Adenine
- Formula: C5H5N5
- Molecular weight: 135.1267
- IUPAC Standard InChIKey: GFFGJBXGBJISGV-UHFFFAOYSA-N
- CAS Registry Number: 73-24-5
- Chemical structure:
This structure is also available as a 2d Mol file - Other names: 1H-Purin-6-amine; ADE; Adenin; Adeninimine; Leuco-4; Vitamin B4; 1,6-Dihydro-6-iminopurine; 3,6-Dihydro-6-iminopurine; 6-Amino-1H-purine; 6-Amino-3H-purine; 6-Amino-9H-purine; 6-Aminopurine; 1H-Purine-6-amine; Purine, 6-amino-; USAF CB-18; 1H-Purine, 6-amino-; 6-Amino-7H-purine; 9H-Purine, 1,6-dihydro-6-imino-; 9H-Purin-6-yl-amine; 9H-Purine-6-amine; NSC 14666
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Reaction thermochemistry data
Go To: Top, Gas phase ion energetics data, Ion clustering data, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: C5H4N5- + H+ = C5H5N5
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 335.1 ± 2.2 | kcal/mol | G+TS | Sharma and Lee, 2002 | gas phase; Acidity at N-9(imidazole N); B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 328.0 ± 2.0 | kcal/mol | IMRB | Sharma and Lee, 2002 | gas phase; Acidity at N-9(imidazole N); B |
ΔrG° | 344.3 ± 4.0 | kcal/mol | IMRB | Sharma and Lee, 2002 | gas phase; Less acidic N-10 site(aniline); B |
By formula: C5H6N5+ + C5H5N5 = (C5H6N5+ • C5H5N5)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 30.3 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1979 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 39. | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1979 | gas phase; M |
By formula: Na+ + C5H5N5 = (Na+ • C5H5N5)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 33.4 ± 1.0 | kcal/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
ΔrH° | 41.1 | kcal/mol | CIDC | Cerda and Wesdemiotis, 1996 | RCD |
By formula: Ti+ + C5H5N5 = (Ti+ • C5H5N5)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | ≤81.1 ± 3.5 | kcal/mol | CIDT | Rodgers and Armentrout, 2002 | RCD |
By formula: V+ + C5H5N5 = (V+ • C5H5N5)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | ≤63.4 ± 2.5 | kcal/mol | CIDT | Rodgers and Armentrout, 2002 | RCD |
By formula: Zn+ + C5H5N5 = (Zn+ • C5H5N5)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | ≥57.0 ± 1.3 | kcal/mol | CIDT | Rodgers and Armentrout, 2002 | RCD |
By formula: Fe+ + C5H5N5 = (Fe+ • C5H5N5)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 62.0 ± 2.1 | kcal/mol | CIDT | Rodgers and Armentrout, 2002 | RCD |
By formula: Cr+ + C5H5N5 = (Cr+ • C5H5N5)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 55.1 ± 1.8 | kcal/mol | CIDT | Rodgers and Armentrout, 2002 | RCD |
By formula: Mn+ + C5H5N5 = (Mn+ • C5H5N5)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 51.6 ± 1.8 | kcal/mol | CIDT | Rodgers and Armentrout, 2002 | RCD |
By formula: Ni+ + C5H5N5 = (Ni+ • C5H5N5)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 71.1 ± 2.3 | kcal/mol | CIDT | Rodgers and Armentrout, 2002 | RCD |
By formula: Co+ + C5H5N5 = (Co+ • C5H5N5)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 70.0 ± 2.5 | kcal/mol | CIDT | Rodgers and Armentrout, 2002 | RCD |
By formula: Cu+ + C5H5N5 = (Cu+ • C5H5N5)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 70.3 ± 2.6 | kcal/mol | CIDT | Rodgers and Armentrout, 2002 | RCD |
By formula: K+ + C5H5N5 = (K+ • C5H5N5)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 25.3 | kcal/mol | CIDC | Cerda and Wesdemiotis, 1996 | RCD |
Gas phase ion energetics data
Go To: Top, Reaction thermochemistry data, Ion clustering data, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Proton affinity (review) | 225.3 | kcal/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 218.1 | kcal/mol | N/A | Hunter and Lias, 1998 | HL |
Electron affinity determinations
EA (eV) | Reference | Comment |
---|---|---|
0.0120 ± 0.0050 | Desfrancois, Abdoul-Carime, et al., 1996 | Aflatooni, Gallup, et al., 1998: vertical attachment EA = -0.54 eV; B |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
8.3 ± 0.1 | EI | Verkin, Sukodub, et al., 1976 | LLK |
8.9 ± 0.1 | EI | Lifschitz, Bergmann, et al., 1967 | RDSH |
8.48 | PE | Lin, Yu, et al., 1980 | Vertical value; LLK |
8.48 | PE | Peng, Padva, et al., 1976 | Vertical value; LLK |
8.44 ± 0.03 | PE | Hush and Cheung, 1975 | Vertical value; LLK |
De-protonation reactions
By formula: C5H4N5- + H+ = C5H5N5
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 335.1 ± 2.2 | kcal/mol | G+TS | Sharma and Lee, 2002 | gas phase; Acidity at N-9(imidazole N); B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 328.0 ± 2.0 | kcal/mol | IMRB | Sharma and Lee, 2002 | gas phase; Acidity at N-9(imidazole N); B |
ΔrG° | 344.3 ± 4.0 | kcal/mol | IMRB | Sharma and Lee, 2002 | gas phase; Less acidic N-10 site(aniline); B |
Ion clustering data
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.
Clustering reactions
By formula: C5H6N5+ + C5H5N5 = (C5H6N5+ • C5H5N5)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 30.3 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1979 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 39. | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1979 | gas phase; M |
By formula: Co+ + C5H5N5 = (Co+ • C5H5N5)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 70.0 ± 2.5 | kcal/mol | CIDT | Rodgers and Armentrout, 2002 | RCD |
By formula: Cr+ + C5H5N5 = (Cr+ • C5H5N5)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 55.1 ± 1.8 | kcal/mol | CIDT | Rodgers and Armentrout, 2002 | RCD |
By formula: Cu+ + C5H5N5 = (Cu+ • C5H5N5)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 70.3 ± 2.6 | kcal/mol | CIDT | Rodgers and Armentrout, 2002 | RCD |
By formula: Fe+ + C5H5N5 = (Fe+ • C5H5N5)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 62.0 ± 2.1 | kcal/mol | CIDT | Rodgers and Armentrout, 2002 | RCD |
By formula: K+ + C5H5N5 = (K+ • C5H5N5)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 25.3 | kcal/mol | CIDC | Cerda and Wesdemiotis, 1996 | RCD |
By formula: Mn+ + C5H5N5 = (Mn+ • C5H5N5)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 51.6 ± 1.8 | kcal/mol | CIDT | Rodgers and Armentrout, 2002 | RCD |
By formula: Na+ + C5H5N5 = (Na+ • C5H5N5)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 33.4 ± 1.0 | kcal/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
ΔrH° | 41.1 | kcal/mol | CIDC | Cerda and Wesdemiotis, 1996 | RCD |
By formula: Ni+ + C5H5N5 = (Ni+ • C5H5N5)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 71.1 ± 2.3 | kcal/mol | CIDT | Rodgers and Armentrout, 2002 | RCD |
By formula: Ti+ + C5H5N5 = (Ti+ • C5H5N5)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | ≤81.1 ± 3.5 | kcal/mol | CIDT | Rodgers and Armentrout, 2002 | RCD |
By formula: V+ + C5H5N5 = (V+ • C5H5N5)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | ≤63.4 ± 2.5 | kcal/mol | CIDT | Rodgers and Armentrout, 2002 | RCD |
By formula: Zn+ + C5H5N5 = (Zn+ • C5H5N5)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | ≥57.0 ± 1.3 | kcal/mol | CIDT | Rodgers and Armentrout, 2002 | RCD |
Gas Chromatography
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Normal alkane RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | DB-5 | 1836. | Pellicer, 2007 | 30. m/0.32 mm/0.25 μm, Helium; Program: not specified |
References
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Gas Chromatography, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Sharma and Lee, 2002
Sharma, S.; Lee, J.K.,
Acidity of adenine and adenine derivatives and biological implications. A computational and experimental gas-phase study,
J. Org. Chem., 2002, 67, 24, 8360-8365, https://doi.org/10.1021/jo0204303
. [all data]
Meot-Ner (Mautner), 1979
Meot-Ner (Mautner), M.,
Ion Thermochemistry of Low Volatility Compounds in the Gas Phase. II. Intrinsic Basicities and Hydrogen Bonded Dimers of Nitrogen Heterocyclics and Nucleic Bases,
J. Am. Chem. Soc., 1979, 101, 9, 2396, https://doi.org/10.1021/ja00503a027
. [all data]
Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B.,
Noncovalent Interactions of Nucleic Acid Bases (Uracil, Thymine, and Adenine) with Alkali Metal Ions. Threshold Collision-Induced Dissociation and Theoretical Studies,
J. Am. Chem. Soc., 2000, 121, 35, 8548, https://doi.org/10.1021/ja001638d
. [all data]
Cerda and Wesdemiotis, 1996
Cerda, B.A.; Wesdemiotis, C.,
PAs of Peptides,
J. Am. Chem. Soc., 1996, 118, 11884. [all data]
Rodgers and Armentrout, 2002
Rodgers, M.T.; Armentrout, P.B.,
Influence of d orbital occupation on the binding of metal ions to adenine,
J. Am. Chem. Soc., 2002, 124, 11, 2678, https://doi.org/10.1021/ja011278+
. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Desfrancois, Abdoul-Carime, et al., 1996
Desfrancois, C.; Abdoul-Carime, H.; Schermann, J.P.,
Electron Attachment to Isolated Nucleic Acid Bases,
J. Chem. Phys., 1996, 104, 19, 7792, https://doi.org/10.1063/1.471484
. [all data]
Aflatooni, Gallup, et al., 1998
Aflatooni, K.; Gallup, G.A.; Burrows, P.D.,
Electron Attachment Energies of the DNA Bases,
J. Phys. Chem., 1998, 102, 31, 6205, https://doi.org/10.1021/jp980865n
. [all data]
Verkin, Sukodub, et al., 1976
Verkin, B.I.; Sukodub, L.F.; Yanson, I.K.,
Ionization potentials of nitrogenous bases of of nucleic acids,
Dokl. Akad. Nauk SSSR, 1976, 228, 1452. [all data]
Lifschitz, Bergmann, et al., 1967
Lifschitz, C.; Bergmann, E.D.; Pullman, B.,
The ionization potentials of biological purines and pyrimidines,
Tetrahedron Lett., 1967, 4583. [all data]
Lin, Yu, et al., 1980
Lin, J.; Yu, C.; Peng, S.; Akiyama, I.; Li, K.; Lee, L.K.; LeBreton, P.R.,
Ultraviolet photoelectron studies of the ground-state electronic structure and gas-phase tautomerism of purine and adenine,
J. Am. Chem. Soc., 1980, 102, 4627. [all data]
Peng, Padva, et al., 1976
Peng, S.; Padva, A.; LeBreton, P.R.,
Ultraviolet photoelectron studies of biological purines: The valence electronic structure of adenine,
Proc. Nat. Acad. Sci. U.S.A., 1976, 73, 2966. [all data]
Hush and Cheung, 1975
Hush, N.S.; Cheung, A.S.,
Ionization potentials and donor properties of nucleic acid bases and related compounds,
Chem. Phys. Lett., 1975, 34, 11. [all data]
Pellicer, 2007
Pellicer, L.V.,
Comparison of Sensory Characteristics, and Instrumental flavor Compounds Analysis of Milk Produced by Three Proction Methods. A Thesis presented to the Faculty of the Graduate School University of Missouri-Columbia, 2007, retrieved from http://edit.missouri,edu/Winter2007/Theses/ValverdePellicerL-053107-T6722/research.pdf. [all data]
Notes
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Gas Chromatography, References
- Symbols used in this document:
EA Electron affinity ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.