Methanethiol

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Δfgas-5.46 ± 0.14kcal/molCcrGood, Lacina, et al., 1961 

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-11.15 ± 0.13kcal/molCcrGood, Lacina, et al., 1961ALS
Quantity Value Units Method Reference Comment
Δcliquid-363.47 ± 0.12kcal/molCcrGood, Lacina, et al., 1961Reanalyzed by Cox and Pilcher, 1970, Original value = -363.0 ± 0.12 kcal/mol; ALS
Quantity Value Units Method Reference Comment
liquid39.011cal/mol*KN/ARussell, Osborne, et al., 1942DH

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
21.28280.Russell, Osborne, et al., 1942T = 15 to 280 K.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
DH - Eugene S. Domalski and Elizabeth D. Hearing
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis

Quantity Value Units Method Reference Comment
Tboil279.1 ± 0.5KAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus150.18KN/AMorris, Lanum, et al., 1960Uncertainty assigned by TRC = 0.02 K; TRC
Tfus150.1KN/ATeets, 1934Uncertainty assigned by TRC = 0.5 K; TRC
Tfus150.1KN/AEllis and Reid, 1932Uncertainty assigned by TRC = 0.4 K; TRC
Tfus152.15KN/ATimmermans and Mattaar, 1921Uncertainty assigned by TRC = 0.6 K; TRC
Quantity Value Units Method Reference Comment
Ttriple150.14KN/ARussell, Osborne, et al., 1942, 2Crystal phase 1 phase; Uncertainty assigned by TRC = 0.05 K; TRC
Ttriple150.16KN/ARussell, Osborne, et al., 1942, 2Crystal phase 1 phase; Uncertainty assigned by TRC = 0.03 K; TRC
Quantity Value Units Method Reference Comment
Tc469.9KN/ABerthoud and Brum, 1924Uncertainty assigned by TRC = 0.4 K; by disappearance of meniscus turbidity; TRC
Tc469.9KN/ABerthoud and Brum, 1924Uncertainty assigned by TRC = 0.4 K; by appearance of turbidity; TRC
Quantity Value Units Method Reference Comment
Pc71.35atmN/ABerthoud and Brum, 1924Uncertainty assigned by TRC = 0.5000 atm; vapor pressure at Tc; TRC
Quantity Value Units Method Reference Comment
ρc6.891mol/lN/ABerthoud and Brum, 1924Uncertainty assigned by TRC = 0.04 mol/l; TRC
Quantity Value Units Method Reference Comment
Δvap5.69kcal/molN/AReid, 1972AC
Δvap5.69 ± 0.02kcal/molVGood, Lacina, et al., 1961ALS
Δvap5.71kcal/molN/AGood, Lacina, et al., 1961DRB

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
5.8719279.12N/ARussell, Osborne, et al., 1942P = 101.325 kPa; DH
6.50223.N/ADykyj, Svoboda, et al., 1999Based on data from 208. to 298. K.; AC
6.02359.AStephenson and Malanowski, 1987Based on data from 267. to 359. K.; AC
6.14268.AStephenson and Malanowski, 1987Based on data from 221. to 283. K.; AC
5.66360.AStephenson and Malanowski, 1987Based on data from 345. to 424. K.; AC
5.78429.AStephenson and Malanowski, 1987Based on data from 414. to 470. K.; AC
6.17264.N/AStephenson and Malanowski, 1987Based on data from 222. to 279. K. See also Russell, Osborne, et al., 1942.; AC

Entropy of vaporization

ΔvapS (cal/mol*K) Temperature (K) Reference Comment
21.04279.12Russell, Osborne, et al., 1942P; DH

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
279.9 to 458.4.348101122.494-21.748Stull, 1947Coefficents calculated by NIST from author's data.
221.87 to 279.134.186301031.431-32.72Russell, Osborne, et al., 1942Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Reference Comment
1.4150.2Domalski and Hearing, 1996AC

Entropy of fusion

ΔfusS (cal/mol*K) Temperature (K) Reference Comment
0.380137.6Domalski and Hearing, 1996CAL
9.400150.2

Enthalpy of phase transition

ΔHtrs (kcal/mol) Temperature (K) Initial Phase Final Phase Reference Comment
0.05251137.6crystaline, IIcrystaline, IRussell, Osborne, et al., 1942DH
1.411150.16crystaline, IliquidRussell, Osborne, et al., 1942DH

Entropy of phase transition

ΔStrs (cal/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
0.382137.6crystaline, IIcrystaline, IRussell, Osborne, et al., 1942DH
9.398150.16crystaline, IliquidRussell, Osborne, et al., 1942DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Fluorine anion + Methanethiol = (Fluorine anion • Methanethiol)

By formula: F- + CH4S = (F- • CH4S)

Quantity Value Units Method Reference Comment
Δr34.2 ± 2.0kcal/molIMRELarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M
Quantity Value Units Method Reference Comment
Δr23.2cal/mol*KN/ALarson and McMahon, 1983gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
Δr27.3 ± 2.0kcal/molIMRELarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M

MeS anion + Hydrogen cation = Methanethiol

By formula: CH3S- + H+ = CH4S

Quantity Value Units Method Reference Comment
Δr357.6 ± 2.0kcal/molD-EASchwartz, Davico, et al., 2000gas phase; B
Δr357.5 ± 2.0kcal/molD-EAMoran and Ellison, 1988gas phase; B
Δr356.9 ± 2.2kcal/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Quantity Value Units Method Reference Comment
Δr350.6 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B

CH3S- + Hydrogen cation = Methanethiol

By formula: CH3S- + H+ = CH4S

Quantity Value Units Method Reference Comment
Δr395.3 ± 2.6kcal/molG+TSKass, Guo, et al., 1990gas phase; Acidity between D2O and Me2NH.; B
Δr391.6 ± 7.7kcal/molD-EAKass, Guo, et al., 1990gas phase; Between O2 and SO2. Explains bad anchor in McIver Jr. and Fukuda, 1982; B
Quantity Value Units Method Reference Comment
Δr388.2 ± 2.5kcal/molIMRBKass, Guo, et al., 1990gas phase; Acidity between D2O and Me2NH.; B

(CH6N+ • 2Acetonitrile) + Methanethiol = (CH6N+ • Methanethiol • 2Acetonitrile)

By formula: (CH6N+ • 2C2H3N) + CH4S = (CH6N+ • CH4S • 2C2H3N)

Quantity Value Units Method Reference Comment
Δr7.8kcal/molPHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr20.cal/mol*KN/AMeot-Ner (Mautner) and Sieck, 1985gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
2.4270.PHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; Entropy change calculated or estimated; M

Chlorine anion + Methanethiol = (Chlorine anion • Methanethiol)

By formula: Cl- + CH4S = (Cl- • CH4S)

Quantity Value Units Method Reference Comment
Δr15.5 ± 3.0kcal/molIMRBStaneke, Groothuis, et al., 1995gas phase; Chloride affinity comparable to that of CHCl3; B
Quantity Value Units Method Reference Comment
Δr10.8 ± 3.0kcal/molIMRBStaneke, Groothuis, et al., 1995gas phase; Chloride affinity comparable to that of CHCl3; B

MeCO2 anion + Methanethiol = (MeCO2 anion • Methanethiol)

By formula: C2H3O2- + CH4S = (C2H3O2- • CH4S)

Quantity Value Units Method Reference Comment
Δr14.9 ± 1.0kcal/molTDAsMeot-ner, 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Δr22.8cal/mol*KPHPMSMeot-ner, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr8.1 ± 1.0kcal/molTDAsMeot-ner, 1988gas phase; B

(CH6N+ • Acetonitrile) + Methanethiol = (CH6N+ • Methanethiol • Acetonitrile)

By formula: (CH6N+ • C2H3N) + CH4S = (CH6N+ • CH4S • C2H3N)

Quantity Value Units Method Reference Comment
Δr9.9kcal/molPHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr20.0cal/mol*KPHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; M

CH6N+ + Methanethiol = (CH6N+ • Methanethiol)

By formula: CH6N+ + CH4S = (CH6N+ • CH4S)

Quantity Value Units Method Reference Comment
Δr13.4kcal/molPHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr22.1cal/mol*KPHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; M

Hydrogen iodide + Methylsulfenyliodide = Methanethiol + Iodine

By formula: HI + CH3IS = CH4S + I2

Quantity Value Units Method Reference Comment
Δr-2.88 ± 0.54kcal/molEqkShum and Benson, 1983gas phase; ALS

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
0.202800.MN/A 
0.71 EN/ACalculated molecular structure relationship.
0.393100.MN/A 
0.261600.XN/A 
0.33 MN/A 

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Ion clustering data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to CH4S+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)9.439 ± 0.005eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)184.8kcal/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity177.kcal/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Δf(+) ion213. ± 2.kcal/molN/AN/A 
Quantity Value Units Method Reference Comment
ΔfH(+) ion,0K215. ± 2.kcal/molN/AN/A 

Ionization energy determinations

IE (eV) Method Reference Comment
9.446 ± 0.010PINourbakhsh, Norwood, et al., 1991LL
9.4386PIKutina, Edwards, et al., 1982T = 0K; LBLHLM
9.46PEKimura, Katsumata, et al., 1981LLK
9.44PEOgata, Onizuka, et al., 1973LLK
9.44PEOgata, Onizuka, et al., 1972LLK
9.415PEKroto and Suffolk, 1972LLK
9.42PEFrost, Herring, et al., 1972LLK
9.44 ± 0.01PIAkopyan, Sergeev, et al., 1970RDSH
9.440 ± 0.005PIWatanabe, Nakayama, et al., 1962RDSH
9.443 ± 0.002SPrice, Teegan, et al., 1950RDSH
9.44PECradock and Whiteford, 1972Vertical value; LLK
9.44PEBock, Wagner, et al., 1972Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
CHS+≤13.55 ± 0.04H+H2PIKutina, Edwards, et al., 1982LBLHLM
CHS+≤13.61 ± 0.04H+H2PIKutina, Edwards, et al., 1982T = 0K; LBLHLM
CHS+15.8 ± 0.5?EIRuska and Franklin, 1969RDSH
CH2S+10.58 ± 0.05H2PINourbakhsh, Norwood, et al., 1991LL
CH2S+10.61 ± 0.05H2PIKutina, Edwards, et al., 1982T = 0K; LBLHLM
CH2S+10.55 ± 0.05H2PIKutina, Edwards, et al., 1982LBLHLM
CH2S+10.8 ± 0.1H2PIAkopyan, Sergeev, et al., 1970RDSH
CH2S+[HCSH+]~11.51H2PIKutina, Edwards, et al., 1982LBLHLM
CH2S+[HCSH+]~11.57H2PIKutina, Edwards, et al., 1982T = 0K; LBLHLM
CH3+13.296 ± 0.021SHPIKutina, Edwards, et al., 1982LBLHLM
CH3+13.357 ± 0.021SHPIKutina, Edwards, et al., 1982T = 0K; LBLHLM
CH3S+11.23 ± 0.05HPINourbakhsh, Norwood, et al., 1991LL
CH3S+11.48 ± 0.05HEIHolmes, Lossing, et al., 1983LBLHLM
CH3S+11.550 ± 0.005HPIKutina, Edwards, et al., 1982LBLHLM
CH3S+11.611 ± 0.005HPIKutina, Edwards, et al., 1982T = 0K; LBLHLM
CH3S+11.37 ± 0.05HPIAkopyan, Sergeev, et al., 1970RDSH
CH3S+11.6 ± 0.1HEITaft, Martin, et al., 1965RDSH

De-protonation reactions

MeS anion + Hydrogen cation = Methanethiol

By formula: CH3S- + H+ = CH4S

Quantity Value Units Method Reference Comment
Δr357.6 ± 2.0kcal/molD-EASchwartz, Davico, et al., 2000gas phase; B
Δr357.5 ± 2.0kcal/molD-EAMoran and Ellison, 1988gas phase; B
Δr356.9 ± 2.2kcal/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Quantity Value Units Method Reference Comment
Δr350.6 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B

CH3S- + Hydrogen cation = Methanethiol

By formula: CH3S- + H+ = CH4S

Quantity Value Units Method Reference Comment
Δr395.3 ± 2.6kcal/molG+TSKass, Guo, et al., 1990gas phase; Acidity between D2O and Me2NH.; B
Δr391.6 ± 7.7kcal/molD-EAKass, Guo, et al., 1990gas phase; Between O2 and SO2. Explains bad anchor in McIver Jr. and Fukuda, 1982; B
Quantity Value Units Method Reference Comment
Δr388.2 ± 2.5kcal/molIMRBKass, Guo, et al., 1990gas phase; Acidity between D2O and Me2NH.; B

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

CH6N+ + Methanethiol = (CH6N+ • Methanethiol)

By formula: CH6N+ + CH4S = (CH6N+ • CH4S)

Quantity Value Units Method Reference Comment
Δr13.4kcal/molPHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr22.1cal/mol*KPHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; M

(CH6N+ • Acetonitrile) + Methanethiol = (CH6N+ • Methanethiol • Acetonitrile)

By formula: (CH6N+ • C2H3N) + CH4S = (CH6N+ • CH4S • C2H3N)

Quantity Value Units Method Reference Comment
Δr9.9kcal/molPHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr20.0cal/mol*KPHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; M

(CH6N+ • 2Acetonitrile) + Methanethiol = (CH6N+ • Methanethiol • 2Acetonitrile)

By formula: (CH6N+ • 2C2H3N) + CH4S = (CH6N+ • CH4S • 2C2H3N)

Quantity Value Units Method Reference Comment
Δr7.8kcal/molPHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr20.cal/mol*KN/AMeot-Ner (Mautner) and Sieck, 1985gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
2.4270.PHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; Entropy change calculated or estimated; M

MeCO2 anion + Methanethiol = (MeCO2 anion • Methanethiol)

By formula: C2H3O2- + CH4S = (C2H3O2- • CH4S)

Quantity Value Units Method Reference Comment
Δr14.9 ± 1.0kcal/molTDAsMeot-ner, 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Δr22.8cal/mol*KPHPMSMeot-ner, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr8.1 ± 1.0kcal/molTDAsMeot-ner, 1988gas phase; B

Chlorine anion + Methanethiol = (Chlorine anion • Methanethiol)

By formula: Cl- + CH4S = (Cl- • CH4S)

Quantity Value Units Method Reference Comment
Δr15.5 ± 3.0kcal/molIMRBStaneke, Groothuis, et al., 1995gas phase; Chloride affinity comparable to that of CHCl3; B
Quantity Value Units Method Reference Comment
Δr10.8 ± 3.0kcal/molIMRBStaneke, Groothuis, et al., 1995gas phase; Chloride affinity comparable to that of CHCl3; B

Fluorine anion + Methanethiol = (Fluorine anion • Methanethiol)

By formula: F- + CH4S = (F- • CH4S)

Quantity Value Units Method Reference Comment
Δr34.2 ± 2.0kcal/molIMRELarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M
Quantity Value Units Method Reference Comment
Δr23.2cal/mol*KN/ALarson and McMahon, 1983gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
Δr27.3 ± 2.0kcal/molIMRELarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M

Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
NIST MS number 86

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


UV/Visible spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Victor Talrose, Alexander N. Yermakov, Alexy A. Usov, Antonina A. Goncharova, Axlexander N. Leskin, Natalia A. Messineva, Natalia V. Trusova, Margarita V. Efimkina

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

UVVis spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Source Bol'shakov, et al., 1969
Owner INEP CP RAS, NIST OSRD
Collection (C) 2007 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS
Source reference RAS UV No. 20091
Instrument unknown
Boiling point 5.9

Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedSE-3042.400.Rudenko, Mal'tsev, et al., 1985Column length: 3. m
PackedSqualane60.401.Zygmunt and Staszewski, 1981Chromosorb W DMCS; Column length: 2. m
PackedSqualane80.401.Zygmunt and Staszewski, 1981Chromosorb W DMCS; Column length: 2. m
PackedSqualane27.393.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane49.396.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane67.398.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane86.401.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm

Van Den Dool and Kratz RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-5MS464.Bonaiti, Irlinger, et al., 200530. m/0.25 mm/0.25 μm, He; Program: 5C(8min) => 3C/min => 20C => 10C/min => 150C(10min)
CapillaryHP-5464.Engel, Baty, et al., 200230. m/0.25 mm/0.25 μm, He; Program: 5C(5min) => 3C/min => 20C => 5C/min => 100C 15C/min => 150C (5min)

Van Den Dool and Kratz RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax643.Wu and Cadwallader, 200230. m/0.53 mm/1. μm, He, 40. C @ 5. min, 10. K/min, 200. C @ 30. min

Van Den Dool and Kratz RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillarySupelcowax-10694.Majcher and Jelen, 200730. m/0.25 mm/0.25 μm; Program: 40C(2min) => 40C/min => 60C(2min) => 5C/min => 240C
CapillarySupelcowax-10695.Majcher and Jelén, 200530. m/0.25 mm/0.25 μm, He; Program: 40C(2min) => 40C/min => 60(2min)C => 5C/min => 240C

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-5473.Cais-Sokolinska, Majcher, et al., 201125. m/0.20 mm/0.33 μm, Helium, 50. C @ 1. min, 20. K/min; Tend: 240. C
CapillaryOV-101414.Zenkevich, 200525. m/0.20 mm/0.10 μm, N2/He, 6. K/min; Tstart: 50. C; Tend: 250. C
CapillaryPONA414.Yang, Wang, et al., 200450. m/0.20 mm/0.50 μm, N2, 2. K/min; Tstart: 35. C; Tend: 170. C
CapillaryPONA460.Yang, Wang, et al., 200350. m/0.20 mm/0.50 μm, 2. K/min; Tstart: 30. C; Tend: 150. C
CapillaryDB-1430.Hansen, Buttery, et al., 199230. C @ 25. min, 4. K/min, 200. C @ 20. min; Column length: 60. m; Column diameter: 0.32 mm

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-1444.Chantreau, Rochat, et al., 200620. m/0.18 mm/0.18 μm; Program: not specified
CapillaryPONA461.Yang, Wang, et al., 200350. m/0.20 mm/0.50 μm; Program: not specified
CapillaryPolydimethyl siloxanes414.Zenkevich, 1998Program: not specified
CapillaryPolydimethyl siloxanes414.Zenkevich and Chupalov, 1996Program: not specified
CapillarySPB-1414.Nedjma and Maujean, 199530. m/0.32 mm/4. μm, H2; Program: 35(1)-10 -> 55-25 ->250
CapillaryDB-1460.Kawai, Ishida, et al., 199160. m/0.25 mm/0.25 μm; Program: not specified

Normal alkane RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryZB-Wax688.Marin, Pozrl, et al., 200860. m/0.32 mm/0.50 μm, Helium, 40. C @ 5. min, 4. K/min, 220. C @ 5. min
CapillaryHP-Innowax640.Senger-Emonnot, Rochard, et al., 200660. m/0.32 mm/0.5 μm, He, 2. K/min, 220. C @ 10. min; Tstart: 60. C
CapillaryDB-Wax675.Spadone, Matthey-Doret, et al., 200660. m/0.25 mm/0.25 μm, Helium, 35. C @ 3. min, 6. K/min, 240. C @ 10. min
CapillaryTC-Wax702.Ishizaki, Tachihara, et al., 200560. m/0.25 mm/0.25 μm, N2, 3. K/min, 220. C @ 40. min; Tstart: 70. C
CapillaryTC-Wax700.Ishikawa, Ito, et al., 200460. m/0.25 mm/0.5 μm, He, 40. C @ 8. min, 3. K/min; Tend: 230. C
CapillaryDB-Wax690.Kumazawa and Masuda, 200360. m/0.25 mm/0.25 μm, He, 3. K/min; Tstart: 40. C; Tend: 210. C
CapillaryDB-Wax696.Kumazawa and Masuda, 200330. m/0.25 mm/0.25 μm, He, 3. K/min; Tstart: 40. C; Tend: 210. C
CapillaryDB-Wax655.Cadwallader and Heo, 200130. m/0.53 mm/1. μm, He, 40. C @ 5. min, 6. K/min, 225. C @ 30. min
CapillarySupelcowax-10668.Girard and Durance, 200060. m/0.25 mm/0.25 μm, He, 35. C @ 10. min, 4. K/min; Tend: 200. C
CapillaryDB-Wax679.Schlüter, Steinhart, et al., 199960. m/0.32 mm/0.25 μm, He, 34. C @ 3. min, 5. K/min, 200. C @ 10. min
CapillaryDB-Wax699.Umano, Hagi, et al., 1995He, 40. C @ 2. min, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 200. C

Normal alkane RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryTC-Wax702.Kraft and Switt, 2005Program: not specified
CapillaryTC-Wax702.Tachihara, Ishizaki, et al., 2004Program: not specified

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Good, Lacina, et al., 1961
Good, W.D.; Lacina, J.L.; McCullough, J.P., Methanethiol and carbon disulfide: Heats of combustion and formation by rotating-bomb calorimetry, J. Phys. Chem., 1961, 65, 2229-2231. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Russell, Osborne, et al., 1942
Russell, H., Jr.; Osborne, D.W.; Yost, D.M., The heat capacity, entropy, heats of fusion, transition, and vaporization and vapor pressures of methyl mercaptan, J. Am. Chem. Soc., 1942, 64, 165-169. [all data]

Morris, Lanum, et al., 1960
Morris, J.C.; Lanum, W.J.; Helm, R.V.; Haines, W.E.; Cook, G.L.; Ball, J.S., Purification and Properties of Ten Organic Sulfur Compounds, J. Chem. Eng. Data, 1960, 5, 112-6. [all data]

Teets, 1934
Teets, D.E., The Relation of the Melting Point to the Number of Carbon Atoms in a Series of Normal Mercaptans, J. Am. Chem. Soc., 1934, 56, 1143. [all data]

Ellis and Reid, 1932
Ellis, L.M.; Reid, E.E., The Preparation and Properties of A Double Series of Aliphatic Mercaptans, J. Am. Chem. Soc., 1932, 54, 1674. [all data]

Timmermans and Mattaar, 1921
Timmermans, J.; Mattaar, J.F., Freezing points of orgainic substances VI. New experimental determinations., Bull. Soc. Chim. Belg., 1921, 30, 213. [all data]

Russell, Osborne, et al., 1942, 2
Russell, H.; Osborne, D.W.; Yost, D.M., The Heat Capacity, Entropy, Heats of Fusion, Transition and Vaporization and Vapor Pressures of Methyl Mercaptan, J. Am. Chem. Soc., 1942, 64, 165-9. [all data]

Berthoud and Brum, 1924
Berthoud, A.; Brum, R., Physical Properties of Some Organic Compounds., J. Chim. Phys. Phys.-Chim. Biol., 1924, 21, 143-60. [all data]

Reid, 1972
Reid, Robert C., Handbook on vapor pressure and heats of vaporization of hydrocarbons and related compounds, R. C. Wilhort and B. J. Zwolinski, Texas A Research Foundation. College Station, Texas(1971). 329 pages.$10.00, AIChE J., 1972, 18, 6, 1278-1278, https://doi.org/10.1002/aic.690180637 . [all data]

Dykyj, Svoboda, et al., 1999
Dykyj, J.; Svoboda, J.; Wilhoit, R.C.; Frenkel, M.L.; Hall, K.R., Vapor Pressure of Chemicals: Part A. Vapor Pressure and Antoine Constants for Hydrocarbons and Sulfur, Selenium, Tellurium and Hydrogen Containing Organic Compounds, Springer, Berlin, 1999, 373. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B., Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements, J. Am. Chem. Soc., 1983, 105, 2944. [all data]

Wenthold and Squires, 1995
Wenthold, P.G.; Squires, R.R., Bond dissociation energies of F2(-) and HF2(-). A gas-phase experimental and G2 theoretical study, J. Phys. Chem., 1995, 99, 7, 2002, https://doi.org/10.1021/j100007a034 . [all data]

Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P., Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions, J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014 . [all data]

Schwartz, Davico, et al., 2000
Schwartz, R.L.; Davico, G.E.; Lineberger, W.C., Negative-ion photoelectron spectroscopy of CH3S-, J. Electron Spectros. Rel. Phenom., 2000, 108, 1-3, 163-168, https://doi.org/10.1016/S0368-2048(00)00125-0 . [all data]

Moran and Ellison, 1988
Moran, S.; Ellison, G.B., Photoelectron Spectroscopy of Sulfur Ions, J. Phys. Chem., 1988, 92, 7, 1794, https://doi.org/10.1021/j100318a021 . [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Kass, Guo, et al., 1990
Kass, S.R.; Guo, H.-Z.; Dahlke, G.D., The Thiomethyl Anion: Formation, Reactivity, and Thermodynamic Properties, J. Am. Soc. Mass Spectrom., 1990, 1, 5, 366, https://doi.org/10.1016/1044-0305(90)85016-F . [all data]

McIver Jr. and Fukuda, 1982
McIver Jr.; Fukuda, E.K., Equilibrium Electron Affinities, Lec. Notes in Chem., 1982, 31, 165. [all data]

Meot-Ner (Mautner) and Sieck, 1985
Meot-Ner (Mautner), M.; Sieck, L.W., The Ionic Hydrogen Bond and Ion Solvation. 4. SH+ O and NH+ S Bonds. Correlations with Proton Affinity. Mutual Effects of Weak and Strong Ligands in Mixed Clusters, J. Phys. Chem., 1985, 89, 24, 5222, https://doi.org/10.1021/j100270a021 . [all data]

Staneke, Groothuis, et al., 1995
Staneke, P.O.; Groothuis, G.; Ingemann, S.; Nibbering, N.M.M., Formation, stability and structure of radical anions of chloroform, tetrachloromethane and fluorotrichloromethane in the gas phase, Int. J. Mass Spectrom. Ion Proc., 1995, 142, 1-2, 83, https://doi.org/10.1016/0168-1176(94)04127-S . [all data]

Meot-ner, 1988
Meot-ner, M., Ionic Hydrogen Bond and Ion Solvation. 6. Interaction Energies of the Acetate Ion with Organic Molecules. Comparison of CH3COO- with Cl-, CN-, and SH-, J. Am. Chem. Soc., 1988, 110, 12, 3854, https://doi.org/10.1021/ja00220a022 . [all data]

Shum and Benson, 1983
Shum, L.G.S.; Benson, S.W., Thermochemnistry and kinetics of the reaction of methyl mercaptan with iodine, Int. J. Chem. Kinet., 1983, 15, 433-453. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Nourbakhsh, Norwood, et al., 1991
Nourbakhsh, S.; Norwood, K.; Yin, H.-M.; Liao, C.-L.; Ng, C.Y., Vacuum ultraviolet photodissociation and photoionization studies of CH3SH and SH, J. Chem. Phys., 1991, 95, 946. [all data]

Kutina, Edwards, et al., 1982
Kutina, R.; Edwards, A.; Goodman, G.; Berkowitz, J., Photoionization mass spectrometry of CH3SH, CD3SH, and CH3SD: Heats of formation of CH3S+ (CH2SH+), CH2S+, CH2S, and HCS+, J. Chem. Phys., 1982, 77, 5508. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Ogata, Onizuka, et al., 1973
Ogata, H.; Onizuka, H.; Nihei, Y.; Kamada, H., The photoelectron spectra of alcohols, mercaptans and amines, Bull. Chem. Soc. Jpn., 1973, 46, 3036. [all data]

Ogata, Onizuka, et al., 1972
Ogata, H.; Onizuka, H.; Nihei, Y.; Kamada, H., On the first bands of the photoelectron spectra of amines, alcohols, and mercaptans, Chem. Lett., 1972, 895. [all data]

Kroto and Suffolk, 1972
Kroto, H.W.; Suffolk, R.J., The photoelectron spectrum of an unstable species in the pyrolysis products of dimethyldisulphide, Chem. Phys. Lett., 1972, 15, 545. [all data]

Frost, Herring, et al., 1972
Frost, D.C.; Herring, F.G.; Katrib, A.; McDowell, C.A.; McLean, R.A.N., Photoelectron spectra of CH3SH, (CH3)2S, C6H5SH, and C6H5CH2SH; the bonding between sulfur and carbon, J. Phys. Chem., 1972, 76, 1030. [all data]

Akopyan, Sergeev, et al., 1970
Akopyan, M.E.; Sergeev, Yu.L.; Vilesov, F.I., Photionization in vapors of aliphatic sulfides. I. Methymercaptan, dimethyl and diethyl sulfides, High Energy Chem., 1970, 4, 265, In original 305. [all data]

Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J., Ionization potentials of some molecules, J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]

Price, Teegan, et al., 1950
Price, W.C.; Teegan, J.P.; Walsh, A.D., The far ultra-violet absorption spectra of the hydrides and deuterides of sulphur, selenium and tellurium and of the methyl derivatives of hydrogen sulphide, Proc. Roy. Soc. (London), 1950, A201, 600. [all data]

Cradock and Whiteford, 1972
Cradock, S.; Whiteford, R.A., Photoelectron spectra of the methyl, silyl and germyl derivatives of the group VI elements, J. Chem. Soc. Faraday Trans. 2, 1972, 68, 281. [all data]

Bock, Wagner, et al., 1972
Bock, H.; Wagner, G.; Kroner, J., Photoelektronenspektren und molekuleigenschaften, XIV. Die delokalisation des schwefel-elektronenpaar in CH3S-substituierten aromaten, Chem. Ber., 1972, 105, 3850. [all data]

Ruska and Franklin, 1969
Ruska, W.E.W.; Franklin, J.L., Ion-molecule reactions in hydrogen sulfide, methanethiol and 2-thiapropane, Intern. J. Mass Spectrom. Ion Phys., 1969, 3, 221. [all data]

Holmes, Lossing, et al., 1983
Holmes, J.L.; Lossing, F.P.; Terlouw, J.K.; Burgers, P.C., Novel gas-phase ions. The radical cations [CH2XH]+. (X = F, Cl, Br, I, OH, NH2, SH) and [CH2CH2NH3]+., Can. J. Chem., 1983, 61, 2305. [all data]

Taft, Martin, et al., 1965
Taft, R.W.; Martin, R.H.; Lampe, F.W., Stabilization energies of substituted methyl cations. The effect of strong demand on the resonance order, J. Am. Chem. Soc., 1965, 87, 2490. [all data]

Bol'shakov, et al., 1969
Bol'shakov, G.F., et al., Ultraviolet spectra of heteroorganic compounds, 1969, 83. [all data]

Rudenko, Mal'tsev, et al., 1985
Rudenko, G.I.; Mal'tsev, V.V.; Studenichnik, V.N.; Ustinov, E.P., Gas chromatographic analysis of volatile substances evolved into atmosphere from polymer materials, Zh. Anal. Khim., 1985, 40, 6, 1119-1127. [all data]

Zygmunt and Staszewski, 1981
Zygmunt, B.; Staszewski, R., Retention index and gas chromatographic-mass spectrometric identification of thiols in liquified gas, Chem. Anal. (Warsaw), 1981, 26, 109-113. [all data]

Hively and Hinton, 1968
Hively, R.A.; Hinton, R.E., Variation of the retention index with temperature on squalane substrates, J. Gas Chromatogr., 1968, 6, 4, 203-217, https://doi.org/10.1093/chromsci/6.4.203 . [all data]

Bonaiti, Irlinger, et al., 2005
Bonaiti, C.; Irlinger, F.; Spinnler, H.E.; Engel, E., An iterative sensory procedure to select odor-active associations in complex consortia of microorganisms: application to the construction of a cheese model, J. Dairy Sci., 2005, 88, 5, 1671-1684, https://doi.org/10.3168/jds.S0022-0302(05)72839-3 . [all data]

Engel, Baty, et al., 2002
Engel, E.; Baty, C.; le Corre, D.; Souchon, I.; Martin, N., Flavor-active compounds potentially implicated in cooked cauliflower acceptance, J. Agric. Food Chem., 2002, 50, 22, 6459-6467, https://doi.org/10.1021/jf025579u . [all data]

Wu and Cadwallader, 2002
Wu, Y.-F.G.; Cadwallader, K.R., Characterization of the aroma of a meatlike process flavoring from soybean-based enzyme-hydrolyzed vegetable protein, J. Agric. Food Chem., 2002, 50, 10, 2900-2907, https://doi.org/10.1021/jf0114076 . [all data]

Majcher and Jelen, 2007
Majcher, M.A.; Jelen, H.H., Effect of Cysteine and Cystine Addition on Sensory Profile and Potent Odorants of Extruded Potato Snacks, J. Agric. Food Chem., 2007, 55, 14, 5754-5760, https://doi.org/10.1021/jf0703147 . [all data]

Majcher and Jelén, 2005
Majcher, M.A.; Jelén, H.H., Identification of potent odorants formed during the preparation of extruded potato snacks, J. Agric. Food Chem., 2005, 53, 16, 6432-6437, https://doi.org/10.1021/jf050412x . [all data]

Cais-Sokolinska, Majcher, et al., 2011
Cais-Sokolinska, D.; Majcher, M.; Pikul, J.; Bielinska, S.; Czauderma, M.; Wojtowski, J., The effect of Camelia sativa cake diet supplementation on sensory and volatile profiles of ewe's milk, African J. Biotechnol., 2011, 10, 37, 7245-7252. [all data]

Zenkevich, 2005
Zenkevich, I.G., Experimentally measured retention indices., 2005. [all data]

Yang, Wang, et al., 2004
Yang, Y.; Wang, Z.; Zong, B.; Yang, H., Determination of sulfur compounds in fluid catalytic cracking gasoline by gas chromatography with a sulfur chemiluminiscence detector, Chin. J. Chromatogr., 2004, 22, 3, 216-219. [all data]

Yang, Wang, et al., 2003
Yang, Y.-T.; Wang, Z.; Han. J.-H.; Tian, H.-P.; Yang, H.-Y., Determination of sulfur compounds in gasoline fraction of microreactor products by gas chromatography - Atomic emission detector, Petrochemical Technology (Shiyou Huagong), 2003, 32, 11, 995-998. [all data]

Hansen, Buttery, et al., 1992
Hansen, M.; Buttery, R.G.; Stern, D.J.; Cantwell, M.I.; Ling, L.C., Broccoli storage under low-oxygen atmosphere: Identification of higher boiling volatiles, J. Agric. Food Chem., 1992, 40, 5, 850-852, https://doi.org/10.1021/jf00017a029 . [all data]

Chantreau, Rochat, et al., 2006
Chantreau, A.; Rochat, S.; de Saint Laumer, J.-Y., Re-investigation of sulfur impact odorants in roast beef using comprehensive two-dimensional GC-TOF-MS and the GC-SNIF, Developments Food. Sci., 2006, 43, 601-604. [all data]

Zenkevich, 1998
Zenkevich, I.G., The Principle of Structural Analogy in the Calculation of Gas Chromatographic Retention Indices using Physico-Chemical Constants of Organic Compounds, Zh. Anal. Khim. (Rus.), 1998, 53, 1, 43-49. [all data]

Zenkevich and Chupalov, 1996
Zenkevich, I.G.; Chupalov, A.A., New Possibilities of Chromato Mass Pectrometric Identification of Organic Compounds Using Increments of Gas Chromatographic Retention Indices of Molecular Structural Fragments, Zh. Org. Khim. (Rus.), 1996, 32, 5, 656-666. [all data]

Nedjma and Maujean, 1995
Nedjma, M.; Maujean, A., Improved chromatographic analysis of volatile sulfur compounds by the static headspace technique on water-alcohol solutions and brandies with chemiluminescence detection, J. Chromatogr. A, 1995, 704, 2, 495-502, https://doi.org/10.1016/0021-9673(95)00218-C . [all data]

Kawai, Ishida, et al., 1991
Kawai, T.; Ishida, Y.; Kakiuchi, H.; Ikeda, N.; Higashida, T.; Nakamura, S., Flavor components of dried squid, J. Agric. Food Chem., 1991, 39, 4, 770-777, https://doi.org/10.1021/jf00004a031 . [all data]

Marin, Pozrl, et al., 2008
Marin, K.; Pozrl, T.; Zlatic, E.; Plestenjak, A., A new aroma index to determine the aroma quality of roasted and ground coffee during storage, Food Technol. Biotechnol., 2008, 46, 4, 442-447. [all data]

Senger-Emonnot, Rochard, et al., 2006
Senger-Emonnot, P.; Rochard, S.; Pellegrin, F.; George, G.; Fernandez, X.; Lizzani-Cuvelier, L., Odour active aroma compounds of sea fig (Microcosmus sulcatus), Food Chem., 2006, 97, 3, 465-471, https://doi.org/10.1016/j.foodchem.2005.05.026 . [all data]

Spadone, Matthey-Doret, et al., 2006
Spadone, J.-C.; Matthey-Doret, W.; Blank, I., Formation of methyl(methylthio)methyl disulfide in broccoli (Brassica oleracea (L.) var. italica) in Flavour Science: Recent Advances and Trends, Bredie, W.L.P.; Petersen, M.A., ed(s)., Elsevier, Amsterdam, 2006, 309-314. [all data]

Ishizaki, Tachihara, et al., 2005
Ishizaki, S.; Tachihara, T.; Tamura, H.; Yanai, T.; Kitahara, T., Evaluation of odour-active compounds in roasted shrimp (Sergia lucens Hansen) by aroma extract dilution analysis, Flavour Fragr. J., 2005, 20, 6, 562-566, https://doi.org/10.1002/ffj.1484 . [all data]

Ishikawa, Ito, et al., 2004
Ishikawa, M.; Ito, O.; Ishizaki, S.; Kurobayashi, Y.; Fujita, A., Solid-phase aroma concentrate extraction (SPACE ): a new headspace technique for more sensitive analysis of volatiles, Flavour Fragr. J., 2004, 19, 3, 183-187, https://doi.org/10.1002/ffj.1322 . [all data]

Kumazawa and Masuda, 2003
Kumazawa, K.; Masuda, H., Investigation of the change in the flavor of a coffee drink during heat processing, J. Agric. Food Chem., 2003, 51, 9, 2674-2678, https://doi.org/10.1021/jf021025f . [all data]

Cadwallader and Heo, 2001
Cadwallader, K.R.; Heo, J., Aroma of roasted sesame oil: characterization by direct thermal desorption-gas chromatography-olfactometry and sample dilution analysis, Am. Chem. Soc. Symp. Ser., 2001, 782, 187-202. [all data]

Girard and Durance, 2000
Girard, B.; Durance, T., Headspace volatiles of sockeye and pink salmon as affected by retort process, Food Chem. Toxicol., 2000, 65, 1, 34-39. [all data]

Schlüter, Steinhart, et al., 1999
Schlüter, S.; Steinhart, H.; Schwarz, F.J.; Kirchgessner, M., Changes in the odorants of boiled carp fillet (Cyprinus carpio L.) as affected by increasing methionine levels in feed, J. Agric. Food Chem., 1999, 47, 12, 5146-5150, https://doi.org/10.1021/jf9902604 . [all data]

Umano, Hagi, et al., 1995
Umano, K.; Hagi, Y.; Nakahara, K.; Shyoji, A.; Shibamoto, T., Volatile chemicals formed in the headspace of a heated D-glucose/L-cysteine Maillard model system, J. Agric. Food Chem., 1995, 43, 8, 2212-2218, https://doi.org/10.1021/jf00056a046 . [all data]

Kraft and Switt, 2005
Kraft, P.; Switt, K.A.D. (Eds), Perspectives in Flavor and Fragrance Research, Wiley-VCH, Weinheim, Germany, 2005, 251. [all data]

Tachihara, Ishizaki, et al., 2004
Tachihara, T.; Ishizaki, S.; Ishikawa, M.; Kitahara, T., Studies on the volatile compounds of roasted spotted shrimp, Chemistry Biodiversity, 2004, 1, 12, 2024-2033, https://doi.org/10.1002/cbdv.200490155 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References