lithium chloride
- Formula: ClLi
- Molecular weight: 42.394
- IUPAC Standard InChIKey: KWGKDLIKAYFUFQ-UHFFFAOYSA-M
- CAS Registry Number: 7447-41-8
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Gas phase ion energetics data, Constants of diatomic molecules, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -195.72 | kJ/mol | Review | Chase, 1998 | Data last reviewed in June, 1962 |
Quantity | Value | Units | Method | Reference | Comment |
S°gas,1 bar | 212.92 | J/mol*K | Review | Chase, 1998 | Data last reviewed in June, 1962 |
Gas Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (J/mol*K)
H° = standard enthalpy (kJ/mol)
S° = standard entropy (J/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 2000. to 6000. |
---|---|
A | 37.27689 |
B | 0.668181 |
C | -0.022173 |
D | 0.001711 |
E | -0.495921 |
F | -208.4310 |
G | 255.3106 |
H | -195.7192 |
Reference | Chase, 1998 |
Comment | Data last reviewed in June, 1962 |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Constants of diatomic molecules, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
B - John E. Bartmess
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 9.57 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 827. | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 800.5 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Electron affinity determinations
EA (eV) | Method | Reference | Comment |
---|---|---|---|
0.593 ± 0.010 | LPES | Miller, Leopold, et al., 1986 | B |
0.610 ± 0.020 | LPES | Carlstein, Peterson, et al., 1976 | B |
>1.27998 | EIAE | Ebinghaus, 1964 | From (LiCl)2; B |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
10.0 | EI | Bloom and Williams, 1981 | LLK |
9.57 | PI | Berkowitz, Batson, et al., 1980 | LLK |
10.1 | EI | Berkowitz, Tasman, et al., 1962 | RDSH |
10.01 ± 0.02 | PE | Potts and Lee, 1979 | Vertical value; LLK |
9.80 ± 0.10 | PE | Poole, Jenkin, et al., 1973 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
Li+ | 10.17 | Cl | PI | Berkowitz, Batson, et al., 1980 | LLK |
Li+ | 10.6 | Cl | EI | Berkowitz, Tasman, et al., 1962 | RDSH |
Constants of diatomic molecules
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Klaus P. Huber and Gerhard H. Herzberg
Data collected through January, 1977
Symbol | Meaning |
---|---|
State | electronic state and / or symmetry symbol |
Te | minimum electronic energy (cm-1) |
ωe | vibrational constant – first term (cm-1) |
ωexe | vibrational constant – second term (cm-1) |
ωeye | vibrational constant – third term (cm-1) |
Be | rotational constant in equilibrium position (cm-1) |
αe | rotational constant – first term (cm-1) |
γe | rotation-vibration interaction constant (cm-1) |
De | centrifugal distortion constant (cm-1) |
βe | rotational constant – first term, centrifugal force (cm-1) |
re | internuclear distance (Å) |
Trans. | observed transition(s) corresponding to electronic state |
ν00 | position of 0-0 band (units noted in table) |
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
K 3pπ 2Π | 513500 | 1090 1 | K ← X | 513700 | ||||||||
↳Radler, Sonntag, et al., 1976 | ||||||||||||
J 3σ 2Σ | 505900 | 1030 1 | J ← X | 506100 | ||||||||
↳Radler, Sonntag, et al., 1976 | ||||||||||||
I 2pπ 2Π | 479200 | 850 1 | I ← X | 479300 | ||||||||
↳Radler, Sonntag, et al., 1976 | ||||||||||||
H 2σ 2Σ | 463900 | 950 1 | H ← X | 464000 | ||||||||
↳Radler, Sonntag, et al., 1976 | ||||||||||||
The energy loss spectrum of 25 keV electron has peaks at 5.3, 7.2, and 8.9 eV. | ||||||||||||
↳Geiger and Pfeiffer, 1968 | ||||||||||||
Continuous absorption above 40000 cm-1, first maximum 2 at 42800 cm-1. 3 | ||||||||||||
↳Muller, 1927; Davidovits and Brodhead, 1967 | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
A 4 | A ← X | |||||||||||
↳Berry and Klemperer, 1957 | ||||||||||||
X 1Σ+ | 0 | 643.31 5 | 4.501 5 | 0.70652224 | 0.00800961 | 0.00003966 | 3.4087E-6 | -0.0190E-6 | 2.020673 6 7 | |||
↳Klemperer and Rice, 1957; Klemperer, Norris, et al., 1960 | ||||||||||||
Rotation sp. | ||||||||||||
↳Lide, Cahill, et al., 1964; Pearson and Gordy, 1969 | ||||||||||||
Mol. beam rf electric reson. $I | ||||||||||||
↳Marple and Trischka, 1956; Hebert, Lovas, et al., 1968; Gallagher, Hilborn, et al., 1972; Freeman, Johnson, et al., 1974 | ||||||||||||
Mol. beam magn. reson. 8 | ||||||||||||
↳Mehran, Brooks, et al., 1966 |
Notes
1 | First members of two Rydberg series converging to the Li is ionization limit of LiCl at ~66eV (532300 cm-1); vibrational numbering not established. |
2 | Also observed in the electron energy loss spectrum. |
3 | Absorption cross sections Davidovits and Brodhead, 1967. |
4 | Diffuse absorption bands at 35642, 35032, 34482 cm-1. |
5 | Calculated Pearson and Gordy, 1969 from the rotational constants by use of Dunham's theory. From the infrared spectrum of the isotopic mixture Klemperer, Norris, et al., 1960 obtain we = 641.1, wexe = 4.2. For 6Li35Cl Moran and Trischka, 1961 find we ~ 705 by the molecular beam electric resonance method. |
6 | From the effective Be. Using the data of Pearson and Gordy, 1969 for the four LiCl isotopes Watson, 1973 has determined re at the minimum of the Born-Oppenheimer potential as 2.020700 . |
7 | Rot.-vibr. Sp. 10 |
8 | Nuclear reorientation spectrum of Li Kusch, 1949, Logan, Cote, et al., 1952, Kusch, 1959. |
9 | Thermochemical value Brewer and Brackett, 1961, Bulewicz, Phillips, et al., 1961, Hildenbrand, Hall, et al., 1964. A slightly higher value was suggested by Gurvich and Veits, 1958. |
10 | IR spectrum of matrix isolated LiCL Snelson and Pitzer, 1963,136. |
11 | Electric dipole moment of 6Li35Cl: μel[D] = 7.0853 + 0.0868(v+1/2) + 0.00056(v+1/2)2 Hebert, Lovas, et al., 1968, see also Marple and Trischka, 1956,134. For electric quadrupole and other hyperfine coupling constants see Marple and Trischka, 1956, Gallagher, Hilborn, et al., 1972. The Zeeman spectrum was also studied by the molecular beam electric resonance method Freeman, Johnson, et al., 1974; gJ(7Li35Cl) = +0.10042 and +0.10064 μN for v=0 and 1, respectively, superseding an earlier value by the magnetic resonance method Mehran, Brooks, et al., 1966. |
12 | From D00(LiCl) and the electron affinities of LiCl and Cl. |
13 | From the photoelectron spectrum of LiCl- Carlstein, Peterson, et al., 1976; I.P. is reasonably close to the calculated electron affinity of LiCl [0.54 eV Jordan and Luken, 1976]; see also Jordan, 1976. |
14 | The relative intensities of the photoelectron peaks have been compared Carlstein, Peterson, et al., 1976 with calculated Franck-Condon factors. |
References
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Chase, 1998
Chase, M.W., Jr.,
NIST-JANAF Themochemical Tables, Fourth Edition,
J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Miller, Leopold, et al., 1986
Miller, T.M.; Leopold, D.G.; Murray, K.K.; Lineberger, W.C.,
Electron Affinities of the Alkali Halides and the Structure of their Negative Ions,
J. Chem. Phys., 1986, 85, 5, 2368, https://doi.org/10.1063/1.451091
. [all data]
Carlstein, Peterson, et al., 1976
Carlstein, J.L.; Peterson, J.R.; Lineberger, W.C.,
Binding of an electron by the field of a molecular dipole - LiCl-,
Chem. Phys. Lett., 1976, 37, 5. [all data]
Ebinghaus, 1964
Ebinghaus, H.Z.,
Negative Ionen aus Alkalihalogeniden und Electronenaffinitaten der Alkalimetalle und Alkalihalogenide,
Z. Naturfor., 1964, 19A, 727. [all data]
Bloom and Williams, 1981
Bloom, H.; Williams, D.J.,
A mass spectrometric study of the vapors above the molten salt systems LiCl-CuCl, LiBr-CuBr, and NaI-CuI,
J. Chem. Phys., 1981, 75, 4636. [all data]
Berkowitz, Batson, et al., 1980
Berkowitz, J.; Batson, C.H.; Goodman, G.L.,
Photoionization of lithium chloride vapors: The structure and stability of alkali halide molecules and ions,
J. Chim. Phys., 1980, 77, 631. [all data]
Berkowitz, Tasman, et al., 1962
Berkowitz, J.; Tasman, H.A.; Chupka, W.A.,
Double-oven experiments with lithium halide vapors,
J. Chem. Phys., 1962, 36, 2170. [all data]
Potts and Lee, 1979
Potts, A.W.; Lee, E.P.F.,
Photoelectron spectra and electronic structure of lithium halide monomers and dimers,
J. Chem. Soc. Faraday Trans. 2, 1979, 75, 941. [all data]
Poole, Jenkin, et al., 1973
Poole, R.T.; Jenkin, J.G.; Leckey, R.C.G.; Liesegang, J.,
Photoelectron study of the alkali chlorides,
Chem. Phys. Lett., 1973, 22, 101. [all data]
Radler, Sonntag, et al., 1976
Radler, K.; Sonntag, B.; Chang, T.C.; Schwarz, W.H.E.,
Experimental and theoretical investigation of the Li 1s spectra of molecular lithium halides,
Chem. Phys., 1976, 13, 363. [all data]
Geiger and Pfeiffer, 1968
Geiger, J.; Pfeiffer, H.-C.,
Untersuchung der Anregung innerer Elektronen von Alkalihalogenidmolekulen im Energieverlustspektrum von 25 keV-Elektronen,
Z. Phys., 1968, 208, 105. [all data]
Muller, 1927
Muller, L.A.,
4. absorptionsspektren der alkalihalogenide in wasseriger losung und im dampf,
Ann. Phys. (Leipzig), 1927, 82, 39. [all data]
Davidovits and Brodhead, 1967
Davidovits, P.; Brodhead, D.C.,
Ultraviolet absorption cross sections for the alkali halide vapors,
J. Chem. Phys., 1967, 46, 2968. [all data]
Berry and Klemperer, 1957
Berry, R.S.; Klemperer, W.,
Spectra of the alkali halides. III. Electronic spectra of lithium chloride, lithium bromide, and lithium iodide,
J. Chem. Phys., 1957, 26, 724. [all data]
Klemperer and Rice, 1957
Klemperer, W.; Rice, S.A.,
Infrared spectra of the alkali halides. I. Lithium halides,
J. Chem. Phys., 1957, 26, 618. [all data]
Klemperer, Norris, et al., 1960
Klemperer, W.; Norris, W.G.; Buchler, A.; Emslie, A.G.,
Infrared spectra of lithium halide monomers,
J. Chem. Phys., 1960, 33, 1534. [all data]
Lide, Cahill, et al., 1964
Lide, D.R., Jr.; Cahill, P.; Gold, L.P.,
Microwave spectrum of lithium chloride,
J. Chem. Phys., 1964, 40, 156. [all data]
Pearson and Gordy, 1969
Pearson, E.F.; Gordy, W.,
Millimeter- and submillimeter-wave spectra and molecular constants of LiF and LiCl,
Phys. Rev., 1969, 177, 52. [all data]
Marple and Trischka, 1956
Marple, D.T.F.; Trischka, J.W.,
Radio-frequency spectra of Li6Cl by the molecular beam electric resonance method,
Phys. Rev., 1956, 103, 597. [all data]
Hebert, Lovas, et al., 1968
Hebert, A.J.; Lovas, F.J.; Melendres, C.A.; Hollowell, C.D.; Story, T.L., Jr.; Street, K., Jr.,
Dipole moments of some alkali halide molecules by the molecular beam electric resonance method,
J. Chem. Phys., 1968, 48, 2824. [all data]
Gallagher, Hilborn, et al., 1972
Gallagher, T.F., Jr.; Hilborn, R.C.; Ramsey, N.F.,
Hyperfine spectra of 7Li35Cl and 7Li37Cl,
J. Chem. Phys., 1972, 56, 5972. [all data]
Freeman, Johnson, et al., 1974
Freeman, R.R.; Johnson, D.W.; Ramsey, N.F.,
Molecular beam electric resonance study of the molecular Zeeman spectrum of lithium chloride,
J. Chem. Phys., 1974, 61, 3471. [all data]
Mehran, Brooks, et al., 1966
Mehran, F.; Brooks, R.A.; Ramsey, N.F.,
Rotational magnetic moments of alkali-halide molecules,
Phys. Rev., 1966, 141, 93. [all data]
Moran and Trischka, 1961
Moran, T.I.; Trischka, J.W.,
New determinations of the vibrational constants of Li-Li6F and Li6Cl35 by the molecular beam electric resonance method,
J. Chem. Phys., 1961, 34, 923. [all data]
Watson, 1973
Watson, J.K.G.,
The isotope dependence of the equilibrium rotational constants in 1Σ states of diatomic molecules,
J. Mol. Spectrosc., 1973, 45, 99. [all data]
Kusch, 1949
Kusch, P.,
On the nuclear electric quadrupole moment of Li6,
Phys. Rev., 1949, 75, 887. [all data]
Logan, Cote, et al., 1952
Logan, R.A.; Cote, R.E.; Kusch, P.,
The sign of the quadrupole interaction energy in diatomic molecules,
Phys. Rev., 1952, 86, 280. [all data]
Kusch, 1959
Kusch, P.,
Nuclear reorientation spectrum of Li7 in the gaseous monomers and dimers of the lithium halides,
J. Chem. Phys., 1959, 30, 52. [all data]
Brewer and Brackett, 1961
Brewer, L.; Brackett, E.,
The dissociation energies of gaseous alkali halides,
Chem. Rev., 1961, 61, 425. [all data]
Bulewicz, Phillips, et al., 1961
Bulewicz, E.M.; Phillips, L.F.; Sugden, T.M.,
Determination of dissociation constants and heats of formation of simple molecules by flame photometry. Part 8. Stabilities of the gaseous diatomic halides of certain metals,
Trans. Faraday Soc., 1961, 57, 921. [all data]
Hildenbrand, Hall, et al., 1964
Hildenbrand, D.L.; Hall, W.F.; Ju, F.; Potter, N.D.,
Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides,
J. Chem. Phys., 1964, 40, 2882. [all data]
Gurvich and Veits, 1958
Gurvich, L.V.; Veits, I.V.,
Determination of molecular dissociation energies from flame reaction equilibrium studies,
Bull. Acad. Sci. USSR, Phys. Ser. Engl. Transl., 1958, 22, 670-673. [all data]
Snelson and Pitzer, 1963
Snelson, A.; Pitzer, K.S.,
Infrared spectra by matrix isolation of lithium fluoride, lithium chloride and sodium fluoride,
J. Phys. Chem., 1963, 67, 882. [all data]
Jordan and Luken, 1976
Jordan, K.D.; Luken, W.,
Theoretical study of the binding of an electron to a molecular dipole: LiCl-,
J. Chem. Phys., 1976, 64, 2760. [all data]
Jordan, 1976
Jordan, K.D.,
Correlation between molecular electron affinities and dipole moments,
J. Chem. Phys., 1976, 65, 1214. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, References
- Symbols used in this document:
AE Appearance energy EA Electron affinity IE (evaluated) Recommended ionization energy S°gas,1 bar Entropy of gas at standard conditions (1 bar) ΔfH°gas Enthalpy of formation of gas at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.