Methvtiolo; Methylmercaptaan; Metilmercaptano; Rcra waste number U153; Thiomethanol; UN 1064; Methanethiole
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -22.8 ± 0.59 | kJ/mol | Ccr | Good, Lacina, et al., 1961 |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: F- + CH4S = (F- • CH4S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 143. ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1983 | gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 97.1 | J/mol*K | N/A | Larson and McMahon, 1983 | gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 114. ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1983 | gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M |
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1496. ± 8.4 | kJ/mol | D-EA | Schwartz, Davico, et al., 2000 | gas phase; B |
ΔrH° | 1496. ± 8.4 | kJ/mol | D-EA | Moran and Ellison, 1988 | gas phase; B |
ΔrH° | 1493. ± 9.2 | kJ/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1467. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
CH3S- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1654. ± 11. | kJ/mol | G+TS | Kass, Guo, et al., 1990 | gas phase; Acidity between D2O and Me2NH.; B |
ΔrH° | 1638. ± 32. | kJ/mol | D-EA | Kass, Guo, et al., 1990 | gas phase; Between O2 and SO2. Explains bad anchor in McIver Jr. and Fukuda, 1982; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1624. ± 10. | kJ/mol | IMRB | Kass, Guo, et al., 1990 | gas phase; Acidity between D2O and Me2NH.; B |
By formula: (CH6N+ • 2C2H3N) + CH4S = (CH6N+ • CH4S • 2C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 33. | kJ/mol | PHPMS | Meot-Ner (Mautner) and Sieck, 1985 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84. | J/mol*K | N/A | Meot-Ner (Mautner) and Sieck, 1985 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
10. | 270. | PHPMS | Meot-Ner (Mautner) and Sieck, 1985 | gas phase; Entropy change calculated or estimated; M |
By formula: Cl- + CH4S = (Cl- • CH4S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 65. ± 13. | kJ/mol | IMRB | Staneke, Groothuis, et al., 1995 | gas phase; Chloride affinity comparable to that of CHCl3; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 45. ± 13. | kJ/mol | IMRB | Staneke, Groothuis, et al., 1995 | gas phase; Chloride affinity comparable to that of CHCl3; B |
By formula: C2H3O2- + CH4S = (C2H3O2- • CH4S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 62.3 ± 4.2 | kJ/mol | TDAs | Meot-ner, 1988 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 95.4 | J/mol*K | PHPMS | Meot-ner, 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 34. ± 4.2 | kJ/mol | TDAs | Meot-ner, 1988 | gas phase; B |
By formula: (CH6N+ • C2H3N) + CH4S = (CH6N+ • CH4S • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 41. | kJ/mol | PHPMS | Meot-Ner (Mautner) and Sieck, 1985 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 83.7 | J/mol*K | PHPMS | Meot-Ner (Mautner) and Sieck, 1985 | gas phase; M |
By formula: CH6N+ + CH4S = (CH6N+ • CH4S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 56.1 | kJ/mol | PHPMS | Meot-Ner (Mautner) and Sieck, 1985 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 92.5 | J/mol*K | PHPMS | Meot-Ner (Mautner) and Sieck, 1985 | gas phase; M |
By formula: HI + CH3IS = CH4S + I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -12.0 ± 2.3 | kJ/mol | Eqk | Shum and Benson, 1983 | gas phase; ALS |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
View reactions leading to CH4S+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 9.439 ± 0.005 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 773.4 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 742. | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
ΔfH°(+) ion | 889. ± 8. | kJ/mol | N/A | N/A | |
Quantity | Value | Units | Method | Reference | Comment |
ΔfH(+) ion,0K | 898. ± 8. | kJ/mol | N/A | N/A |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
9.446 ± 0.010 | PI | Nourbakhsh, Norwood, et al., 1991 | LL |
9.4386 | PI | Kutina, Edwards, et al., 1982 | T = 0K; LBLHLM |
9.46 | PE | Kimura, Katsumata, et al., 1981 | LLK |
9.44 | PE | Ogata, Onizuka, et al., 1973 | LLK |
9.44 | PE | Ogata, Onizuka, et al., 1972 | LLK |
9.415 | PE | Kroto and Suffolk, 1972 | LLK |
9.42 | PE | Frost, Herring, et al., 1972 | LLK |
9.44 ± 0.01 | PI | Akopyan, Sergeev, et al., 1970 | RDSH |
9.440 ± 0.005 | PI | Watanabe, Nakayama, et al., 1962 | RDSH |
9.443 ± 0.002 | S | Price, Teegan, et al., 1950 | RDSH |
9.44 | PE | Cradock and Whiteford, 1972 | Vertical value; LLK |
9.44 | PE | Bock, Wagner, et al., 1972 | Vertical value; LLK |
Appearance energy determinations
De-protonation reactions
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1496. ± 8.4 | kJ/mol | D-EA | Schwartz, Davico, et al., 2000 | gas phase; B |
ΔrH° | 1496. ± 8.4 | kJ/mol | D-EA | Moran and Ellison, 1988 | gas phase; B |
ΔrH° | 1493. ± 9.2 | kJ/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1467. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
CH3S- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1654. ± 11. | kJ/mol | G+TS | Kass, Guo, et al., 1990 | gas phase; Acidity between D2O and Me2NH.; B |
ΔrH° | 1638. ± 32. | kJ/mol | D-EA | Kass, Guo, et al., 1990 | gas phase; Between O2 and SO2. Explains bad anchor in McIver Jr. and Fukuda, 1982; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1624. ± 10. | kJ/mol | IMRB | Kass, Guo, et al., 1990 | gas phase; Acidity between D2O and Me2NH.; B |
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
NIST MS number | 86 |
UV/Visible spectrum
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
View spectrum image in SVG format.
Download spectrum in JCAMP-DX format.
Source | Bol'shakov, et al., 1969 |
---|---|
Owner | INEP CP RAS, NIST OSRD Collection (C) 2007 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
Origin | INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS |
Source reference | RAS UV No. 20091 |
Instrument | unknown |
Boiling point | 5.9 |
References
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Good, Lacina, et al., 1961
Good, W.D.; Lacina, J.L.; McCullough, J.P.,
Methanethiol and carbon disulfide: Heats of combustion and formation by rotating-bomb calorimetry,
J. Phys. Chem., 1961, 65, 2229-2231. [all data]
Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B.,
Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements,
J. Am. Chem. Soc., 1983, 105, 2944. [all data]
Wenthold and Squires, 1995
Wenthold, P.G.; Squires, R.R.,
Bond dissociation energies of F2(-) and HF2(-). A gas-phase experimental and G2 theoretical study,
J. Phys. Chem., 1995, 99, 7, 2002, https://doi.org/10.1021/j100007a034
. [all data]
Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P.,
Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions,
J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014
. [all data]
Schwartz, Davico, et al., 2000
Schwartz, R.L.; Davico, G.E.; Lineberger, W.C.,
Negative-ion photoelectron spectroscopy of CH3S-,
J. Electron Spectros. Rel. Phenom., 2000, 108, 1-3, 163-168, https://doi.org/10.1016/S0368-2048(00)00125-0
. [all data]
Moran and Ellison, 1988
Moran, S.; Ellison, G.B.,
Photoelectron Spectroscopy of Sulfur Ions,
J. Phys. Chem., 1988, 92, 7, 1794, https://doi.org/10.1021/j100318a021
. [all data]
Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr.,
The gas phase acidity scale from methanol to phenol,
J. Am. Chem. Soc., 1979, 101, 6047. [all data]
Kass, Guo, et al., 1990
Kass, S.R.; Guo, H.-Z.; Dahlke, G.D.,
The Thiomethyl Anion: Formation, Reactivity, and Thermodynamic Properties,
J. Am. Soc. Mass Spectrom., 1990, 1, 5, 366, https://doi.org/10.1016/1044-0305(90)85016-F
. [all data]
McIver Jr. and Fukuda, 1982
McIver Jr.; Fukuda, E.K.,
Equilibrium Electron Affinities,
Lec. Notes in Chem., 1982, 31, 165. [all data]
Meot-Ner (Mautner) and Sieck, 1985
Meot-Ner (Mautner), M.; Sieck, L.W.,
The Ionic Hydrogen Bond and Ion Solvation. 4. SH+ O and NH+ S Bonds. Correlations with Proton Affinity. Mutual Effects of Weak and Strong Ligands in Mixed Clusters,
J. Phys. Chem., 1985, 89, 24, 5222, https://doi.org/10.1021/j100270a021
. [all data]
Staneke, Groothuis, et al., 1995
Staneke, P.O.; Groothuis, G.; Ingemann, S.; Nibbering, N.M.M.,
Formation, stability and structure of radical anions of chloroform, tetrachloromethane and fluorotrichloromethane in the gas phase,
Int. J. Mass Spectrom. Ion Proc., 1995, 142, 1-2, 83, https://doi.org/10.1016/0168-1176(94)04127-S
. [all data]
Meot-ner, 1988
Meot-ner, M.,
Ionic Hydrogen Bond and Ion Solvation. 6. Interaction Energies of the Acetate Ion with Organic Molecules. Comparison of CH3COO- with Cl-, CN-, and SH-,
J. Am. Chem. Soc., 1988, 110, 12, 3854, https://doi.org/10.1021/ja00220a022
. [all data]
Shum and Benson, 1983
Shum, L.G.S.; Benson, S.W.,
Thermochemnistry and kinetics of the reaction of methyl mercaptan with iodine,
Int. J. Chem. Kinet., 1983, 15, 433-453. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Nourbakhsh, Norwood, et al., 1991
Nourbakhsh, S.; Norwood, K.; Yin, H.-M.; Liao, C.-L.; Ng, C.Y.,
Vacuum ultraviolet photodissociation and photoionization studies of CH3SH and SH,
J. Chem. Phys., 1991, 95, 946. [all data]
Kutina, Edwards, et al., 1982
Kutina, R.; Edwards, A.; Goodman, G.; Berkowitz, J.,
Photoionization mass spectrometry of CH3SH, CD3SH, and CH3SD: Heats of formation of CH3S+ (CH2SH+), CH2S+, CH2S, and HCS+,
J. Chem. Phys., 1982, 77, 5508. [all data]
Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S.,
Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules
in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]
Ogata, Onizuka, et al., 1973
Ogata, H.; Onizuka, H.; Nihei, Y.; Kamada, H.,
The photoelectron spectra of alcohols, mercaptans and amines,
Bull. Chem. Soc. Jpn., 1973, 46, 3036. [all data]
Ogata, Onizuka, et al., 1972
Ogata, H.; Onizuka, H.; Nihei, Y.; Kamada, H.,
On the first bands of the photoelectron spectra of amines, alcohols, and mercaptans,
Chem. Lett., 1972, 895. [all data]
Kroto and Suffolk, 1972
Kroto, H.W.; Suffolk, R.J.,
The photoelectron spectrum of an unstable species in the pyrolysis products of dimethyldisulphide,
Chem. Phys. Lett., 1972, 15, 545. [all data]
Frost, Herring, et al., 1972
Frost, D.C.; Herring, F.G.; Katrib, A.; McDowell, C.A.; McLean, R.A.N.,
Photoelectron spectra of CH3SH, (CH3)2S, C6H5SH, and C6H5CH2SH; the bonding between sulfur and carbon,
J. Phys. Chem., 1972, 76, 1030. [all data]
Akopyan, Sergeev, et al., 1970
Akopyan, M.E.; Sergeev, Yu.L.; Vilesov, F.I.,
Photionization in vapors of aliphatic sulfides. I. Methymercaptan, dimethyl and diethyl sulfides,
High Energy Chem., 1970, 4, 265, In original 305. [all data]
Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J.,
Ionization potentials of some molecules,
J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]
Price, Teegan, et al., 1950
Price, W.C.; Teegan, J.P.; Walsh, A.D.,
The far ultra-violet absorption spectra of the hydrides and deuterides of sulphur, selenium and tellurium and of the methyl derivatives of hydrogen sulphide,
Proc. Roy. Soc. (London), 1950, A201, 600. [all data]
Cradock and Whiteford, 1972
Cradock, S.; Whiteford, R.A.,
Photoelectron spectra of the methyl, silyl and germyl derivatives of the group VI elements,
J. Chem. Soc. Faraday Trans. 2, 1972, 68, 281. [all data]
Bock, Wagner, et al., 1972
Bock, H.; Wagner, G.; Kroner, J.,
Photoelektronenspektren und molekuleigenschaften, XIV. Die delokalisation des schwefel-elektronenpaar in CH3S-substituierten aromaten,
Chem. Ber., 1972, 105, 3850. [all data]
Ruska and Franklin, 1969
Ruska, W.E.W.; Franklin, J.L.,
Ion-molecule reactions in hydrogen sulfide, methanethiol and 2-thiapropane,
Intern. J. Mass Spectrom. Ion Phys., 1969, 3, 221. [all data]
Holmes, Lossing, et al., 1983
Holmes, J.L.; Lossing, F.P.; Terlouw, J.K.; Burgers, P.C.,
Novel gas-phase ions. The radical cations [CH2XH]+. (X = F, Cl, Br, I, OH, NH2, SH) and [CH2CH2NH3]+.,
Can. J. Chem., 1983, 61, 2305. [all data]
Taft, Martin, et al., 1965
Taft, R.W.; Martin, R.H.; Lampe, F.W.,
Stabilization energies of substituted methyl cations. The effect of strong demand on the resonance order,
J. Am. Chem. Soc., 1965, 87, 2490. [all data]
Bol'shakov, et al., 1969
Bol'shakov, G.F., et al.,
Ultraviolet spectra of heteroorganic compounds, 1969, 83. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, References
- Symbols used in this document:
AE Appearance energy IE (evaluated) Recommended ionization energy T Temperature ΔfH(+) ion,0K Enthalpy of formation of positive ion at 0K ΔfH°gas Enthalpy of formation of gas at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.