Ethylene
- Formula: C2H4
- Molecular weight: 28.0532
- IUPAC Standard InChIKey: VGGSQFUCUMXWEO-UHFFFAOYSA-N
- CAS Registry Number: 74-85-1
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: Ethene; Acetene; Bicarburretted hydrogen; Elayl; Olefiant gas; C2H4; Athylen; Liquid ethyene; UN 1038; UN 1962
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 52.47 | kJ/mol | Review | Chase, 1998 | Data last reviewed in September, 1965 |
ΔfH°gas | 52.4 ± 0.5 | kJ/mol | Review | Manion, 2002 | adopted recommendation of Gurvich, Veyts, et al., 1991; DRB |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°gas | -1411.20 ± 0.30 | kJ/mol | Cm | Rossini and Knowlton, 1937 | Reanalyzed by Cox and Pilcher, 1970, Original value = -1410.97 ± 0.30 kJ/mol; Corresponding ΔfHºgas = 52.52 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°gas,1 bar | 219.32 | J/mol*K | Review | Chase, 1998 | Data last reviewed in September, 1965 |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
33.26 | 50. | Thermodynamics Research Center, 1997 | p=1 bar. Recommended entropies and heat capacities are in good agreement with those obtained from other statistical thermodynamics calculations [ Chao J., 1975, Gurvich, Veyts, et al., 1989] as well as with ab initio value of S(298.15 K)=219.14 J/mol*K [ East A.L.L., 1997].; GT |
33.27 | 100. | ||
33.66 | 150. | ||
35.37 | 200. | ||
40.60 | 273.15 | ||
42.90 | 298.15 | ||
43.08 | 300. | ||
53.06 | 400. | ||
62.48 | 500. | ||
70.66 | 600. | ||
77.70 | 700. | ||
83.82 | 800. | ||
89.18 | 900. | ||
93.88 | 1000. | ||
98.00 | 1100. | ||
101.61 | 1200. | ||
104.76 | 1300. | ||
107.53 | 1400. | ||
109.96 | 1500. | ||
114.81 | 1750. | ||
118.37 | 2000. | ||
121.03 | 2250. | ||
123.06 | 2500. | ||
124.62 | 2750. | ||
125.86 | 3000. |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
34.66 ± 0.26 | 178.15 | Burcik E.J., 1941 | Other experimental values of heat capacity [ Haas M.E., 1932] are less accurate, see [ Chao J., 1975]. Please also see Eucken A., 1933.; GT |
35.30 ± 0.26 | 192.35 | ||
36.29 ± 0.27 | 210.40 | ||
37.55 ± 0.28 | 230.90 | ||
39.02 ± 0.29 | 250.60 | ||
40.75 ± 0.02 | 270.7 | ||
41.02 ± 0.31 | 271.80 | ||
42.84 ± 0.32 | 293.45 | ||
43.47 ± 0.17 | 300.0 | ||
45.98 ± 0.04 | 320.7 | ||
49.74 ± 0.37 | 367.7 | ||
59.25 ± 0.44 | 463.6 |
Gas Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (J/mol*K)
H° = standard enthalpy (kJ/mol)
S° = standard entropy (J/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 1200. | 1200. to 6000. |
---|---|---|
A | -6.387880 | 106.5104 |
B | 184.4019 | 13.73260 |
C | -112.9718 | -2.628481 |
D | 28.49593 | 0.174595 |
E | 0.315540 | -26.14469 |
F | 48.17332 | -35.36237 |
G | 163.1568 | 275.0424 |
H | 52.46694 | 52.46694 |
Reference | Chase, 1998 | Chase, 1998 |
Comment | Data last reviewed in September, 1965 | Data last reviewed in September, 1965 |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
S°liquid | 117.8 | J/mol*K | N/A | Chao, Hall, et al., 1983 |
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
67.4 | 170. | Chao, Hall, et al., 1983 | T = 16 to 169 K. |
67.24 | 170. | Egan and Kemp, 1937 | T = 15 to 170 K. |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Ion clustering data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
View reactions leading to C2H4+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 10.5138 ± 0.0006 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 680.5 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 651.5 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
ΔfH°(+) ion | 1067. ± 0.8 | kJ/mol | N/A | N/A | |
Quantity | Value | Units | Method | Reference | Comment |
ΔfH(+) ion,0K | 1080. | kJ/mol | N/A | N/A |
Ionization energy determinations
Appearance energy determinations
De-protonation reactions
C2H3- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1704. ± 9. | kJ/mol | AVG | N/A | Average of 5 out of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1677.8 ± 2.1 | kJ/mol | IMRE | Ervin, Gronert, et al., 1990 | gas phase; B |
ΔrG° | 1670. ± 8.8 | kJ/mol | H-TS | DePuy, Gronert, et al., 1989 | gas phase; B |
ΔrG° | 1668. ± 21. | kJ/mol | H-TS | Peerboom, Rademaker, et al., 1992 | gas phase; B |
ΔrG° | >1661.0 | kJ/mol | IMRB | Froelicher, Freiser, et al., 1986 | gas phase; B |
Ion clustering data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
B - John E. Bartmess
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.
Clustering reactions
By formula: Ag+ + C2H4 = (Ag+ • C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 141. | kJ/mol | HPMS | Guo and Castleman, 1991 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 92.5 | J/mol*K | N/A | Guo and Castleman, 1991 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
71.5 | 750. | HPMS | Guo and Castleman, 1991 | gas phase; Entropy change calculated or estimated; M |
By formula: (Ag+ • C2H4) + C2H4 = (Ag+ • 2C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 136. | kJ/mol | HPMS | Guo and Castleman, 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 126. | J/mol*K | HPMS | Guo and Castleman, 1991 | gas phase; M |
By formula: Al+ + C2H4 = (Al+ • C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 54.4 ± 8.4 | kJ/mol | CIDC,EqG | Stockigt, Schwarz, et al., 1996 | Anchored to theory; RCD |
By formula: C2H4+ + C2H4 = (C2H4+ • C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 66.1 | kJ/mol | PI | Ono, Linn, et al., 1984 | gas phase; M |
ΔrH° | 76.1 | kJ/mol | PI | Ceyer, Tiedemann, et al., 1979 | gas phase; M |
By formula: (C2H4+ • C2H4) + C2H4 = (C2H4+ • 2C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18. | kJ/mol | PI | Ceyer, Tiedemann, et al., 1979 | gas phase; M |
By formula: C3H5+ + C2H4 = (C3H5+ • C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 69.9 | kJ/mol | PI | Ceyer, Tiedemann, et al., 1979 | gas phase; M |
By formula: C3H9Si+ + C2H4 = (C3H9Si+ • C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 98.7 | kJ/mol | PHPMS | Li and Stone, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 161. | J/mol*K | PHPMS | Li and Stone, 1989 | gas phase; M |
By formula: C4H7+ + C2H4 = (C4H7+ • C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 36. | kJ/mol | PI | Ceyer, Tiedemann, et al., 1979 | gas phase; M |
By formula: C6HCrO6+ + C2H4 = (C6HCrO6+ • C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 59.8 ± 5.0 | kJ/mol | ICRCD | Hop and McMahon, 1991 | gas phase; Ar collision gas; M |
By formula: Co+ + C2H4 = (Co+ • C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 186. ± 9.2 | kJ/mol | CIDT | Sievers, Jarvis, et al., 1998 | RCD |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
179. (+7.1,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M | |
27. (+13.,-0.) | CID | Haynes and Armentrout, 1994 | gas phase; ΔrH>=, guided ion beam CID; M |
By formula: (Co+ • C2H4) + C2H4 = (Co+ • 2C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 152. ± 14. | kJ/mol | CIDT | Sievers, Jarvis, et al., 1998 | RCD |
By formula: Cr+ + C2H4 = (Cr+ • C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 96. ± 11. | kJ/mol | CIDT | Sievers, Jarvis, et al., 1998 | RCD |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
125. (+19.,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; ΔrH>=, guided ion beam CID; M |
By formula: (Cr+ • C2H4) + C2H4 = (Cr+ • 2C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 108. ± 11. | kJ/mol | CIDT | Sievers, Jarvis, et al., 1998 | RCD |
By formula: Cu+ + C2H4 = (Cu+ • C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 176. ± 14. | kJ/mol | CIDT | Sievers, Jarvis, et al., 1998 | RCD |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
95. (+11.,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; ΔrH>=, guided ion beam CID; M |
By formula: (Cu+ • C2H4) + C2H4 = (Cu+ • 2C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 174. ± 13. | kJ/mol | CIDT | Sievers, Jarvis, et al., 1998 | RCD |
By formula: F- + C2H4 = (F- • C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 25. ± 13. | kJ/mol | IMRB | Sullivan and Beauchamp, 1976 | gas phase; Structure: Roy and McMahon, 1985; B |
By formula: Fe+ + C2H4 = (Fe+ • C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 145. ± 11. | kJ/mol | CIDT | Sievers, Jarvis, et al., 1998 | RCD |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
145. (+5.9,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Fe+ • C2H4) + C2H4 = (Fe+ • 2C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 151. ± 15. | kJ/mol | CIDT | Sievers, Jarvis, et al., 1998 | RCD |
By formula: H4N+ + C2H4 = (H4N+ • C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 42. | kJ/mol | PHPMS | Deakyne and Meot-Ner (Mautner), 1985 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84. | J/mol*K | N/A | Deakyne and Meot-Ner (Mautner), 1985 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
15. | 294. | PHPMS | Deakyne and Meot-Ner (Mautner), 1985 | gas phase; Entropy change calculated or estimated; M |
By formula: La+ + C2H4 = (La+ • C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 220. ± 10. | kJ/mol | PDiss | Ranashinge and Freiser, 1992 | gas phase; M |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
90.0 | CID | Armentrout and Kickel, 1994 | gas phase; ΔrH>=, guided ion beam CID; M |
By formula: Mn+ + C2H4 = (Mn+ • C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 91. ± 12. | kJ/mol | CIDT | Sievers, Jarvis, et al., 1998 | RCD |
By formula: (Mn+ • C2H4) + C2H4 = (Mn+ • 2C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 88. ± 14. | kJ/mol | CIDT | Sievers, Jarvis, et al., 1998 | RCD |
By formula: Na+ + C2H4 = (Na+ • C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 43.1 ± 4.6 | kJ/mol | CIDT | Armentrout and Rodgers, 2000 | RCD |
By formula: Ni+ + C2H4 = (Ni+ • C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 182. ± 11. | kJ/mol | CIDT | Sievers, Jarvis, et al., 1998 | RCD |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
138. (+19.,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; ΔrH>=, guided ion beam CID; M |
By formula: (Ni+ • C2H4) + C2H4 = (Ni+ • 2C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 173. ± 14. | kJ/mol | CIDT | Sievers, Jarvis, et al., 1998 | RCD |
By formula: Rh+ + C2H4 = (Rh+ • C2H4)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
161. (+3.,-0.) | CID | Chen and Armetrout, 1995 | gas phase; guided ion beam CID; M |
By formula: Sc+ + C2H4 = (Sc+ • C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 220. ± 10. | kJ/mol | PDiss | Ranashinge and Freiser, 1992 | gas phase; M |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
131. | CID | Armentrout and Kickel, 1994 | gas phase; ΔrH >=, guided ion beam CID; M |
By formula: Ti+ + C2H4 = (Ti+ • C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 146. ± 11. | kJ/mol | CIDT | Sievers, Jarvis, et al., 1998 | RCD |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
119. | CID | Armentrout and Kickel, 1994 | gas phase; ΔrH>=, guided ion beam CID; M |
By formula: V+ + C2H4 = (V+ • C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 125. ± 7.9 | kJ/mol | CIDT | Sievers, Jarvis, et al., 1998 | RCD |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
117. | CID | Armentrout and Kickel, 1994 | gas phase; ΔrH>=, guided ion beam CID; M |
By formula: (V+ • C2H4) + C2H4 = (V+ • 2C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 127. ± 14. | kJ/mol | CIDT | Sievers, Jarvis, et al., 1998 | RCD |
By formula: Y+ + C2H4 = (Y+ • C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 220. ± 10. | kJ/mol | PDiss | Ranashinge and Freiser, 1992 | gas phase; M |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
109. | CID | Armentrout and Kickel, 1994 | gas phase; ΔrH>=, guided ion beam CID; M |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, Ion clustering data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Chase, 1998
Chase, M.W., Jr.,
NIST-JANAF Themochemical Tables, Fourth Edition,
J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]
Manion, 2002
Manion, J.A.,
Evaluated Enthalpies of Formation of the Stable Closed Shell C1 and C2 Chlorinated Hydrocarbons,
J. Phys. Chem. Ref. Data, 2002, 31, 1, 123-172, https://doi.org/10.1063/1.1420703
. [all data]
Gurvich, Veyts, et al., 1991
Thermodynamic Properties of Individual Substances, 4th edition, Volume 2, Gurvich, L.V.; Veyts, I.V.; Alcock, C.B.;, ed(s)., Hemisphere, New York, 1991. [all data]
Rossini and Knowlton, 1937
Rossini, F.d.; Knowlton, J.W.,
Calorimetric determination of the heats of combustion of ethylene and propylene,
J. Res. NBS, 1937, 19, 249-262. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Thermodynamics Research Center, 1997
Thermodynamics Research Center,
Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]
Chao J., 1975
Chao J.,
Ideal gas thermodynamic properties of ethylene and propylene,
J. Phys. Chem. Ref. Data, 1975, 4, 251-261. [all data]
Gurvich, Veyts, et al., 1989
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B.,
Thermodynamic Properties of Individual Substances, 4th ed.; Vols. 1 and 2, Hemisphere, New York, 1989. [all data]
East A.L.L., 1997
East A.L.L.,
Ab initio statistical thermodynamical models for the computation of third-law entropies,
J. Chem. Phys., 1997, 106, 6655-6674. [all data]
Burcik E.J., 1941
Burcik E.J.,
The vibrational energy levels and specific heat of ethylene,
J. Chem. Phys., 1941, 9, 118-119. [all data]
Haas M.E., 1932
Haas M.E.,
The heat capacity and free energy of formation of ethylene gas,
J. Phys. Chem., 1932, 36, 2127-2132. [all data]
Eucken A., 1933
Eucken A.,
Molar heats and normal frequencies of ethane and ethylene,
Z. Phys. Chem., 1933, B20, 184-194. [all data]
Chao, Hall, et al., 1983
Chao, J.; Hall, K.R.; Yao, J.M.,
Thermodynamic properties of simple alkenes,
Thermochim. Acta, 1983, 64(3), 285-303. [all data]
Egan and Kemp, 1937
Egan, C.J.; Kemp, J.D.,
Ethylene. The heat capacity from 15°K to the boiling point. The heats of fusion and vaporization. The vapor pressure of the liquid. The entropy from thermal measurements compared with the entropy from spectroscopic data,
J. Am. Chem. Soc., 1937, 59, 1264-1268. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Ohno, Okamura, et al., 1995
Ohno, K.; Okamura, K.; Yamakado, H.; Hoshino, S.; Takami, T.; Yamauchi, M.,
Penning ionization of HCHO, CH2CH2, and CH2CHCHO by collision with He*(2 3S) metastable atoms,
J. Phys. Chem., 1995, 99, 14247. [all data]
Williams and Cool, 1991
Williams, B.A.; Cool, T.A.,
Two-photon spectroscopy of Rydberg states of jet-cooled C2H4 and C2D4,
J. Am. Chem. Soc., 1991, 94, 6358. [all data]
Plessis and Marmet, 1986
Plessis, P.; Marmet, P.,
Electroionization study of ethylene: Ionization and appearance energies, ion-pair formations, and negative ions,
Can. J. Phys., 1986, 65, 165. [all data]
Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S.,
Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules
in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]
Wood and Taylor, 1979
Wood, K.V.; Taylor, J.W.,
A photoionization mass spectrometric study of autoionization in ethylene and trans-2-butene,
Int. J. Mass Spectrom. Ion Phys., 1979, 30, 307. [all data]
Carlier and Botter, 1979
Carlier, J.; Botter, R.,
Photoelectron spectra of ethylene of the six deuterated derivatives,
J. Electron Spectrosc. Relat. Phenom., 1979, 17, 91. [all data]
Sell, Mintz, et al., 1978
Sell, J.A.; Mintz, D.M.; Kupperman, A.,
Photoelectron angular distributions of carbon-carbon π electrons in ethylene, benzene, and their fluorinated derivatives,
Chem. Phys. Lett., 1978, 58, 601. [all data]
Bieri, Burger, et al., 1977
Bieri, G.; Burger, F.; Heilbronner, E.; Maier, J.P.,
Valence ionization enrgies of hydrocarbons,
Helv. Chim. Acta, 1977, 60, 2213. [all data]
Van Veen, 1976
Van Veen, E.H.,
Low-energy electron-impact spectroscopy on ethylene,
Chem. Phys. Lett., 1976, 41, 540. [all data]
Stockbauer and Inghram, 1975
Stockbauer, R.; Inghram, M.G.,
Vibrational structure in the ground state of ethylene ethylene-d4 molecular ions investigated by threshold photoelectron spectroscopy,
J. Electron Spectrosc. Relat. Phenom., 1975, 7, 492. [all data]
Stockbauer and Inghram, 1975, 2
Stockbauer, R.; Inghram, M.G.,
Threshold photoelectron-photoion coincidence mass spectrometric study of ethylene and ethylene-d4,
J. Chem. Phys., 1975, 62, 4862. [all data]
Rabalais, Debies, et al., 1974
Rabalais, J.W.; Debies, T.P.; Berkosky, J.L.; Huang, J.-T.J.; Ellison, F.O.,
Calculated photoionization cross sections relative experimental photoionization intensities for a selection of small molecules,
J. Chem. Phys., 1974, 61, 516. [all data]
Maeda, Suzuki, et al., 1974
Maeda, K.; Suzuki, I.H.; Koyama, Y.,
Ionization efficiency curves of ethylene by electron impact,
Int. J. Mass Spectrom. Ion Phys., 1974, 14, 273. [all data]
Knowles and Nicholson, 1974
Knowles, D.J.; Nicholson, A.J.C.,
Ionization energies of formic and acetic acid monomers,
J. Chem. Phys., 1974, 60, 1180. [all data]
Gordon, Krige, et al., 1974
Gordon, S.M.; Krige, G.J.; Reid, N.W.,
Isotope effects in the unimolecular decomposition of ethylene by low-energy electron impact,
Int. J. Mass Spectrom. Ion Phys., 1974, 14, 109. [all data]
Masclet, Grosjean, et al., 1973
Masclet, P.; Grosjean, D.; Mouvier, G.,
Alkene ionization potentials. Part I. Quantitative determination of alkyl group structural effects,
J. Electron Spectrosc. Relat. Phenom., 1973, 2, 225. [all data]
Beez, Bieri, et al., 1973
Beez, M.; Bieri, G.; Bock, H.; Heilbronner, E.,
The ionization potentials of butadiene, hexatriene, andtheir methyl derivatives: evidence for through space interaction between double bond π-orbitals and non-bonded pseudo-π orbitals of methyl groups?,
Helv. Chim. Acta, 1973, 56, 1028. [all data]
Mason, Kuppermann, et al., 1972
Mason, D.C.; Kuppermann, A.; Mintz, D.M.,
Angular distribution of electrons from the photoionization of ethylene
in Electron Spectroscopy, ed. D.A. Shirley (North Holland, Amsterdam), 1972, 269. [all data]
Brundle, Robin, et al., 1972
Brundle, C.R.; Robin, M.B.; Kuebler, N.A.; Basch, H.,
Perfluoro effect in photoelectron spectroscopy. I. Nonaromatic molecules,
J. Am. Chem. Soc., 1972, 94, 1451. [all data]
Frost and Sandhu, 1971
Frost, D.C.; Sandhu, J.S.,
Ionization potentials of ethylene and some methyl-substituted ethylenes as determined by photoelectron spectroscopy,
Indian J. Chem., 1971, 9, 1105. [all data]
Branton, Frost, et al., 1970
Branton, G.R.; Frost, D.C.; Makita, T.; McDowell, C.A.; Stenhouse, I.A.,
Photoelectron spectra of ethylene and ethylene-d4,
J. Chem. Phys., 1970, 52, 802. [all data]
Eland, 1969
Eland, J.H.D.,
Photoelectron spectra of conjugated hydrocarbons and heteromolecules,
Intern. J. Mass Spectrom. Ion Phys., 1969, 2, 471. [all data]
Williams and Hamill, 1968
Williams, J.M.; Hamill, W.H.,
Ionization potentials of molecules and free radicals and appearance potentials by electron impact in the mass spectrometer,
J. Chem. Phys., 1968, 49, 4467. [all data]
Baker, Baker, et al., 1968
Baker, A.D.; Baker, C.; Brundle, C.R.; Turner, D.W.,
The electronic structures of methane, ethane, ethylene and formaldehyde studied by high-resolution molecular photoelectron spectroscopy,
Intern. J. Mass Spectrom. Ion Phys., 1968, 1, 285. [all data]
Brehm, 1966
Brehm, B.,
Massenspektrometrische Untersuchung der Photoionisation von Molekulen,
Z. Naturforsch., 1966, 21a, 196. [all data]
Botter, Dibeler, et al., 1966
Botter, R.; Dibeler, V.H.; Walker, J.A.; Rosenstock, H.M.,
Mass-spectrometric study of photoionization. IV.Ethylene and 1,2-dideuteroethylene,
J. Chem. Phys., 1966, 45, 1298. [all data]
Nicholson, 1965
Nicholson, A.J.C.,
Photoionization-efficiency curves. II. False and genuine structure,
J. Chem. Phys., 1965, 43, 1171. [all data]
Momigny, 1963
Momigny, J.,
Ionization potentials and the structures of the photo-ionization yield curves of ethylene and its halogeno derivatives,
Nature, 1963, 199, 1179. [all data]
Watanabe, 1954
Watanabe, K.,
Photoionization and total absorption cross section of gases. I. Ionization potentials of several molecules. Cross sections of NH3 and NO,
J. Chem. Phys., 1954, 22, 1564. [all data]
Price and Tutte, 1940
Price, W.C.; Tutte, W.T.,
The absorption spectra of ethylene, deutero-ethylene and some alkyl-substituted ethylenes in the vacuum ultra-violet,
Proc. Roy. Soc. (London), 1940, A174, 207. [all data]
Kusch, Hustrulid, et al., 1937
Kusch, P.; Hustrulid, A.; Tate, J.T.,
The dissociation of HCN, C2H2, C2N2 and C2H4 by electron impact,
Phys. Rev., 1937, 52, 843. [all data]
Bieri and Asbrink, 1980
Bieri, G.; Asbrink, L.,
30.4-nm He(II) photoelectron spectra of organic molecules,
J. Electron Spectrosc. Relat. Phenom., 1980, 20, 149. [all data]
Krause, Taylor, et al., 1978
Krause, D.A.; Taylor, J.W.; Fenske, R.F.,
An analysis of the effects of alkyl substituents on the ionization potentials of n-alkenes,
J. Am. Chem. Soc., 1978, 100, 718. [all data]
Kobayashi, 1978
Kobayashi, T.,
A simple general tendency in photoelectron angular distributions of some monosubstituted benzenes,
Phys. Lett., 1978, 69, 105. [all data]
White, Carlson, et al., 1974
White, R.M.; Carlson, T.A.; Spears, D.P.,
Angular distribution of the photoelectron spectra for ethylene, propylene, butene and butadiene,
J. Electron Spectrosc. Relat. Phenom., 1974, 3, 59. [all data]
Chupka, Berkowitz, et al., 1969
Chupka, W.A.; Berkowitz, J.; Refaey, K.M.A.,
Photoionization of ethylene with mass analysis,
J. Chem. Phys., 1969, 50, 1938. [all data]
Bombach, Dannacher, et al., 1984
Bombach, R.; Dannacher, J.; Stadelmann, J.-P.,
The rate/energy functions for the competitive fragmentation processes of ethylene and ethane cations,
Int. J. Mass Spectrom. Ion Processes, 1984, 58, 217. [all data]
Gordon, Harvey, et al., 1977
Gordon, S.M.; Harvey, G.A.; Jackson, J.R.; Tresling, J.D.; Van Niekerk, J.M.,
Computer-assisted retarding potential difference system for ionization efficiency measurements,
Int. J. Mass Spectrom. Ion Phys., 1977, 23, 259. [all data]
Finney and Harrison, 1972
Finney, C.D.; Harrison, A.G.,
A third-derivative method for determining electron-impact onset potentials,
Int. J. Mass Spectrom. Ion Phys., 1972, 9, 221. [all data]
Shiromaru, Achiba, et al., 1987
Shiromaru, H.; Achiba, Y.; Kimura, K.; Lee, Y.T.,
Determination of the C-H bond dissociation energies of ethylene and acetylene by observation of the threshold energies of H+ formation by synchrotron radiation,
J. Phys. Chem., 1987, 91, 17. [all data]
Ervin, Gronert, et al., 1990
Ervin, K.M.; Gronert, S.; Barlow, S.E.; Gilles, M.K.; Harrison, A.G.; Bierbaum, V.M.; DePuy, C.H.; Lin, W.C.,
Bonds Strengths of Ethylene and Acetylene,
J. Am. Chem. Soc., 1990, 112, 15, 5750, https://doi.org/10.1021/ja00171a013
. [all data]
DePuy, Gronert, et al., 1989
DePuy, C.H.; Gronert, S.; Barlow, S.E.; Bierbaum, V.M.; Damrauer, R.,
The Gas Phase Acidities of the Alkanes,
J. Am. Chem. Soc., 1989, 111, 6, 1968, https://doi.org/10.1021/ja00188a003
. [all data]
Peerboom, Rademaker, et al., 1992
Peerboom, R.A.L.; Rademaker, G.J.; Dekoning, L.J.; Nibbering, N.M.M.,
Stabilization of Cycloalkyl Carbanions in the Gas Phase,
Rapid Commun. Mass Spectrom., 1992, 6, 6, 394, https://doi.org/10.1002/rcm.1290060608
. [all data]
Froelicher, Freiser, et al., 1986
Froelicher, S.W.; Freiser, B.S.; Squires, R.R.,
The C3H5- isomers. Experimental and theoretical studies of the tautomeric propenyl ions and the cyclopropyl anion in the gas phase,
J. Am. Chem. Soc., 1986, 108, 2853. [all data]
Guo and Castleman, 1991
Guo, B.C.; Castleman, A.W.,
The Bonding Strength of Ag+(C2H4) and Ag+(C2H4)2 Complexes,
Chem. Phys. Lett., 1991, 181, 1, 16, https://doi.org/10.1016/0009-2614(91)90214-T
. [all data]
Stockigt, Schwarz, et al., 1996
Stockigt, D.; Schwarz, J.; Schwarz, H.,
Theoretical and Experimental Studies on the Bond Dissociation Energies of Al(methane)+, Al(acetylene)+, Al(ethene)+, and Al(ethane)+,
J. Phys. Chem., 1996, 100, 21, 8786, https://doi.org/10.1021/jp960060k
. [all data]
Ono, Linn, et al., 1984
Ono, Y.; Linn, S.H.; Tzeng, W.-B.; Ng, C.Y.,
A Study of the Unimolecular Decomposition of the (C2H4)2+ Complex,
J. Chem. Phys., 1984, 80, 4, 1482, https://doi.org/10.1063/1.446897
. [all data]
Ceyer, Tiedemann, et al., 1979
Ceyer, S.T.; Tiedemann, P.W.; Ng, C.Y.; Mahan, B.H.; Lee, Y.T.,
Photoionization of Ethylene Clusters,
J. Chem. Phys., 1979, 70, 5, 2138, https://doi.org/10.1063/1.437758
. [all data]
Li and Stone, 1989
Li, X.; Stone, J.A.,
Determination of the beta silicon effect from a mass spectrometric study of the association of trimethylsilylium ion with alkenes,
J. Am. Chem. Soc., 1989, 111, 15, 5586, https://doi.org/10.1021/ja00197a013
. [all data]
Hop and McMahon, 1991
Hop, C.E.C.A.; McMahon, T.B.,
High Pressure Mass Spectrometric Observation of Metal Carbonyl Alkyl Adduct Ions of Novel Structure,
Inorg. Chem., 1991, 30, 13, 2828, https://doi.org/10.1021/ic00013a025
. [all data]
Sievers, Jarvis, et al., 1998
Sievers, M.R.; Jarvis, L.M.; Armentrout, P.B.,
Transition Metal Ethene Bonds: Thermochemistry of M+(C2H4)n (M=Ti-Cu, n=1 and 2) Complexes,
J. Am. Chem. Soc., 1998, 120, 8, 1891, https://doi.org/10.1021/ja973834z
. [all data]
Armentrout and Kickel, 1994
Armentrout, P.B.; Kickel, B.L.,
Gas Phase Thermochemistry of Transition Metal Ligand Systems: Reassessment of Values and Periodic Trends, in Organometallic Ion Chemistry, B. S. Freiser, ed, 1994. [all data]
Haynes and Armentrout, 1994
Haynes, C.L.; Armentrout, P.B.,
Thermochemistry and Structures of CoC3H6+: Metallacyclic and Metal-Alkene Isomers,
Organomettalics, 1994, 13, 9, 3480, https://doi.org/10.1021/om00021a022
. [all data]
Sullivan and Beauchamp, 1976
Sullivan, S.A.; Beauchamp, J.L.,
Competition between proton transfer and elimination in the reactions of strong bases with fluoroethanes in the gas phase. Influence of base strength on reactivity,
J. Am. Chem. Soc., 1976, 98, 1160. [all data]
Roy and McMahon, 1985
Roy, M.; McMahon, T.B.,
The Anomalous Gas Phase Acidity of Ethyl Fluoride. An ab initio Investigation of the Importance of Hydrogen Bonding between Fluoride and sp2 and sp C-H Bonds.,
Can. J. Chem., 1985, 63, 3, 708, https://doi.org/10.1139/v85-117
. [all data]
Deakyne and Meot-Ner (Mautner), 1985
Deakyne, C.A.; Meot-Ner (Mautner), M.,
Unconventional Ionic Hydrogen Bonds. 2. NH+ pi. Complexes of Onium Ions with Olefins and Benzene Derivatives,
J. Am. Chem. Soc., 1985, 107, 2, 474, https://doi.org/10.1021/ja00288a034
. [all data]
Ranashinge and Freiser, 1992
Ranashinge, Y.A.; Freiser, B.S.,
Gas-Phase Photodissociation of MC2H2+ (M = Sc, Y, La). Determination of D0(M+ - C2H2),
Chem. Phys. Let., 1992, 200, 1-2, 135, https://doi.org/10.1016/0009-2614(92)87058-W
. [all data]
Armentrout and Rodgers, 2000
Armentrout, P.B.; Rodgers, M.T.,
An Absolute Sodium Cation Affinity Scale: Threshold Collision-Induced Dissociation Experiments and ab Initio Theory,
J. Phys. Chem A, 2000, 104, 11, 2238, https://doi.org/10.1021/jp991716n
. [all data]
Chen and Armetrout, 1995
Chen, Y.M.; Armetrout, P.B.,
Activation of C2H6, C3H8, and c-C3H6 by Gas-Phase Rh+ and the Thermochemistry of Rh-Ligand Complexes,
J. Am. Chem. Soc., 1995, 117, 36, 9291, https://doi.org/10.1021/ja00141a022
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, Ion clustering data, References
- Symbols used in this document:
AE Appearance energy Cp,gas Constant pressure heat capacity of gas Cp,liquid Constant pressure heat capacity of liquid IE (evaluated) Recommended ionization energy S°gas,1 bar Entropy of gas at standard conditions (1 bar) S°liquid Entropy of liquid at standard conditions T Temperature ΔcH°gas Enthalpy of combustion of gas at standard conditions ΔfH(+) ion,0K Enthalpy of formation of positive ion at 0K ΔfH°gas Enthalpy of formation of gas at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.