Adenine

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase ion energetics data

Go To: Top, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

Quantity Value Units Method Reference Comment
Proton affinity (review)942.8kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity912.5kJ/molN/AHunter and Lias, 1998HL

Electron affinity determinations

EA (eV) Reference Comment
0.0120 ± 0.0050Desfrancois, Abdoul-Carime, et al., 1996 Aflatooni, Gallup, et al., 1998: vertical attachment EA = -0.54 eV; B

Ionization energy determinations

IE (eV) Method Reference Comment
8.3 ± 0.1EIVerkin, Sukodub, et al., 1976LLK
8.9 ± 0.1EILifschitz, Bergmann, et al., 1967RDSH
8.48PELin, Yu, et al., 1980Vertical value; LLK
8.48PEPeng, Padva, et al., 1976Vertical value; LLK
8.44 ± 0.03PEHush and Cheung, 1975Vertical value; LLK

De-protonation reactions

adeninide anion + Hydrogen cation = Adenine

By formula: C5H4N5- + H+ = C5H5N5

Quantity Value Units Method Reference Comment
Δr1402. ± 9.2kJ/molG+TSSharma and Lee, 2002gas phase; Acidity at N-9(imidazole N); B
Quantity Value Units Method Reference Comment
Δr1372. ± 8.4kJ/molIMRBSharma and Lee, 2002gas phase; Acidity at N-9(imidazole N); B
Δr1441. ± 17.kJ/molIMRBSharma and Lee, 2002gas phase; Less acidic N-10 site(aniline); B

Ion clustering data

Go To: Top, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

C5H6N5+ + Adenine = (C5H6N5+ • Adenine)

By formula: C5H6N5+ + C5H5N5 = (C5H6N5+ • C5H5N5)

Quantity Value Units Method Reference Comment
Δr127.kJ/molPHPMSMeot-Ner (Mautner), 1979gas phase; M
Quantity Value Units Method Reference Comment
Δr160.J/mol*KPHPMSMeot-Ner (Mautner), 1979gas phase; M

Cobalt ion (1+) + Adenine = (Cobalt ion (1+) • Adenine)

By formula: Co+ + C5H5N5 = (Co+ • C5H5N5)

Quantity Value Units Method Reference Comment
Δr293. ± 10.kJ/molCIDTRodgers and Armentrout, 2002RCD

Chromium ion (1+) + Adenine = (Chromium ion (1+) • Adenine)

By formula: Cr+ + C5H5N5 = (Cr+ • C5H5N5)

Quantity Value Units Method Reference Comment
Δr231. ± 7.5kJ/molCIDTRodgers and Armentrout, 2002RCD

Copper ion (1+) + Adenine = (Copper ion (1+) • Adenine)

By formula: Cu+ + C5H5N5 = (Cu+ • C5H5N5)

Quantity Value Units Method Reference Comment
Δr294. ± 11.kJ/molCIDTRodgers and Armentrout, 2002RCD

Iron ion (1+) + Adenine = (Iron ion (1+) • Adenine)

By formula: Fe+ + C5H5N5 = (Fe+ • C5H5N5)

Quantity Value Units Method Reference Comment
Δr259. ± 8.8kJ/molCIDTRodgers and Armentrout, 2002RCD

Potassium ion (1+) + Adenine = (Potassium ion (1+) • Adenine)

By formula: K+ + C5H5N5 = (K+ • C5H5N5)

Quantity Value Units Method Reference Comment
Δr106.kJ/molCIDCCerda and Wesdemiotis, 1996RCD

Manganese ion (1+) + Adenine = (Manganese ion (1+) • Adenine)

By formula: Mn+ + C5H5N5 = (Mn+ • C5H5N5)

Quantity Value Units Method Reference Comment
Δr216. ± 7.5kJ/molCIDTRodgers and Armentrout, 2002RCD

Sodium ion (1+) + Adenine = (Sodium ion (1+) • Adenine)

By formula: Na+ + C5H5N5 = (Na+ • C5H5N5)

Quantity Value Units Method Reference Comment
Δr140. ± 4.2kJ/molCIDTRodgers and Armentrout, 2000RCD
Δr172.kJ/molCIDCCerda and Wesdemiotis, 1996RCD

Nickel ion (1+) + Adenine = (Nickel ion (1+) • Adenine)

By formula: Ni+ + C5H5N5 = (Ni+ • C5H5N5)

Quantity Value Units Method Reference Comment
Δr297. ± 9.6kJ/molCIDTRodgers and Armentrout, 2002RCD

Titanium ion (1+) + Adenine = (Titanium ion (1+) • Adenine)

By formula: Ti+ + C5H5N5 = (Ti+ • C5H5N5)

Quantity Value Units Method Reference Comment
Δr≤339. ± 15.kJ/molCIDTRodgers and Armentrout, 2002RCD

Vanadium ion (1+) + Adenine = (Vanadium ion (1+) • Adenine)

By formula: V+ + C5H5N5 = (V+ • C5H5N5)

Quantity Value Units Method Reference Comment
Δr≤265. ± 10.kJ/molCIDTRodgers and Armentrout, 2002RCD

Zinc ion (1+) + Adenine = (Zinc ion (1+) • Adenine)

By formula: Zn+ + C5H5N5 = (Zn+ • C5H5N5)

Quantity Value Units Method Reference Comment
Δr≥238. ± 5.4kJ/molCIDTRodgers and Armentrout, 2002RCD

IR Spectrum

Go To: Top, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compiled by: Coblentz Society, Inc.


Mass spectrum (electron ionization)

Go To: Top, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW- 279
NIST MS number 228448

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Gas Chromatography

Go To: Top, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-51836.Pellicer, 200730. m/0.32 mm/0.25 μm, Helium; Program: not specified

References

Go To: Top, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Desfrancois, Abdoul-Carime, et al., 1996
Desfrancois, C.; Abdoul-Carime, H.; Schermann, J.P., Electron Attachment to Isolated Nucleic Acid Bases, J. Chem. Phys., 1996, 104, 19, 7792, https://doi.org/10.1063/1.471484 . [all data]

Aflatooni, Gallup, et al., 1998
Aflatooni, K.; Gallup, G.A.; Burrows, P.D., Electron Attachment Energies of the DNA Bases, J. Phys. Chem., 1998, 102, 31, 6205, https://doi.org/10.1021/jp980865n . [all data]

Verkin, Sukodub, et al., 1976
Verkin, B.I.; Sukodub, L.F.; Yanson, I.K., Ionization potentials of nitrogenous bases of of nucleic acids, Dokl. Akad. Nauk SSSR, 1976, 228, 1452. [all data]

Lifschitz, Bergmann, et al., 1967
Lifschitz, C.; Bergmann, E.D.; Pullman, B., The ionization potentials of biological purines and pyrimidines, Tetrahedron Lett., 1967, 4583. [all data]

Lin, Yu, et al., 1980
Lin, J.; Yu, C.; Peng, S.; Akiyama, I.; Li, K.; Lee, L.K.; LeBreton, P.R., Ultraviolet photoelectron studies of the ground-state electronic structure and gas-phase tautomerism of purine and adenine, J. Am. Chem. Soc., 1980, 102, 4627. [all data]

Peng, Padva, et al., 1976
Peng, S.; Padva, A.; LeBreton, P.R., Ultraviolet photoelectron studies of biological purines: The valence electronic structure of adenine, Proc. Nat. Acad. Sci. U.S.A., 1976, 73, 2966. [all data]

Hush and Cheung, 1975
Hush, N.S.; Cheung, A.S., Ionization potentials and donor properties of nucleic acid bases and related compounds, Chem. Phys. Lett., 1975, 34, 11. [all data]

Sharma and Lee, 2002
Sharma, S.; Lee, J.K., Acidity of adenine and adenine derivatives and biological implications. A computational and experimental gas-phase study, J. Org. Chem., 2002, 67, 24, 8360-8365, https://doi.org/10.1021/jo0204303 . [all data]

Meot-Ner (Mautner), 1979
Meot-Ner (Mautner), M., Ion Thermochemistry of Low Volatility Compounds in the Gas Phase. II. Intrinsic Basicities and Hydrogen Bonded Dimers of Nitrogen Heterocyclics and Nucleic Bases, J. Am. Chem. Soc., 1979, 101, 9, 2396, https://doi.org/10.1021/ja00503a027 . [all data]

Rodgers and Armentrout, 2002
Rodgers, M.T.; Armentrout, P.B., Influence of d orbital occupation on the binding of metal ions to adenine, J. Am. Chem. Soc., 2002, 124, 11, 2678, https://doi.org/10.1021/ja011278+ . [all data]

Cerda and Wesdemiotis, 1996
Cerda, B.A.; Wesdemiotis, C., PAs of Peptides, J. Am. Chem. Soc., 1996, 118, 11884. [all data]

Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B., Noncovalent Interactions of Nucleic Acid Bases (Uracil, Thymine, and Adenine) with Alkali Metal Ions. Threshold Collision-Induced Dissociation and Theoretical Studies, J. Am. Chem. Soc., 2000, 121, 35, 8548, https://doi.org/10.1021/ja001638d . [all data]

Pellicer, 2007
Pellicer, L.V., Comparison of Sensory Characteristics, and Instrumental flavor Compounds Analysis of Milk Produced by Three Proction Methods. A Thesis presented to the Faculty of the Graduate School University of Missouri-Columbia, 2007, retrieved from http://edit.missouri,edu/Winter2007/Theses/ValverdePellicerL-053107-T6722/research.pdf. [all data]


Notes

Go To: Top, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References