Benzene

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas19.8 ± 0.2kcal/molReviewRoux, Temprado, et al., 2008There are sufficient high-quality literature values to make a good evaluation with a high degree of confidence. In general, the evaluated uncertainty limits are on the order of (0.5 to 2.5) kJ/mol.; DRB
Δfgas19.8kcal/molN/AGood and Smith, 1969Value computed using ΔfHliquid° value of 49.0±0.5 kj/mol from Good and Smith, 1969 and ΔvapH° value of 33.9 kj/mol from Prosen, Gilmont, et al., 1945.; DRB
Δfgas19.82 ± 0.12kcal/molCcbProsen, Gilmont, et al., 1945Hf by Prosen, Johnson, et al., 1946; ALS
Δfgas19.1kcal/molN/ALandrieu, Baylocq, et al., 1929Value computed using ΔfHliquid° value of 46.0 kj/mol from Landrieu, Baylocq, et al., 1929 and ΔvapH° value of 33.9 kj/mol from Prosen, Gilmont, et al., 1945.; DRB

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
7.95250.Thermodynamics Research Center, 1997GT
8.391100.
10.02150.
12.71200.
17.82273.15
19.70298.15
19.84300.
27.132400.
33.305500.
38.262600.
42.251700.
45.519800.
48.236900.
50.5281000.
52.4761100.
54.1401200.
55.5661300.
56.8001400.
57.8661500.
59.9691750.
61.4872000.
62.6082250.
63.4562500.
64.1092750.
64.6203000.

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
22.30 ± 0.01333.15Todd S.S., 1978Please also see Montgomery J.B., 1942, Pitzer K.S., 1943, Scott D.W., 1947.; GT
22.90341.60
23.42 ± 0.01348.15
24.85 ± 0.01368.15
25.100370.
25.041371.20
26.00 ± 0.30388.
26.501390.
26.40 ± 0.30393.
27.230402.30
27.32 ± 0.02403.15
27.600410.
28.10 ± 0.30417.
28.40 ± 0.30428.
29.491436.15
29.62 ± 0.02438.15
30.30 ± 0.30463.
31.649471.10
31.77 ± 0.02473.15
31.40 ± 0.30481.
33.33 ± 0.02500.15
34.80 ± 0.02527.15

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Ion clustering data, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
MM - Michael M. Meot-Ner (Mautner)
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C6H6+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)9.24378 ± 0.00007eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)179.3kcal/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity173.4kcal/molN/AHunter and Lias, 1998HL

Proton affinity at 298K

Proton affinity (kcal/mol) Reference Comment
178.4Aue, Guidoni, et al., 2000Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM

Gas basicity at 298K

Gas basicity (review) (kcal/mol) Reference Comment
172.5Aue, Guidoni, et al., 2000Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM

Ionization energy determinations

IE (eV) Method Reference Comment
9.24384 ± 0.00006TENemeth, Selzle, et al., 1993LL
9.24372 ± 0.00005TEChewter, Sander, et al., 1987LBLHLM
9.20EIStahl and Maquin, 1984LBLHLM
9.2459 ± 0.0002SGrubb, Whetten, et al., 1984LBLHLM
9.23 ± 0.03EIArimura and Yoshikawa, 1984LBLHLM
9.25PEKlasinc, Kovac, et al., 1983LBLHLM
9.23PECetinkaya, Lappert, et al., 1983LBLHLM
9.25PEKimura, Katsumata, et al., 1981LLK
9.240 ± 0.002LSDuncan, Dietz, et al., 1981LLK
9.44EIClare and Sowerby, 1981LLK
9.25PEBieri and Asbrink, 1980LLK
9.22PESell, Mintz, et al., 1978LLK
9.24PEMattsson, Karlsson, et al., 1977LLK
9.25 ± 0.02PEBieri, Burger, et al., 1977LLK
9.25 ± 0.07EISelim, 1976LLK
9.24PEBehan, Johnstone, et al., 1976LLK
9.70EIBaldwin, Loudon, et al., 1976LLK
9.25CTSPitt, 1973LLK
9.2 ± 0.1EITajima, Shimizu, et al., 1972LLK
9.26 ± 0.06EIFinney and Harrison, 1972LLK
9.27PEChizhov, Kleimenov, et al., 1972LLK
9.24 ± 0.01PISergeev, Akopyan, et al., 1970RDSH
9.25 ± 0.01PIDemeo and El-Sayed, 1970RDSH
9.36 ± 0.05EIBuchs, 1970RDSH
9.241 ± 0.001PEAsbrink, Lindholm, et al., 1970RDSH
9.241TEPeatman, Borne, et al., 1969RDSH
9.24 ± 0.01PEDewar and Worley, 1969RDSH
9.25 ± 0.01PIMomigny, Goffart, et al., 1968RDSH
9.20 ± 0.04EIBock, Seidl, et al., 1968RDSH
9.24PEBaker, May, et al., 1968RDSH
9.25PEBaker, Brundle, et al., 1968RDSH
9.25 ± 0.02PEClark and Frost, 1967RDSH
9.26 ± 0.02EINounou, 1966RDSH
9.246 ± 0.005PIBrehm, 1966RDSH
9.241 ± 0.006PINicholson, 1965RDSH
9.24 ± 0.01PIDibeler and Reese, 1964RDSH
9.25PEAl-Joboury and Turner, 1964RDSH
9.2PITerenin, 1961RDSH
9.248SEl-Sayed, Kaaba, et al., 1961RDSH
9.247 ± 0.002SWilkinson, 1956RDSH
9.25 ± 0.01PIWatanabe, 1954RDSH
9.8 ± 0.1EIHustrulid, Kusch, et al., 1938RDSH
9.242 ± 0.005SPrice and Wood, 1935RDSH
9.23PEHowell, Goncalves, et al., 1984Vertical value; LBLHLM
9.25PEKovac, Mohraz, et al., 1980Vertical value; LLK
9.25PEKaim, Tesmann, et al., 1980Vertical value; LLK
9.22PESell and Kupperman, 1978Vertical value; LLK
9.23PEKobayashi, 1978Vertical value; LLK
9.3PEKlasinc, Novak, et al., 1978Vertical value; LLK
9.24 ± 0.02PESchmidt, 1977Vertical value; LLK
9.25 ± 0.05PEGower, Kane-Maguire, et al., 1977Vertical value; LLK
9.24PEBock, Kaim, et al., 1977Vertical value; LLK
9.24PEClar and Schmidt, 1976Vertical value; LLK
9.23PEKobayashi and Nagakura, 1975Vertical value; LLK
9.24PEBischof, Dewar, et al., 1974Vertical value; LLK
9.24PESchafer and Schweig, 1972Vertical value; LLK
9.25 ± 0.03PEKlessinger, 1972Vertical value; LLK
9.24PEBock, Wagner, et al., 1972Vertical value; LLK
9.2PECarlson and Anderson, 1971Vertical value; LLK
9.24PEBock and Fuss, 1971Vertical value; LLK
9.24PEGleiter, Heilbronner, et al., 1970Vertical value; RDSH

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
CH3+28.2 ± 0.2?EIOlmsted, Street, et al., 1964RDSH
C2H2+19. ± 0.4?EILifshitz and Reuben, 1969RDSH
C2H2+18.6?EINatalis and Franklin, 1965RDSH
C2H2+32.6 ± 0.2?EIOlmsted, Street, et al., 1964RDSH
C2H3+19. ± 0.4?EILifshitz and Reuben, 1969RDSH
C3H3+13.43?LSKuhlewind, Kiermeier, et al., 1986LBLHLM
C3H3+15.34 ± 0.06C3H3EISelim, 1976LLK
C3H3+16.90C3H3PEEland, Frey, et al., 1976LLK
C3H3+13.79C3H3PIRosenstock, Larkins, et al., 1973LLK
C3H3+14.7 ± 0.1?EILifshitz and Reuben, 1969RDSH
C4H2+17.5 ± 0.3?EILifshitz and Reuben, 1969RDSH
C4H3+18.48 ± 0.07H+C2H2EISelim, 1976LLK
C4H3+17.6 ± 0.1?EILifshitz and Reuben, 1969RDSH
C4H4+13.40C2H2LSKuhlewind, Kiermeier, et al., 1986T = 0K; LBLHLM
C4H4+13.9 ± 0.1C2H2EIRosenstock, McCulloh, et al., 1977LLK
C4H4+14.17 ± 0.08C2H2PIRosenstock, McCulloh, et al., 1977LLK
C4H4+14.85C2H2PEEland, Frey, et al., 1976LLK
C4H4+13.85C2H2PIRosenstock, Larkins, et al., 1973LLK
C4H4+14.1C2H2EIHickling and Jennings, 1970RDSH
C4H4+14.5 ± 0.2C2H2EILifshitz and Reuben, 1969RDSH
C5H3+15.7 ± 0.1CH3EILifshitz and Reuben, 1969RDSH
C6H+29. ± 2.?EILifshitz and Reuben, 1969RDSH
C6H4+12.93H2LSKuhlewind, Kiermeier, et al., 1986T = 0K; LBLHLM
C6H4+14.14 ± 0.08H2EISelim, 1976LLK
C6H4+12.94H2PIRosenstock, Larkins, et al., 1973LLK
C6H4+14.04 ± 0.06H2EIBentley, Johnstone, et al., 1973LLK
C6H4+14.09 ± 0.07H2EINatalis and Franklin, 1965RDSH
C6H5+13.12 ± 0.05HEVALKlippenstein, Faulk, et al., 1993T = 0K; LL
C6H5+12.90HLSKuhlewind, Kiermeier, et al., 1986T = 0K; LBLHLM
C6H5+13.7 ± 0.1HEIRosenstock, McCulloh, et al., 1977LLK
C6H5+13.78 ± 0.08HPIRosenstock, McCulloh, et al., 1977LLK
C6H5+14.56 ± 0.07HEISelim, 1976LLK
C6H5+12.94HPIRosenstock, Larkins, et al., 1973LLK
C6H5+13.97 ± 0.06HEIBentley, Johnstone, et al., 1973LLK
C6H5+14.1 ± 0.1HEIGross, 1972LLK
C6H5+13.80 ± 0.03HPISergeev, Akopyan, et al., 1970RDSH
C6H5+14.1 ± 0.1HEILifshitz and Reuben, 1969RDSH
C6H5+13.8 ± 0.1HPIBrehm, 1966RDSH
C6H71-43-24+14.2 ± 0.2H2EILifshitz and Reuben, 1969RDSH

De-protonation reactions

C6H5- + Hydrogen cation = Benzene

By formula: C6H5- + H+ = C6H6

Quantity Value Units Method Reference Comment
Δr401.22 ± 0.50kcal/molG+TSDavico, Bierbaum, et al., 1995gas phase; Revised per Ervin and DeTuro, 2002 change in NH3 acidity. Alecu, Gao, et al., 2007 using thermal methods, agrees with this BDE: 112.8±0.6; value altered from reference due to change in acidity scale; B
Δr401.16 ± 0.21kcal/molD-EAGunion, Gilles, et al., 1992gas phase; B
Δr400.7 ± 2.5kcal/molTDEqMeot-ner and Sieck, 1986gas phase; B
Δr401. ± 10.kcal/molCIDTGraul and Squires, 1990gas phase; B
Δr398.0 ± 5.6kcal/molG+TSBohme and Young, 1971gas phase; B
Quantity Value Units Method Reference Comment
Δr392.40 ± 0.40kcal/molIMREDavico, Bierbaum, et al., 1995gas phase; Revised per Ervin and DeTuro, 2002 change in NH3 acidity. Alecu, Gao, et al., 2007 using thermal methods, agrees with this BDE: 112.8±0.6; value altered from reference due to change in acidity scale; B
Δr390.9 ± 2.0kcal/molTDEqMeot-ner and Sieck, 1986gas phase; B
Δr390.1 ± 6.5kcal/molIMRBBartmess and McIver Jr., 1979gas phase; B
Δr389.2 ± 5.5kcal/molIMRBBohme and Young, 1971gas phase; B

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
RCD - Robert C. Dunbar
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Silver ion (1+) + Benzene = (Silver ion (1+) • Benzene)

By formula: Ag+ + C6H6 = (Ag+ • C6H6)

Quantity Value Units Method Reference Comment
Δr37.3 ± 1.7kcal/molCIDTRodgers and Armentrout, 2000RCD
Δr39.9 ± 4.5kcal/molRAKHo, Yang, et al., 1997RCD

(Silver ion (1+) • Benzene) + Benzene = (Silver ion (1+) • 2Benzene)

By formula: (Ag+ • C6H6) + C6H6 = (Ag+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr39.9 ± 4.5kcal/molRAKHo, Yang, et al., 1997RCD

Aluminum ion (1+) + Benzene = (Aluminum ion (1+) • Benzene)

By formula: Al+ + C6H6 = (Al+ • C6H6)

Quantity Value Units Method Reference Comment
Δr35.1 ± 1.9kcal/molRAKDunbar, Klippenstein, et al., 1996RCD

Gold ion (1+) + Benzene = (Gold ion (1+) • Benzene)

By formula: Au+ + C6H6 = (Au+ • C6H6)

Quantity Value Units Method Reference Comment
Δr70.0kcal/molIMRBSchroeder, Hrusak, et al., 1995RCD

Bismuth ion (1+) + Benzene = (Bismuth ion (1+) • Benzene)

By formula: Bi+ + C6H6 = (Bi+ • C6H6)

Quantity Value Units Method Reference Comment
Δr<35.5kcal/molPDisWilley, Yeh, et al., 1992RCD

Bromine anion + Benzene = (Bromine anion • Benzene)

By formula: Br- + C6H6 = (Br- • C6H6)

Quantity Value Units Method Reference Comment
Δr9.0 ± 2.0kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Δr17.0cal/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Δr17.cal/mol*KN/APaul and Kebarle, 1991gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr2.5 ± 1.0kcal/molIMREPaul and Kebarle, 1991gas phase; B
Δr3.9 ± 2.6kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
0.0423.PHPMSPaul and Kebarle, 1991gas phase; Entropy change calculated or estimated; M

CH6N+ + Benzene = (CH6N+ • Benzene)

By formula: CH6N+ + C6H6 = (CH6N+ • C6H6)

Quantity Value Units Method Reference Comment
Δr18.8kcal/molPHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr25.1cal/mol*KPHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; M

C2H7O+ + Benzene = (C2H7O+ • Benzene)

By formula: C2H7O+ + C6H6 = (C2H7O+ • C6H6)

Quantity Value Units Method Reference Comment
Δr21.kcal/molPHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr25.cal/mol*KN/ADeakyne and Meot-Ner (Mautner), 1985gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
8.7491.PHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; Entropy change calculated or estimated; M

C3H3+ + Benzene = (C3H3+ • Benzene)

By formula: C3H3+ + C6H6 = (C3H3+ • C6H6)

Quantity Value Units Method Reference Comment
Δr9.0kcal/molHPMSField, Hamlet, et al., 1969gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr9.cal/mol*KHPMSField, Hamlet, et al., 1969gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr6.kcal/molHPMSField, Hamlet, et al., 1969gas phase; Entropy change is questionable; M

C3H9Si+ + Benzene = (C3H9Si+ • Benzene)

By formula: C3H9Si+ + C6H6 = (C3H9Si+ • C6H6)

Quantity Value Units Method Reference Comment
Δr23.9kcal/molPHPMSWojtyniak and Stone, 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr34.7cal/mol*KPHPMSWojtyniak and Stone, 1986gas phase; M

C3H10N+ + Benzene = (C3H10N+ • Benzene)

By formula: C3H10N+ + C6H6 = (C3H10N+ • C6H6)

Quantity Value Units Method Reference Comment
Δr15.9kcal/molPHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr27.7cal/mol*KPHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; M

C4H4S+ + Benzene = (C4H4S+ • Benzene)

By formula: C4H4S+ + C6H6 = (C4H4S+ • C6H6)

Quantity Value Units Method Reference Comment
Δr13.kcal/molHPMSField, Hamlet, et al., 1969gas phase; M
Quantity Value Units Method Reference Comment
Δr23.cal/mol*KHPMSField, Hamlet, et al., 1969gas phase; M

C4H9+ + Benzene = (C4H9+ • Benzene)

By formula: C4H9+ + C6H6 = (C4H9+ • C6H6)

Quantity Value Units Method Reference Comment
Δr22.kcal/molPHPMSSen Sharma, Ikuta, et al., 1982gas phase; forms protonated t-butylbenzene; M
Quantity Value Units Method Reference Comment
Δr49.cal/mol*KPHPMSSen Sharma, Ikuta, et al., 1982gas phase; forms protonated t-butylbenzene; M

C6H5Cl+ + Benzene = (C6H5Cl+ • Benzene)

By formula: C6H5Cl+ + C6H6 = (C6H5Cl+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr14.0kcal/molPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr26.cal/mol*KPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M

C6H6+ + Benzene = (C6H6+ • Benzene)

By formula: C6H6+ + C6H6 = (C6H6+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr14. ± 8.kcal/molAVGN/AAverage of 7 out of 10 values; Individual data points
Quantity Value Units Method Reference Comment
Δr28.8cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1991gas phase; M
Δr27.cal/mol*KPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M
Δr23.cal/mol*KHPMSField, Hamlet, et al., 1969gas phase; M

(C6H6+ • Benzene) + Benzene = (C6H6+ • 2Benzene)

By formula: (C6H6+ • C6H6) + C6H6 = (C6H6+ • 2C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr7.8 ± 0.5kcal/molPHPMSHiraoka, Fujimaki, et al., 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr19.8cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1991gas phase; M

(C6H6+ • 2Benzene) + Benzene = (C6H6+ • 3Benzene)

By formula: (C6H6+ • 2C6H6) + C6H6 = (C6H6+ • 3C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr7.0kcal/molPHPMSHiraoka, Fujimaki, et al., 1991gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr20.cal/mol*KN/AHiraoka, Fujimaki, et al., 1991gas phase; Entropy change calculated or estimated; M

(C6H6+ • 5Benzene) + Benzene = (C6H6+ • 6Benzene)

By formula: (C6H6+ • 5C6H6) + C6H6 = (C6H6+ • 6C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr8.5kcal/molPDissBeck and Hecht, 1991gas phase; M

(C6H6+ • 6Benzene) + Benzene = (C6H6+ • 7Benzene)

By formula: (C6H6+ • 6C6H6) + C6H6 = (C6H6+ • 7C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr8.3kcal/molPDissBeck and Hecht, 1991gas phase; M

(C6H6+ • 7Benzene) + Benzene = (C6H6+ • 8Benzene)

By formula: (C6H6+ • 7C6H6) + C6H6 = (C6H6+ • 8C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr8.0kcal/molPDissBeck and Hecht, 1991gas phase; M

(C6H6+ • 8Benzene) + Benzene = (C6H6+ • 9Benzene)

By formula: (C6H6+ • 8C6H6) + C6H6 = (C6H6+ • 9C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr7.9kcal/molPDissBeck and Hecht, 1991gas phase; M

(C6H6+ • 9Benzene) + Benzene = (C6H6+ • 10Benzene)

By formula: (C6H6+ • 9C6H6) + C6H6 = (C6H6+ • 10C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr7.8kcal/molPDissBeck and Hecht, 1991gas phase; M

(C6H6+ • 10Benzene) + Benzene = (C6H6+ • 11Benzene)

By formula: (C6H6+ • 10C6H6) + C6H6 = (C6H6+ • 11C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr7.8kcal/molPDissBeck and Hecht, 1991gas phase; M

(C6H6+ • 11Benzene) + Benzene = (C6H6+ • 12Benzene)

By formula: (C6H6+ • 11C6H6) + C6H6 = (C6H6+ • 12C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr8.0kcal/molPDissBeck and Hecht, 1991gas phase; M

(C6H6+ • 12Benzene) + Benzene = (C6H6+ • 13Benzene)

By formula: (C6H6+ • 12C6H6) + C6H6 = (C6H6+ • 13C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr8.3kcal/molPDissBeck and Hecht, 1991gas phase; M

(C6H6+ • 13Benzene) + Benzene = (C6H6+ • 14Benzene)

By formula: (C6H6+ • 13C6H6) + C6H6 = (C6H6+ • 14C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr8.1kcal/molPDissBeck and Hecht, 1991gas phase; M

C6H6NO- + 2Benzene = C12H12NO-

By formula: C6H6NO- + 2C6H6 = C12H12NO-

Quantity Value Units Method Reference Comment
Δr17.5 ± 2.3kcal/molN/ALe Barbu, Schiedt, et al., 2002gas phase; Affinity is difference in EAs of lesser solvated species; B

C6H7+ + Benzene = (C6H7+ • Benzene)

By formula: C6H7+ + C6H6 = (C6H7+ • C6H6)

Quantity Value Units Method Reference Comment
Δr11.0kcal/molPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr24.cal/mol*KPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M

C6H7N+ + Benzene = (C6H7N+ • Benzene)

By formula: C6H7N+ + C6H6 = (C6H7N+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr11.9kcal/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr22.6cal/mol*KPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; M

C7H8+ + Benzene = (C7H8+ • Benzene)

By formula: C7H8+ + C6H6 = (C7H8+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr12.2kcal/molMPIErnstberger, Krause, et al., 1990gas phase; M
Δr5.5kcal/molPIRuhl, Bisling, et al., 1986gas phase; from vIP of perpendicular dimer; M
Δr12.4kcal/molPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr26.cal/mol*KPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M

C7H9N+ + Benzene = (C7H9N+ • Benzene)

By formula: C7H9N+ + C6H6 = (C7H9N+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr12.3kcal/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr26.cal/mol*KN/AMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr4.6kcal/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M

C8H11N+ + Benzene = (C8H11N+ • Benzene)

By formula: C8H11N+ + C6H6 = (C8H11N+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr10.0kcal/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr26.cal/mol*KN/AMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr2.2kcal/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M

C9H12+ + Benzene = (C9H12+ • Benzene)

By formula: C9H12+ + C6H6 = (C9H12+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr10.6kcal/molPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr26.cal/mol*KPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M

C9H13N+ + Benzene = (C9H13N+ • Benzene)

By formula: C9H13N+ + C6H6 = (C9H13N+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr11.2kcal/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr26.cal/mol*KN/AMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
2.6331.PHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M

C10H10Fe+ + Benzene = (C10H10Fe+ • Benzene)

By formula: C10H10Fe+ + C6H6 = (C10H10Fe+ • C6H6)

Quantity Value Units Method Reference Comment
Δr8.kcal/molPHPMSMeot-Ner (Mautner), 1989gas phase; Entropy change calculated or estimated, ΔrH<, DG<; M
Quantity Value Units Method Reference Comment
Δr20.cal/mol*KN/AMeot-Ner (Mautner), 1989gas phase; Entropy change calculated or estimated, ΔrH<, DG<; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
3.0252.PHPMSMeot-Ner (Mautner), 1989gas phase; Entropy change calculated or estimated, ΔrH<, DG<; M

C11H10+ + Benzene = (C11H10+ • Benzene)

By formula: C11H10+ + C6H6 = (C11H10+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr9.0kcal/molPHPMSEl-Shall and Meot-Ner (Mautner), 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr24.0cal/mol*KPHPMSEl-Shall and Meot-Ner (Mautner), 1987gas phase; M

Cadmium ion (1+) + Benzene = (Cadmium ion (1+) • Benzene)

By formula: Cd+ + C6H6 = (Cd+ • C6H6)

Quantity Value Units Method Reference Comment
Δr32.5 ± 4.5kcal/molRAKHo, Yang, et al., 1997RCD

Chlorine anion + Benzene = (Chlorine anion • Benzene)

By formula: Cl- + C6H6 = (Cl- • C6H6)

Quantity Value Units Method Reference Comment
Δr6.00 ± 0.46kcal/molN/ATschurl, Ueberfluss, et al., 2007gas phase; B
Δr9.4 ± 2.0kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B,M
Δr9.90kcal/molIMRELarson and McMahon, 1984gas phase; B,M
Δr8.7kcal/molPHPMSPaul and Kebarle, 1991gas phase; from Ph. D. thesis of S. Chowdhury, Entropy change calculated or estimated; M
Δr10.4kcal/molPHPMSSunner, Nishizawa, et al., 1981gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr17.9cal/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Δr17.cal/mol*KN/APaul and Kebarle, 1991gas phase; from Ph. D. thesis of S. Chowdhury, Entropy change calculated or estimated; M
Δr17.1cal/mol*KN/ALarson and McMahon, 1984, 2gas phase; switching reaction(Cl-)t-C4H9OH, Entropy change calculated or estimated; French, Ikuta, et al., 1982; M
Δr22.cal/mol*KN/ASunner, Nishizawa, et al., 1981gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr4.0 ± 2.6kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B
Δr3.8 ± 1.6kcal/molIMREChowdhury and Kebarle, 1986gas phase; B
Δr4.8 ± 2.0kcal/molIMRELarson and McMahon, 1984gas phase; B,M
Δr3.80kcal/molIMREFrench, Ikuta, et al., 1982gas phase; B

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
3.6300.PHPMSPaul and Kebarle, 1991gas phase; from Ph. D. thesis of S. Chowdhury, Entropy change calculated or estimated; M
3.8300.PHPMSChowdhury and Kebarle, 1986gas phase; M
3.8300.PHPMSSunner, Nishizawa, et al., 1981gas phase; Entropy change calculated or estimated; M

Cobalt ion (1+) + Benzene = (Cobalt ion (1+) • Benzene)

By formula: Co+ + C6H6 = (Co+ • C6H6)

Quantity Value Units Method Reference Comment
Δr61.2 ± 2.6kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
61.1 (+2.5,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

(Cobalt ion (1+) • Benzene) + Benzene = (Cobalt ion (1+) • 2Benzene)

By formula: (Co+ • C6H6) + C6H6 = (Co+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr39.9 ± 3.3kcal/molCIDTMeyer, Khan, et al., 1995RCD
Quantity Value Units Method Reference Comment
Δr27.8cal/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrS(490 K); M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
39.9 (+3.2,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M
27.0 (+1.0,-0.) SIDTKemper, Bushnell, et al., 1993gas phase; ΔrS(490 K); M

Chromium ion (1+) + Benzene = (Chromium ion (1+) • Benzene)

By formula: Cr+ + C6H6 = (Cr+ • C6H6)

Quantity Value Units Method Reference Comment
Δr40.2kcal/molMIDLin, Chen, et al., 1997RCD
Δr39.2 ± 3.3kcal/molRAKLin and Dunbar, 1997RCD
Δr40.6 ± 2.4kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
40.6 (+2.3,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

(Chromium ion (1+) • Benzene) + Benzene = (Chromium ion (1+) • 2Benzene)

By formula: (Cr+ • C6H6) + C6H6 = (Cr+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr50.7 ± 9.1kcal/molRAKLin and Dunbar, 1997RCD
Δr55.4 ± 4.3kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
55.3 (+4.4,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

Cesium ion (1+) + Benzene = (Cesium ion (1+) • Benzene)

By formula: Cs+ + C6H6 = (Cs+ • C6H6)

Quantity Value Units Method Reference Comment
Δr15.4 ± 1.2kcal/molCIDTAmicangelo and Armentrout, 2000RCD

(Cesium ion (1+) • Benzene) + Benzene = (Cesium ion (1+) • 2Benzene)

By formula: (Cs+ • C6H6) + C6H6 = (Cs+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr14.0 ± 1.9kcal/molCIDTAmicangelo and Armentrout, 2000RCD

Copper ion (1+) + Benzene = (Copper ion (1+) • Benzene)

By formula: Cu+ + C6H6 = (Cu+ • C6H6)

Quantity Value Units Method Reference Comment
Δr52.1 ± 2.4kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
52.1 (+2.3,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

(Copper ion (1+) • Benzene) + Benzene = (Copper ion (1+) • 2Benzene)

By formula: (Cu+ • C6H6) + C6H6 = (Cu+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr37.0 ± 2.9kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
37.1 (+2.8,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

Fluorine anion + Benzene = (Fluorine anion • Benzene)

By formula: F- + C6H6 = (F- • C6H6)

Quantity Value Units Method Reference Comment
Δr15.30kcal/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr19.5cal/mol*KPHPMSHiraoka, Mizuse, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr9.40kcal/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B

Iron ion (1+) + Benzene = (Iron ion (1+) • Benzene)

By formula: Fe+ + C6H6 = (Fe+ • C6H6)

Quantity Value Units Method Reference Comment
Δr47.1kcal/molRAKGapeev and Dunbar, 2002RCD
Δr49.5 ± 2.9kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
49.6 (+2.3,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

(Iron ion (1+) • Benzene) + Benzene = (Iron ion (1+) • 2Benzene)

By formula: (Fe+ • C6H6) + C6H6 = (Fe+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr44.7 ± 3.8kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
44.7 (+3.9,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

NH4+ + Benzene = (NH4+ • Benzene)

By formula: H4N+ + C6H6 = (H4N+ • C6H6)

Quantity Value Units Method Reference Comment
Δr19.3kcal/molPHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr23.3cal/mol*KPHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; M

(NH4+ • Benzene) + Benzene = (NH4+ • 2Benzene)

By formula: (H4N+ • C6H6) + C6H6 = (H4N+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr17.0kcal/molPHPMSLiebman, Romm, et al., 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr30.5cal/mol*KPHPMSLiebman, Romm, et al., 1991gas phase; M

(NH4+ • 2Benzene) + Benzene = (NH4+ • 3Benzene)

By formula: (H4N+ • 2C6H6) + C6H6 = (H4N+ • 3C6H6)

Quantity Value Units Method Reference Comment
Δr14.2kcal/molPHPMSLiebman, Romm, et al., 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr32.9cal/mol*KPHPMSLiebman, Romm, et al., 1991gas phase; M

Iodide + Benzene = (Iodide • Benzene)

By formula: I- + C6H6 = (I- • C6H6)

Quantity Value Units Method Reference Comment
Δr6.1 ± 2.0kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B,M
Δr9.1 ± 1.0kcal/molTDAsCaldwell, Masucci, et al., 1989gas phase; B,M
Quantity Value Units Method Reference Comment
Δr14.2cal/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr1.8 ± 2.6kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B

Potassium ion (1+) + Benzene = (Potassium ion (1+) • Benzene)

By formula: K+ + C6H6 = (K+ • C6H6)

Quantity Value Units Method Reference Comment
Δr17.5 ± 0.9kcal/molCIDTAmicangelo and Armentrout, 2000RCD
Δr19.2kcal/molHPMSSunner, Nishizawa, et al., 1981gas phase; M
Quantity Value Units Method Reference Comment
Δr24.6cal/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; M

(Potassium ion (1+) • Benzene) + Benzene = (Potassium ion (1+) • 2Benzene)

By formula: (K+ • C6H6) + C6H6 = (K+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr16.1 ± 1.7kcal/molCIDTAmicangelo and Armentrout, 2000RCD
Δr18.8kcal/molHPMSSunner, Nishizawa, et al., 1981gas phase; M
Quantity Value Units Method Reference Comment
Δr33.9cal/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; M

(Potassium ion (1+) • 2Benzene) + Benzene = (Potassium ion (1+) • 3Benzene)

By formula: (K+ • 2C6H6) + C6H6 = (K+ • 3C6H6)

Quantity Value Units Method Reference Comment
Δr14.5kcal/molHPMSSunner, Nishizawa, et al., 1981gas phase; M
Quantity Value Units Method Reference Comment
Δr32.7cal/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; M

(Potassium ion (1+) • 3Benzene) + Benzene = (Potassium ion (1+) • 4Benzene)

By formula: (K+ • 3C6H6) + C6H6 = (K+ • 4C6H6)

Quantity Value Units Method Reference Comment
Δr12.6kcal/molHPMSSunner, Nishizawa, et al., 1981gas phase; M
Quantity Value Units Method Reference Comment
Δr41.4cal/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; M

(Potassium ion (1+) • Benzene • Water) + Benzene = (Potassium ion (1+) • 2Benzene • Water)

By formula: (K+ • C6H6 • H2O) + C6H6 = (K+ • 2C6H6 • H2O)

Quantity Value Units Method Reference Comment
Δr14.4kcal/molHPMSSunner, Nishizawa, et al., 1981gas phase; From thermochemical cycle,switching reaction(K+ 3H2O)C6H6, Searles and Kebarle, 1969; M
Quantity Value Units Method Reference Comment
Δr30.1cal/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; From thermochemical cycle,switching reaction(K+ 3H2O)C6H6, Searles and Kebarle, 1969; M

(Potassium ion (1+) • Benzene • 2Water) + Benzene = (Potassium ion (1+) • 2Benzene • 2Water)

By formula: (K+ • C6H6 • 2H2O) + C6H6 = (K+ • 2C6H6 • 2H2O)

Quantity Value Units Method Reference Comment
Δr12.8kcal/molHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+ 3H2O)C6H6; Searles and Kebarle, 1969; M
Quantity Value Units Method Reference Comment
Δr33.7cal/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+ 3H2O)C6H6; Searles and Kebarle, 1969; M

(Potassium ion (1+) • Water) + Benzene = (Potassium ion (1+) • Benzene • Water)

By formula: (K+ • H2O) + C6H6 = (K+ • C6H6 • H2O)

Quantity Value Units Method Reference Comment
Δr16.8kcal/molHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+)2H2O; Searles and Kebarle, 1969; M
Quantity Value Units Method Reference Comment
Δr27.1cal/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+)2H2O; Searles and Kebarle, 1969; M

(Potassium ion (1+) • 2Water) + Benzene = (Potassium ion (1+) • Benzene • 2Water)

By formula: (K+ • 2H2O) + C6H6 = (K+ • C6H6 • 2H2O)

Quantity Value Units Method Reference Comment
Δr13.4kcal/molHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+)3H2O; Searles and Kebarle, 1969; M
Quantity Value Units Method Reference Comment
Δr24.3cal/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+)3H2O; Searles and Kebarle, 1969; M

(Potassium ion (1+) • 3Water) + Benzene = (Potassium ion (1+) • Benzene • 3Water)

By formula: (K+ • 3H2O) + C6H6 = (K+ • C6H6 • 3H2O)

Quantity Value Units Method Reference Comment
Δr12.6kcal/molHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+)4H2O; Searles and Kebarle, 1969; M
Quantity Value Units Method Reference Comment
Δr27.6cal/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+)4H2O; Searles and Kebarle, 1969; M

Lithium ion (1+) + Benzene = (Lithium ion (1+) • Benzene)

By formula: Li+ + C6H6 = (Li+ • C6H6)

Quantity Value Units Method Reference Comment
Δr38.5 ± 3.2kcal/molCIDTAmicangelo and Armentrout, 2000RCD
Δr37.9kcal/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M
Δr36.5kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M
Quantity Value Units Method Reference Comment
Δr27.5cal/mol*KN/AWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M
Quantity Value Units Method Reference Comment
Δr29.7kcal/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M

(Lithium ion (1+) • Benzene) + Benzene = (Lithium ion (1+) • 2Benzene)

By formula: (Li+ • C6H6) + C6H6 = (Li+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr24.9 ± 1.7kcal/molCIDTAmicangelo and Armentrout, 2000RCD

Magnesium ion (1+) + Benzene = (Magnesium ion (1+) • Benzene)

By formula: Mg+ + C6H6 = (Mg+ • C6H6)

Quantity Value Units Method Reference Comment
Δr32.0 ± 2.3kcal/molCIDTAndersen, Muntean, et al., 2000RCD
Δr37.0kcal/molRAKGapeev and Dunbar, 2000RCD

Manganese ion (1+) + Benzene = (Manganese ion (1+) • Benzene)

By formula: Mn+ + C6H6 = (Mn+ • C6H6)

Quantity Value Units Method Reference Comment
Δr34.4kcal/molMIDLin, Chen, et al., 1997RCD
Δr31.8 ± 2.2kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
31.8 (+2.1,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

(Manganese ion (1+) • Benzene) + Benzene = (Manganese ion (1+) • 2Benzene)

By formula: (Mn+ • C6H6) + C6H6 = (Mn+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr48.5 ± 3.8kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
48.4 (+3.9,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

Nitric oxide anion + Benzene = C6H6NO-

By formula: NO- + C6H6 = C6H6NO-

Quantity Value Units Method Reference Comment
Δr9.5 ± 2.3kcal/molN/ALe Barbu, Schiedt, et al., 2002gas phase; Affinity is difference in EAs of lesser solvated species; B

Nitric oxide anion + Benzene = (Nitric oxide anion • Benzene)

By formula: NO- + C6H6 = (NO- • C6H6)

Quantity Value Units Method Reference Comment
Δr41.1kcal/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Sodium ion (1+) + Benzene = (Sodium ion (1+) • Benzene)

By formula: Na+ + C6H6 = (Na+ • C6H6)

Quantity Value Units Method Reference Comment
Δr22.8 ± 1.4kcal/molCIDCAmicangelo and Armentrout, 2001Anchor NH3=24.41; RCD
Δr21.1 ± 1.2kcal/molCIDTAmicangelo and Armentrout, 2000RCD
Δr21.1 ± 1.1kcal/molCIDTArmentrout and Rodgers, 2000RCD
Δr28.0kcal/molHPMSGuo, Purnell, et al., 1990gas phase; M
Quantity Value Units Method Reference Comment
Δr31.2cal/mol*KHPMSGuo, Purnell, et al., 1990gas phase; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
15.7298.IMREMcMahon and Ohanessian, 2000Anchor alanine=39.89; RCD

(Sodium ion (1+) • Benzene) + Benzene = (Sodium ion (1+) • 2Benzene)

By formula: (Na+ • C6H6) + C6H6 = (Na+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr20. ± 1.kcal/molAVGN/AAverage of 7 values; Individual data points

Nickel ion (1+) + Benzene = (Nickel ion (1+) • Benzene)

By formula: Ni+ + C6H6 = (Ni+ • C6H6)

Quantity Value Units Method Reference Comment
Δr58.1 ± 2.6kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
58.1 (+2.5,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

(Nickel ion (1+) • Benzene) + Benzene = (Nickel ion (1+) • 2Benzene)

By formula: (Ni+ • C6H6) + C6H6 = (Ni+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr35.1 ± 2.9kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
35.1 (+2.8,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

Oxygen anion + Benzene = C6H6O2-

By formula: O2- + C6H6 = C6H6O2-

Quantity Value Units Method Reference Comment
Δr14.1 ± 2.3kcal/molN/ALe Barbu, Schiedt, et al., 2002gas phase; Affinity is difference in EAs of lesser solvated species; B

Lead ion (1+) + Benzene = (Lead ion (1+) • Benzene)

By formula: Pb+ + C6H6 = (Pb+ • C6H6)

Quantity Value Units Method Reference Comment
Δr26.2kcal/molPHPMSGuo, Purnell, et al., 1990gas phase; M
Quantity Value Units Method Reference Comment
Δr21.6cal/mol*KPHPMSGuo, Purnell, et al., 1990gas phase; M

Rubidium ion (1+) + Benzene = (Rubidium ion (1+) • Benzene)

By formula: Rb+ + C6H6 = (Rb+ • C6H6)

Quantity Value Units Method Reference Comment
Δr16.4 ± 0.9kcal/molCIDTAmicangelo and Armentrout, 2000RCD

(Rubidium ion (1+) • Benzene) + Benzene = (Rubidium ion (1+) • 2Benzene)

By formula: (Rb+ • C6H6) + C6H6 = (Rb+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr15.0 ± 1.9kcal/molCIDTAmicangelo and Armentrout, 2000RCD

Titanium ion (1+) + Benzene = (Titanium ion (1+) • Benzene)

By formula: Ti+ + C6H6 = (Ti+ • C6H6)

Quantity Value Units Method Reference Comment
Δr50.9kcal/molRAKGapeev and Dunbar, 2002RCD
Δr61.9 ± 2.2kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
61.8 (+2.1,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

(Titanium ion (1+) • Benzene) + Benzene = (Titanium ion (1+) • 2Benzene)

By formula: (Ti+ • C6H6) + C6H6 = (Ti+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr60.5 ± 4.3kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
60.4 (+4.4,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

Vanadium ion (1+) + Benzene = (Vanadium ion (1+) • Benzene)

By formula: V+ + C6H6 = (V+ • C6H6)

Quantity Value Units Method Reference Comment
Δr>55.kcal/molRAKGapeev and Dunbar, 2002RCD
Δr55.9 ± 2.4kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
55.8 (+2.3,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

(Vanadium ion (1+) • Benzene) + Benzene = (Vanadium ion (1+) • 2Benzene)

By formula: (V+ • C6H6) + C6H6 = (V+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr58.8 ± 4.4kcal/molCIDMeyer, Khan, et al., 1995gas phase; ΔrH(0k), guided ion beam CID; M,RCD

(V- • Benzene, fluoro-) + Benzene = (V- • Benzene • Benzene, fluoro-)

By formula: (V- • C6H5F) + C6H6 = (V- • C6H6 • C6H5F)

Quantity Value Units Method Reference Comment
Δr3. ± 15.kcal/molN/AJudai, Hirano, et al., 1997gas phase; B

Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Ion clustering data, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin NIST Mass Spectrometry Data Center, 1990.
NIST MS number 114388

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Vibrational and/or electronic energy levels

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Takehiko Shimanouchi

Symmetry:   D6h     Symmetry Number σ = 12


 Sym.   No   Approximate   Selected Freq.  Infrared   Raman   Comments 
 Species   type of mode   Value   Rating   Value  Phase  Value  Phase

a1g 1 CH str 3062  C  ia 3061.9 VS p liq.
a1g 2 Ring str 992  C  ia 991.6 VS p liq.
a2g 3 CH bend 1326  E  ia 1326 VW liq.
a2u 4 CH bend 673  B 673 S gas  ia
b1u 5 CH str 3068  C 3067.57 VW sln.  ia
b1u 6 Ring deform 1010  C 1010 W sln.  ia
b2g 7 CH bend 995  E  ia  ia OC197207)
b2g 8 Ring deform 703  E  ia  ia OC198, ν208)
b2u 9 Ring str 1310  C 1310 W liq.  ia
b2u 10 CH bend 1150  C 1150 W liq.  ia
e1g 11 CH bend 849  C  ia 848.9 M dp liq.
e1u 12 CH str 3063  E 3080 S liq.  ia FR1316)
e1u 12 CH str 3063  E 3030 S liq.  ia FR1316)
e1u 13 Ring str + deform 1486  B 1486 S gas  ia
e1u 14 CH bend 1038  B 1038 S gas  ia
e2g 15 CH str 3047  C  ia 3046.8 S dp liq.
e2g 16 Ring str 1596  E  ia 1606.4 S dp liq. FR218)
e2g 16 Ring str 1596  E  ia 1584.6 S dp liq. FR218)
e2g 17 CH bend 1178  C  ia 1178.0 S dp liq.
e2g 18 Ring deform 606  C  ia 605.6 S dp liq.
e2u 19 CH bend 975  C 975 W liq.  ia
e2u 20 Ring deform 410  C 417.7 S sln.  ia
e2u 20 Ring deform 410  C 403.0 S sln.  ia

Source: Shimanouchi, 1972

Notes

VSVery strong
SStrong
MMedium
WWeak
VWVery weak
iaInactive
pPolarized
dpDepolarized
FRFermi resonance with an overtone or a combination tone indicated in the parentheses.
OCFrequency estimated from an overtone or a combination tone indicated in the parentheses.
B1~3 cm-1 uncertainty
C3~6 cm-1 uncertainty
E15~30 cm-1 uncertainty

References

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Roux, Temprado, et al., 2008
Roux, M.V.; Temprado, M.; Chickos, J.S.; Nagano, Y., Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons, J. Phys. Chem. Ref. Data, 2008, 37, 4, 1855-1996. [all data]

Good and Smith, 1969
Good, W.D.; Smith, N.K., Enthalpies of combustion of toluene, benzene, cyclohexane, cyclohexene, methylcyclopentane, 1-methylcyclopentene, and n-hexane, J. Chem. Eng. Data, 1969, 14, 102-106. [all data]

Prosen, Gilmont, et al., 1945
Prosen, E.J.; Gilmont, R.; Rossini, F.D., Heats of combustion of benzene, toluene, ethyl-benzene, o-xylene, m-xylene, p-xylene, n-propylbenzene, and styrene, J. Res. NBS, 1945, 34, 65-70. [all data]

Prosen, Johnson, et al., 1946
Prosen, E.J.; Johnson, W.H.; Rossini, F.D., Heats of combustion and formation at 25°C of the alkylbenzenes through C10H14, and of the higher normal monoalkylbenzenes, J. Res. NBS, 1946, 36, 455-461. [all data]

Landrieu, Baylocq, et al., 1929
Landrieu, P.; Baylocq, F.; Johnson, J.R., Etude thermochimique dans la serie furanique, Bull. Soc. Chim. France, 1929, 45, 36-49. [all data]

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Todd S.S., 1978
Todd S.S., Vapor-flow calorimetry of benzene, J. Chem. Thermodyn., 1978, 10, 641-648. [all data]

Montgomery J.B., 1942
Montgomery J.B., The heat capacity of organic vapors. IV. Benzene, fluorobenzene, toluene, cyclohexane, methylcyclohexane and cyclohexene, J. Am. Chem. Soc., 1942, 64, 2375-2377. [all data]

Pitzer K.S., 1943
Pitzer K.S., The thermodynamics and molecular structure of benzene and its methyl derivatives, J. Am. Chem. Soc., 1943, 65, 803-829. [all data]

Scott D.W., 1947
Scott D.W., The heat capacity of benzene vapor. The contribution of anharmonicity, J. Chem. Phys., 1947, 15, 565-568. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Aue, Guidoni, et al., 2000
Aue, D.H.; Guidoni, M.; Betowski, L.D., Ab initio calculated gas-phase basicities of polynuclear aromatic hydrocarbons, Int. J. Mass Spectrom., 2000, 201, 283. [all data]

Nemeth, Selzle, et al., 1993
Nemeth, G.I.; Selzle, H.L.; Schlag, E.W., Magnetic ZEKE experiments with mass analysis, Chem. Phys. Lett., 1993, 215, 151. [all data]

Chewter, Sander, et al., 1987
Chewter, L.A.; Sander, M.; Muller-Dethlefs, K.; Schalg, E.W., High resolution zero kinetic energy photoelectron spectroscopy of benzene and determination of the ionization potential, J. Chem. Phys., 1987, 86, 4737. [all data]

Stahl and Maquin, 1984
Stahl, D.; Maquin, F., Charge-stripping mass spectrometry of molecular ions from polyacenes and molecular orbital theory, Chem. Phys. Lett., 1984, 108, 613. [all data]

Grubb, Whetten, et al., 1984
Grubb, S.G.; Whetten, R.L.; Albrecht, A.C.; Grant, E.R., A precise determination of the first ionization potential of benzene, Chem. Phys. Lett., 1984, 108, 420. [all data]

Arimura and Yoshikawa, 1984
Arimura, M.; Yoshikawa, Y., Ionization efficiency and ionization energy of cyclic compounds by electron impact, Mass Spectrosc. (Tokyo), 1984, 32, 375. [all data]

Klasinc, Kovac, et al., 1983
Klasinc, L.; Kovac, B.; Gusten, H., Photoelectron spectra of acenes. Electronic structure and substituent effects, Pure Appl. Chem., 1983, 55, 289. [all data]

Cetinkaya, Lappert, et al., 1983
Cetinkaya, B.; Lappert, M.F.; Suffolk, R.J., Photoelectron spectra of some sterically hindered phenols and related compounds, J. Chem. Res. Synop., 1983, 316. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Duncan, Dietz, et al., 1981
Duncan, M.A.; Dietz, T.G.; Smalley, R.E., Two-color photoionization of naphthalene and benzene at threshold, J. Chem. Phys., 1981, 75, 2118. [all data]

Clare and Sowerby, 1981
Clare, P.; Sowerby, D.B., Electron impact ionisation energies of some halo-cyclotriphosphazenes, J. Inorg. Nucl. Chem., 1981, 43, 477. [all data]

Bieri and Asbrink, 1980
Bieri, G.; Asbrink, L., 30.4-nm He(II) photoelectron spectra of organic molecules, J. Electron Spectrosc. Relat. Phenom., 1980, 20, 149. [all data]

Sell, Mintz, et al., 1978
Sell, J.A.; Mintz, D.M.; Kupperman, A., Photoelectron angular distributions of carbon-carbon π electrons in ethylene, benzene, and their fluorinated derivatives, Chem. Phys. Lett., 1978, 58, 601. [all data]

Mattsson, Karlsson, et al., 1977
Mattsson, L.; Karlsson, L.; Jadrny, R.; Siegbahn, K., Valence electron spectrum of C6H6 excited by linearly polarized HeI radiation, Phys. Scr., 1977, 16, 221. [all data]

Bieri, Burger, et al., 1977
Bieri, G.; Burger, F.; Heilbronner, E.; Maier, J.P., Valence ionization enrgies of hydrocarbons, Helv. Chim. Acta, 1977, 60, 2213. [all data]

Selim, 1976
Selim, E.T.M., Electron impact study of benzene, Egypt. J. Phys., 1976, 7, 91. [all data]

Behan, Johnstone, et al., 1976
Behan, J.M.; Johnstone, R.A.W.; Bentley, T.W., An evaluation of empirical methods for calculating the ionization potentials of substituted benzenes, Org. Mass Spectrom., 1976, 11, 207. [all data]

Baldwin, Loudon, et al., 1976
Baldwin, M.A.; Loudon, A.G.; Maccoll, A.; Webb, K.S., The nature and fragmentation pathways of the molecular ions of some arylureas, arylthioureas, acetanilides, thioacetanilides and related compounds, Org. Mass Spectrom., 1976, 11, 1181. [all data]

Pitt, 1973
Pitt, C.G., Hyperconjugation and its role in group IV chemistry, J. Organomet. Chem., 1973, 61, 49. [all data]

Tajima, Shimizu, et al., 1972
Tajima, S.; Shimizu, Y.; Tsuchiya, T., The effect of the shield voltage on appearance potential measurements using a mass spectrometer, Bull. Chem. Soc. Jpn., 1972, 45, 931. [all data]

Finney and Harrison, 1972
Finney, C.D.; Harrison, A.G., A third-derivative method for determining electron-impact onset potentials, Int. J. Mass Spectrom. Ion Phys., 1972, 9, 221. [all data]

Chizhov, Kleimenov, et al., 1972
Chizhov, Yu.V.; Kleimenov, V.I.; Medynskii, G.S.; Vilesov, F.I., Photoelectron spectra of some bromoethylenes and 2-bromopropene, Can. J. Chem., 1972, 50, 2642. [all data]

Sergeev, Akopyan, et al., 1970
Sergeev, Yu.L.; Akopyan, M.E.; Vilesov, F.I.; Kleimenov, V.I., Photoionization processes in phenyl halides, Opt. i Spektroskopiya, 1970, 29, 119, In original 63. [all data]

Demeo and El-Sayed, 1970
Demeo, D.A.; El-Sayed, M.A., Ionization potential and structure of olefins, J. Chem. Phys., 1970, 52, 2622. [all data]

Buchs, 1970
Buchs, A., Etude par spectrometrie de masse de l'ionisation de benzonitriles, de phenylacetonitriles et de N,N-dimethylanilines substitues, Helv. Chim. Acta, 1970, 53, 2026. [all data]

Asbrink, Lindholm, et al., 1970
Asbrink, L.; Lindholm, E.; Edqvist, O., Jahn-Teller effect in the vibrational structure of the photoelectron spectrum of benzene, Chem. Phys. Lett., 1970, 5, 609. [all data]

Peatman, Borne, et al., 1969
Peatman, W.B.; Borne, T.B.; Schlag, E.W., Photoionization resonance spectra. I. Nitric oxide and benzene, Chem. Phys. Lett., 1969, 3, 492. [all data]

Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D., Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation, J. Chem. Phys., 1969, 50, 654. [all data]

Momigny, Goffart, et al., 1968
Momigny, J.; Goffart, C.; D'Or, L., Photoionization studies by total ionization measurements. I. Benzene and its monohalogeno derivatives, Intern. J. Mass Spectrom. Ion Phys., 1968, 1, 53. [all data]

Bock, Seidl, et al., 1968
Bock, H.; Seidl, H.; Fochler, M., d-Orbitaleffekte in silicium-substituierten π-Elektronensystemen. X. Vertikale Ionisierungsenergien von Alkyl- und Silyl-benzolen, Chem. Ber., 1968, 101, 2815. [all data]

Baker, May, et al., 1968
Baker, A.D.; May, D.P.; Turner, D.W., Molecular photoelectron spectroscopy. Part VII. The vertical ionisation potentials of benzene and some of its monosubstituted and 1,4-disubstituted derivatives, J. Chem. Soc. B, 1968, 22. [all data]

Baker, Brundle, et al., 1968
Baker, A.D.; Brundle, C.R.; Turner, D.W., The interpretation of photoelectron spectra especially those of benzene and water, Int. J. Mass Spectrom. Ion Phys., 1968, 1, 443. [all data]

Clark and Frost, 1967
Clark, I.D.; Frost, D.C., A study of the energy levels in benzene and some fluorobenzenes by photoelectron spectroscopy, J. Am. Chem. Soc., 1967, 89, 244. [all data]

Nounou, 1966
Nounou, P., Etude des composes aromatiques par spectrometrie de masse. I. Mesure des potentials d'ionisation et d'apparition par la methode du potential retardateur et interpretation des courbes d'ionisation differentielle, J. Chim. Phys., 1966, 63, 994. [all data]

Brehm, 1966
Brehm, B., Massenspektrometrische Untersuchung der Photoionisation von Molekulen, Z. Naturforsch., 1966, 21a, 196. [all data]

Nicholson, 1965
Nicholson, A.J.C., Photoionization-efficiency curves. II. False and genuine structure, J. Chem. Phys., 1965, 43, 1171. [all data]

Dibeler and Reese, 1964
Dibeler, V.H.; Reese, R.M., Mass spectrometric study of photoionization. I. Apparatus and initial observations on acetylene, acetylene-d2, benzene, and benzene-d6, J. Res. NBS, 1964, 68A, 409. [all data]

Al-Joboury and Turner, 1964
Al-Joboury, M.I.; Turner, D.W., Molecular photoelectron spectroscopy. Part II. A summary of ionization potentials, J. Chem. Soc., 1964, 4434. [all data]

Terenin, 1961
Terenin, A., Charge transfer in organic solids, induced by light, Proc. Chem. Soc., London, 1961, 321. [all data]

El-Sayed, Kaaba, et al., 1961
El-Sayed, M.F.A.; Kaaba, M.; Tanaka, Y., Ionization potentials of benzene, hexadeuterobenzene, and pyridine from their observed Rydberg series in the region 600-2000 A, J. Chem. Phys., 1961, 34, 334. [all data]

Wilkinson, 1956
Wilkinson, P.G., Absorption spectra and ionization potentials of benzene and benzene-d6, J. Chem. Phys., 1956, 24, 917. [all data]

Watanabe, 1954
Watanabe, K., Photoionization and total absorption cross section of gases. I. Ionization potentials of several molecules. Cross sections of NH3 and NO, J. Chem. Phys., 1954, 22, 1564. [all data]

Hustrulid, Kusch, et al., 1938
Hustrulid, A.; Kusch, P.; Tate, J.T., The dissociation of benzene (C6H6), pyridine (C5H5N) and cyclohexane (C6H12) by electron impact, Phys. Rev., 1938, 54, 1037. [all data]

Price and Wood, 1935
Price, W.C.; Wood, R.W., The far ultraviolet absorption spectra and ionization potentials of C6H6 and C6D6, J. Chem. Phys., 1935, 3, 439. [all data]

Howell, Goncalves, et al., 1984
Howell, J.O.; Goncalves, J.M.; Amatore, C.; Klasinc, L.; Wightman, R.M.; Kochi, J.K., Electron transfer from aromatic hydrocarbons and their π-complexes with metals. Comparison of the standard oxidation potentials and vertical ionization potentials, J. Am. Chem. Soc., 1984, 106, 3968. [all data]

Kovac, Mohraz, et al., 1980
Kovac, B.; Mohraz, M.; Heilbronner, E.; Boekelheide, V.; Hopf, H., Photoelectron spectra of the cyclophanes, J. Am. Chem. Soc., 1980, 102, 4314. [all data]

Kaim, Tesmann, et al., 1980
Kaim, W.; Tesmann, H.; Bock, H., Me3C-, Me3Si-, Me3Ge-, Me3Sn- und Me3Pb-substituierte benzol- und naphthalin-derivate und ihre radikalanionen, Chem. Ber., 1980, 113, 3221. [all data]

Sell and Kupperman, 1978
Sell, J.A.; Kupperman, A., Angular distributions in the photoelectron spectra of benzene and its monohalogenated derivatives, Chem. Phys., 1978, 33, 367. [all data]

Kobayashi, 1978
Kobayashi, T., A simple general tendency in photoelectron angular distributions of some monosubstituted benzenes, Phys. Lett., 1978, 69, 105. [all data]

Klasinc, Novak, et al., 1978
Klasinc, L.; Novak, I.; Scholz, M.; Kluge, G., Photoelektronenspektren substituierter Pyridine und Benzole und ihre Interpretation durch die CNDO/SWW-Methode, Croat. Chem. Acta, 1978, 51, 43. [all data]

Schmidt, 1977
Schmidt, W., Photoelectron spectra of polynuclear aromatics. V. Correlations with ultraviolet absorption spectra in the catacondensed series, J. Chem. Phys., 1977, 66, 828. [all data]

Gower, Kane-Maguire, et al., 1977
Gower, M.; Kane-Maguire, L.A.P.; Maier, J.P.; Sweigart, D.A., Ultraviolet photoelectron spectra of cyclohepta-1,3,5-triene and mesitylene tricarbonyl complexes of the group 6A metals, J. Chem. Soc. Dalton Trans., 1977, 316. [all data]

Bock, Kaim, et al., 1977
Bock, H.; Kaim, W.; Rohwer, H.E., Radical ions XI*. One-electron oxidation of alkylsilyl benzenes in the gas phase and in solution, J. Organomet. Chem., 1977, 135, 14. [all data]

Clar and Schmidt, 1976
Clar, E.; Schmidt, W., Correlations between photoelectron and phosphorescence spectra of polycyclic hydrocarbons, Tetrahedron, 1976, 32, 2563. [all data]

Kobayashi and Nagakura, 1975
Kobayashi, T.; Nagakura, S., Angular distribution for the photoelectron spectra of benzene and hexafluorobenzene, J. Electron Spectrosc. Relat. Phenom., 1975, 7, 187. [all data]

Bischof, Dewar, et al., 1974
Bischof, P.K.; Dewar, M.J.S.; Goodman, D.W.; Jones, T.B., Photoelectron spectra of molecules. VI. Hyperconjugation versus pπ-dπ bonding in group IVb compounds, J. Organomet. Chem., 1974, 82, 89. [all data]

Schafer and Schweig, 1972
Schafer, W.; Schweig, A., Zur Konjugation in aromatischen Aminen und Phosphanen, Angew. Chem., 1972, 84, 898. [all data]

Klessinger, 1972
Klessinger, M., Ionization potentials of substituted benzenes, Angew. Chem. Int. Ed. Engl., 1972, 11, 525. [all data]

Bock, Wagner, et al., 1972
Bock, H.; Wagner, G.; Kroner, J., Photoelektronenspektren und molekuleigenschaften, XIV. Die delokalisation des schwefel-elektronenpaar in CH3S-substituierten aromaten, Chem. Ber., 1972, 105, 3850. [all data]

Carlson and Anderson, 1971
Carlson, T.A.; Anderson, C.P., Angular distribution of the photoelectron spectrum for benzene, Chem. Phys. Lett., 1971, 10, 561. [all data]

Bock and Fuss, 1971
Bock, H.; Fuss, W., Arguments concerning the orbital sequence in borazin, Angew. Chem. Int. Ed. Engl., 1971, 10, 182. [all data]

Gleiter, Heilbronner, et al., 1970
Gleiter, R.; Heilbronner, E.; Hornung, V., Lone pair interaction in pyridazine, pyrimidine, and pyrazine, Angew. Chem. Int. Ed. Engl., 1970, 9, 901. [all data]

Olmsted, Street, et al., 1964
Olmsted, J., III; Street, K., Jr.; Newton, A.S., Excess-kinetic-energy ions in organic mass spectra, J. Chem. Phys., 1964, 40, 2114. [all data]

Lifshitz and Reuben, 1969
Lifshitz, C.; Reuben, B.G., Ion-molecule reactions in aromatic systems. I. Secondary ions and reaction rates in benzene, J. Chem. Phys., 1969, 50, 951. [all data]

Natalis and Franklin, 1965
Natalis, P.; Franklin, J.L., Ionization and dissociation of diphenyl and condensed ring aromatics by electron impact. I. Biphenyl, diphenylacetylene, and phenanthrene, J. Phys. Chem., 1965, 69, 2935. [all data]

Kuhlewind, Kiermeier, et al., 1986
Kuhlewind, H.; Kiermeier, A.; Neusser, H.J., Multiphoton ionization in a reflectron time-of-flight mass spectrometer: Individual rates of competing dissociation channels in energy-selected benzene cations [Data derived from reported threshold energies taking value of 9.244 eV for IE[Benzene]], J. Chem. Phys., 1986, 85, 4427. [all data]

Eland, Frey, et al., 1976
Eland, J.H.D.; Frey, R.; Schulte, H.; Brehm, B., New results on the fragmentation of the benzene ion, Int. J. Mass Spectrom. Ion Phys., 1976, 21, 209. [all data]

Rosenstock, Larkins, et al., 1973
Rosenstock, H.M.; Larkins, J.T.; Walker, J.A., Interpretation of photoionization thresholds: Quasiequilibrium theory and the fragmentation of benzene, Int. J. Mass Spectrom. Ion Phys., 1973, 11, 309. [all data]

Rosenstock, McCulloh, et al., 1977
Rosenstock, H.M.; McCulloh, K.E.; Lossing, F.P., On the mechanisms of C6H6 ionization fragmentation, Int. J. Mass Spectrom. Ion Phys., 1977, 25, 327. [all data]

Hickling and Jennings, 1970
Hickling, R.D.; Jennings, K.R., Kinetic shifts and metastable transitions, Org. Mass Spectrom., 1970, 3, 1499. [all data]

Bentley, Johnstone, et al., 1973
Bentley, T.W.; Johnstone, R.A.W.; McMaster, B.N., Appearance potentials of metastable and normal ions and the kinetic shift, J. Chem. Soc., Chem. Commun., 1973, 510. [all data]

Klippenstein, Faulk, et al., 1993
Klippenstein, S.J.; Faulk, J.D.; Dunbar, R.C., A combined theoretical and experimental study of the dissociation of benzene cation, J. Chem. Phys., 1993, 98, 243. [all data]

Gross, 1972
Gross, M.L., Ion cyclotron resonance spectrometry. A means of evaluating 'kinetic shifts', Org. Mass Spectrom., 1972, 6, 827. [all data]

Davico, Bierbaum, et al., 1995
Davico, G.E.; Bierbaum, V.M.; Depuy, C.H.; Ellison, G.B.; Squires, R.R., The C-H bond energy of benzene, J. Am. Chem. Soc., 1995, 117, 9, 2590, https://doi.org/10.1021/ja00114a023 . [all data]

Ervin and DeTuro, 2002
Ervin, K.M.; DeTuro, V.F., Anchoring the gas-phase acidity scale, J. Phys. Chem. A, 2002, 106, 42, 9947-9956, https://doi.org/10.1021/jp020594n . [all data]

Alecu, Gao, et al., 2007
Alecu, I.M.; Gao, Y.D.; Hsieh, P.C.; Sand, J.P.; Ors, A.; McLeod, A.; Marshall, P., Studies of the kinetics and thermochemistry of the forward and reverse reaction Cl+C6H6=HCl+C6H5, J. Phys. Chem. A, 2007, 111, 19, 3970-3976, https://doi.org/10.1021/jp067212o . [all data]

Gunion, Gilles, et al., 1992
Gunion, R.F.; Gilles, M.K.; Polak, M.L.; Lineberger, W.C., Ultraviolet Photoelectron Spectroscopy of the Phenide, Benzyl, and Phenoxide Anions., Int. J. Mass Spectrom. Ion Proc., 1992, 117, 601, https://doi.org/10.1016/0168-1176(92)80115-H . [all data]

Meot-ner and Sieck, 1986
Meot-ner, M.; Sieck, L.W., Relative acidities of water and methanol, and the stabilities of the dimer adducts, J. Phys. Chem., 1986, 90, 6687. [all data]

Graul and Squires, 1990
Graul, S.T.; Squires, R.R., Gas-Phase Acidities Derived from Threshold Energies for Activated Reactions, J. Am. Chem. Soc., 1990, 112, 7, 2517, https://doi.org/10.1021/ja00163a007 . [all data]

Bohme and Young, 1971
Bohme, D.K.; Young, L.B., Electron affinities from thermal proton transfer reactions: C6H5 and C6H5CH2, Can. J. Chem., 1971, 49, 2918. [all data]

Bartmess and McIver Jr., 1979
Bartmess, J.E.; McIver Jr., The Gas Phase Acidity Scale in Gas Phase Ion Chemistry, Gas Phase Ion Chemistry, V. 2, M.T. Bowers, Ed., Academic Press, NY, 1979, Ch. 11, Elsevier, 1979. [all data]

Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B., Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation, Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X . [all data]

Ho, Yang, et al., 1997
Ho, Y.-P.; Yang, Y.-C.; Klippenstein, S.J.; Dunbar, R.C., Binding Energies of Ag+ and Cd+ Complexes from Analysis of Radiative Association Kinetics, J. Phys. Chem. A, 1997, 101, 18, 3338, https://doi.org/10.1021/jp9637284 . [all data]

Dunbar, Klippenstein, et al., 1996
Dunbar, R.C.; Klippenstein, S.J.; Hrusak, J.; Stockigt, D.; Schwarz, H., Binding Energy of Al(C6H6)+ from the Analysis of Radiative Association Kinetics, J. Am. Chem. Soc., 1996, 118, 22, 5277, https://doi.org/10.1021/ja953235x . [all data]

Schroeder, Hrusak, et al., 1995
Schroeder, D.; Hrusak, J.; Hertwig, R.H.; Koch, W.; Schwerdtfeger, P.; Schwarz, H., Experimental and Theoretical Studies of Gold(I) Complexes Au(L)+ (L=H2O, CO, NH3, C2H4, C3H6, C4H6, C6H6, C6F6), Organometallics, 1995, 14, 1, 312, https://doi.org/10.1021/om00001a045 . [all data]

Willey, Yeh, et al., 1992
Willey, K.F.; Yeh, C.S.; Robbins, D.L.; Duncan, M.A., Charge-transfer in the photodissociation of metal ion-benzene complexes, J. Phys. Chem., 1992, 96, 23, 9106, https://doi.org/10.1021/j100202a007 . [all data]

Hiraoka, Mizuse, et al., 1988
Hiraoka, K.; Mizuse, S.; Yamabe, S., Determination of the Stabilities and Structures of X-(C6H6) Clusters (X = Cl, Br, and I), Chem. Phys. Lett., 1988, 147, 2-3, 174, https://doi.org/10.1016/0009-2614(88)85078-4 . [all data]

Paul and Kebarle, 1991
Paul, G.J.C.; Kebarle, P., Stabilities of Complexes of Br- with Substituted Benzenes (SB) Based on Determinations of the Gas-Phase Equilibria Br- + SB = (BrSB)-, J. Am. Chem. Soc., 1991, 113, 4, 1148, https://doi.org/10.1021/ja00004a014 . [all data]

Deakyne and Meot-Ner (Mautner), 1985
Deakyne, C.A.; Meot-Ner (Mautner), M., Unconventional Ionic Hydrogen Bonds. 2. NH+ pi. Complexes of Onium Ions with Olefins and Benzene Derivatives, J. Am. Chem. Soc., 1985, 107, 2, 474, https://doi.org/10.1021/ja00288a034 . [all data]

Field, Hamlet, et al., 1969
Field, F.H.; Hamlet, P.; Libby, W.F., Effect of Temperature on the Mass Spectrum of Benzene at High Pressures, J. Am. Chem. Soc., 1969, 91, 11, 2839, https://doi.org/10.1021/ja01039a003 . [all data]

Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J., A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases, Can. J. Chem., 1986, 74, 59. [all data]

Sen Sharma, Ikuta, et al., 1982
Sen Sharma, D.K.; Ikuta, S.; Kebarle, P., Alkylation of Benzene by Alkyl Cations. Stability of the tert - Butyl Benzenium Ion, Can. J. Chem., 1982, 60, 18, 2325, https://doi.org/10.1139/v82-331 . [all data]

Meot-Ner (Mautner), Hamlet, et al., 1978
Meot-Ner (Mautner), M.; Hamlet, P.; Hunter, E.P.; Field, F.H., Bonding Energies in Association Ions of Aromatic Molecules. Correlations with Ionization Energies, J. Am. Chem. Soc., 1978, 100, 17, 5466, https://doi.org/10.1021/ja00485a034 . [all data]

Hiraoka, Fujimaki, et al., 1991
Hiraoka, K.; Fujimaki, S.; Aruga, K.; Yamabe, S., Stability and Structure of Benzene Dimer Cation (C6H6)2+, J. Chem. Phys., 1991, 95, 11, 8413, https://doi.org/10.1063/1.461270 . [all data]

Beck and Hecht, 1991
Beck, S.M.; Hecht, J.H., Photofragmentation of Mass - Selected (C6H6)n+ Clusters: Measurement of Monomer - Cluster Binding Energy for n = 7 - 15, J. Chem. Phys., 1991, 96, 3, 1975, https://doi.org/10.1063/1.462099 . [all data]

Le Barbu, Schiedt, et al., 2002
Le Barbu, K.; Schiedt, J.; Weinkauf, R.; Schlag, E.W.; Nilles, J.M.; Xu, S.J.; Thomas, O.C.; Bowen, K.H., Microsolvation of small anions by aromatic molecules: An exploratory study, J. Chem. Phys., 2002, 116, 22, 9663-9671, https://doi.org/10.1063/1.1475750 . [all data]

Meot-Ner (Mautner) and El-Shall, 1986
Meot-Ner (Mautner), M.; El-Shall, M.S., Ionic Charge Transfer Complexes. 1. Cationic Complexes with Delocalized and Partially Localized pi Systems, J. Am. Chem. Soc., 1986, 108, 15, 4386, https://doi.org/10.1021/ja00275a026 . [all data]

Ernstberger, Krause, et al., 1990
Ernstberger, B.; Krause, H.; Kiermeier, A.; Neusser, H.J., Multiphoton ionization and dissociation of mixed van der Waals clusters in a linear reflectron time-of-flight mass spectrometer, J. Chem. Phys., 1990, 92, 9, 5285, https://doi.org/10.1063/1.458603 . [all data]

Ruhl, Bisling, et al., 1986
Ruhl, E.; Bisling, P.G.F.; Brutschy, B.; Baumgartel, H., Photoionization of Aromatic van der Waals Complexes in a Supersonic Jet, Chem. Phys. Lett., 1986, 126, 3-4, 232, https://doi.org/10.1016/S0009-2614(86)80075-6 . [all data]

Meot-Ner (Mautner), 1989
Meot-Ner (Mautner), M., Ion DChemistry of Ferrocene. Thermochemistry of Ionization and Protonation and Solvent Clustering. Slow and Entropy - Driven Proton - Transfer Kinetics, J. Am. Chem. Soc., 1989, 111, 8, 2830, https://doi.org/10.1021/ja00190a014 . [all data]

El-Shall and Meot-Ner (Mautner), 1987
El-Shall, M.S.; Meot-Ner (Mautner), M., Ionic Charge Transfer Complexes. 3. Delocalised pi Systems as Electron Acceptors and Donors, J. Phys. Chem., 1987, 91, 5, 1088, https://doi.org/10.1021/j100289a017 . [all data]

Tschurl, Ueberfluss, et al., 2007
Tschurl, M.; Ueberfluss, C.; Boesl, U., Anion photoelectron, photodetachment, and infrared dissociation spectra of Cl-center dot C6H6, Chem. Phys. Lett., 2007, 439, 1-3, 23-28, https://doi.org/10.1016/j.cplett.2007.03.059 . [all data]

Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria, J. Am. Chem. Soc., 1984, 106, 517. [all data]

Sunner, Nishizawa, et al., 1981
Sunner, J.; Nishizawa, K.; Kebarle, P., Ion - Solvent Molecule Interactions in the Gas Phase. Potassium Ion and Benzene, J. Phys. Chem., 1981, 85, 13, 1814, https://doi.org/10.1021/j150613a011 . [all data]

Larson and McMahon, 1984, 2
Larson, J.W.; McMahon, T.B., Gas phase negative ion chemistry of alkylchloroformates, Can. J. Chem., 1984, 62, 675. [all data]

French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P., Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-, Can. J. Chem., 1982, 60, 1907. [all data]

Chowdhury and Kebarle, 1986
Chowdhury, S.; Kebarle, P., Role of Binding Energies in A-.B and A.B- Complexes in the Kinetics of Gas Phase Electron Transfer Reactions:A- + B = A + B- Involving Perfluoro Compounds: SF6, C6F11CF3, J. Chem. Phys., 1986, 85, 9, 4989, https://doi.org/10.1063/1.451687 . [all data]

Meyer, Khan, et al., 1995
Meyer, F.; Khan, F.A.; Armentrout, P.B., Thermochemistry of Transition Metal Benzene complexes: Binding energies of M(C6H6)x+ (x = 1,2) for M = Ti to Cu, J. Am. Chem. Soc., 1995, 117, 38, 9740, https://doi.org/10.1021/ja00143a018 . [all data]

Kemper, Bushnell, et al., 1993
Kemper, P.R.; Bushnell, J.; Von Koppen, P.; Bowers, M.T., Binding Energies of Co+(H2/CH4/C2H6)1,2,3 Clusters, J. Phys. Chem., 1993, 97, 9, 1810, https://doi.org/10.1021/j100111a016 . [all data]

Lin, Chen, et al., 1997
Lin, C.-Y.; Chen, Q.; Chen, H.; Freiser, B.S., Observing Unimolecular Dissociation of Metastable Ions in FT-ICR: A Novel Application of the Continuous Ejection Technique, J. Phys. Chem. A, 1997, 101, 34, 6023, https://doi.org/10.1021/jp970446a . [all data]

Lin and Dunbar, 1997
Lin, C.-Y.; Dunbar, R.C., Radiative Association Kinetics and Binding Energies of Chromium Ions with Benzene and Benzene Derivatives, Organometallics, 1997, 16, 12, 2691, https://doi.org/10.1021/om960949n . [all data]

Amicangelo and Armentrout, 2000
Amicangelo, J.C.; Armentrout, P.B., Absolute Binding Energies of Alkali-Metal Cation Complexes with Benzene Determined by Threshold Collision-Induced Dissociation Experiments and Ab Initio Theory, J. Phys. Chem. A, 2000, 104, 48, 11420, https://doi.org/10.1021/jp002652f . [all data]

Hiraoka, Mizuse, et al., 1987
Hiraoka, K.; Mizuse, S.; Yamabe, S., A Determination of the Stability and Structure of F-(C6H6) and F-(C6F6) Clusters, J. Chem. Phys., 1987, 86, 7, 4102, https://doi.org/10.1063/1.451920 . [all data]

Gapeev and Dunbar, 2002
Gapeev, A.; Dunbar, R.C., Reactivity and Binding Energies of Transition Metal Halide Ions with Benzene, J. Am. Soc. Mass Spectrom., 2002, 13, 5, 477, https://doi.org/10.1016/S1044-0305(02)00373-2 . [all data]

Liebman, Romm, et al., 1991
Liebman, J.F.; Romm, M.J.; Meot-Ner (Mautner), M.; Cybulski, S.M.; Scheiner, S., Isotropy in ionic interactions. 2. How spherical is the ammonium ion? Comparison of the gas-phase clustering energies and condensed-phase thermochemistry of K+ and NH4+, J. Phys. Chem., 1991, 95, 3, 1112, https://doi.org/10.1021/j100156a018 . [all data]

Caldwell, Masucci, et al., 1989
Caldwell, G.W.; Masucci, J.A.; Ikonomou, M.G., Negative Ion Chemical Ionization Mass Spectrometry - Binding of Molecules to Bromide and Iodide Anions, Org. Mass Spectrom., 1989, 24, 1, 8, https://doi.org/10.1002/oms.1210240103 . [all data]

Searles and Kebarle, 1969
Searles, S.K.; Kebarle, P., Hydration of the Potassium Ion in the Gas Phase: Enthalpies and Entropies of Hydration Reactions K+(H2O)n-1 + H2O = K+(H2O)n for n=1 to n=6, Can. J. Chem., 1969, 47, 14, 2619, https://doi.org/10.1139/v69-432 . [all data]

Woodin and Beauchamp, 1978
Woodin, R.L.; Beauchamp, J.L., Bonding of Li+ to Lewis Bases in the Gas Phase. Reversals in Methyl Substituent Effects for Different Reference Acids, J. Am. Chem. Soc., 1978, 100, 2, 501, https://doi.org/10.1021/ja00470a024 . [all data]

Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P., Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n, J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013 . [all data]

Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L., Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases, J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050 . [all data]

Andersen, Muntean, et al., 2000
Andersen, A.; Muntean, F.; Walter, D.; Rue, C.; Armentrout, P.B., Collision-Induced Dissociation and Theoretical Studies of Mg+ Complexes with CO, CO2, NH3, CH4, CH3OH, and C6H6, J. Phys. Chem. A, 2000, 104, 4, 692, https://doi.org/10.1021/jp993031t . [all data]

Gapeev and Dunbar, 2000
Gapeev, A.; Dunbar, R.C., Binding of Alkaline Earth Halide Ions MX+ to Benzene and Mesitylene, J. Am. Soc. Mass Spectrom., 2000, 13, 5, 477, https://doi.org/10.1016/S1044-0305(02)00373-2 . [all data]

Reents and Freiser, 1981
Reents, W.D.; Freiser, B.S., Gas-Phase Binding Energies and Spectroscopic Properties of NO+ Charge-Transfer Complexes, J. Am. Chem. Soc., 1981, 103, 2791. [all data]

Farid and McMahon, 1978
Farid, R.; McMahon, T.B., Gas-Phase Ion-Molecule Reactions of Alkyl Nitrites by Ion Cyclotron Resonance Spectroscopy, Int. J. Mass Spectrom. Ion Phys., 1978, 27, 2, 163, https://doi.org/10.1016/0020-7381(78)80037-0 . [all data]

Amicangelo and Armentrout, 2001
Amicangelo, J.C.; Armentrout, P.B., Relative and Absolute Bond Dissociation Energies of Sodium Cation Complexes Determined Using Competitive Collision-Induced Dissociation Experiments, Int. J. Mass Spectrom., 2001, 212, 1-3, 301, https://doi.org/10.1016/S1387-3806(01)00494-8 . [all data]

Armentrout and Rodgers, 2000
Armentrout, P.B.; Rodgers, M.T., An Absolute Sodium Cation Affinity Scale: Threshold Collision-Induced Dissociation Experiments and ab Initio Theory, J. Phys. Chem A, 2000, 104, 11, 2238, https://doi.org/10.1021/jp991716n . [all data]

Guo, Purnell, et al., 1990
Guo, B.C.; Purnell, J.W.; Castleman, A.W., The Clustering Reactions of Benzene with Sodium and Lead Ions, Chem. Phys. Lett., 1990, 168, 2, 155, https://doi.org/10.1016/0009-2614(90)85122-S . [all data]

McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G., An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions, Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7 . [all data]

Judai, Hirano, et al., 1997
Judai, K.; Hirano, M.; Kawamata, H.; Yabushita, S.; Nakajima, A.; Kaya, K., Formation of Vanadium-Arene Complex Anions and Their Photoelectron Spectroscopy, Chem. Phys. Lett., 1997, 270, 1-2, 23, https://doi.org/10.1016/S0009-2614(97)00336-9 . [all data]

Shimanouchi, 1972
Shimanouchi, T., Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References