1-Propanol

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-61.2 ± 0.7kcal/molAVGN/AAverage of 7 values; Individual data points
Quantity Value Units Method Reference Comment
gas77.077cal/mol*KN/AChao J., 1986Other values based on low-temperature thermal measurements are: 321.6 [ Buckley E., 1967], 321.7 [ Counsell J.F., 1968], 322.59 [ Green J.H.S., 1961], 323.42 [ Chermin H.A.G., 1961], and 324.72 J/mol*K [ Wilhoit R.C., 1973].; GT

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
9.69950.Thermodynamics Research Center, 1997p=1 bar. Discrepancies with other statistically calculated S(T) and Cp(T) values [ Green J.H.S., 1961, Mathews J.F., 1961, Chao J., 1986, 2], [ Chermin H.A.G., 1961], and [ Kobe K.A., 1951, Zhuravlev E.Z., 1959] amount up to 2.5, 4, and 7 J/mol*K, respectively. Please also see Chao J., 1986.; GT
12.32100.
14.08150.
15.86200.
19.17273.15
20.45 ± 0.033298.15
20.54300.
25.820400.
30.638500.
34.754600.
38.253700.
41.257800.
43.860900.
46.1211000.
48.0931100.
49.8091200.
51.3071300.
52.6151400.
53.7601500.
56.051750.
57.702000.
58.942250.
59.872500.
60.72750.
61.23000.

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
24.441 ± 0.048371.2Stromsoe E., 1970Ideal gas heat capacities are given by [ Stromsoe E., 1970] as a linear function Cp=f1*(a+bT). This expression approximates the experimental values with the average deviation of 0.96 J/mol*K. The accuracy of the experimental heat capacities [ Stromsoe E., 1970] is estimated as less than 0.3%. Please also see Mathews J.F., 1961.; GT
25.64 ± 0.23375.45
25.97 ± 0.23383.05
26.15 ± 0.23387.15
25.440 ± 0.050391.2
26.58 ± 0.23396.95
27.15 ± 0.23409.95
26.391 ± 0.053411.2
27.62 ± 0.23420.75
27.72 ± 0.23422.95
27.330 ± 0.055431.2
28.37 ± 0.23437.95
28.351 ± 0.057451.2
29.38 ± 0.23461.05
30.01 ± 0.23475.35
31.30 ± 0.23504.95
31.60 ± 0.23511.85
32.50 ± 0.23532.35
33.71 ± 0.23560.05
34.53 ± 0.23578.85
35.60 ± 0.23603.25

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-72.309 ± 0.060kcal/molCcbMosselman and Dekker, 1975ALS
Δfliquid-72.42 ± 0.31kcal/molEqkConnett, 1972ALS
Δfliquid-72.79 ± 0.09kcal/molCcbChao and Rossini, 1965see Rossini, 1934; ALS
Δfliquid-72.3 ± 1.0kcal/molCcbSnelson and Skinner, 1961ALS
Δfliquid-73.20 ± 0.24kcal/molCcbGreen, 1960ALS
Quantity Value Units Method Reference Comment
Δcliquid-483.105 ± 0.060kcal/molCcbMosselman and Dekker, 1975Corresponding Δfliquid = -72.309 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-482.64 ± 0.07kcal/molCcbChao and Rossini, 1965see Rossini, 1934; Corresponding Δfliquid = -72.77 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-483.12 ± 0.18kcal/molCcbSnelson and Skinner, 1961Corresponding Δfliquid = -72.29 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-482.23 ± 0.24kcal/molCcbGreen, 1960Corresponding Δfliquid = -73.18 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-485.801kcal/molCcbRichards and Davis, 1920At 291 K; Corresponding Δfliquid = -69.613 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid46.08cal/mol*KN/ACounsell, Lees, et al., 1968DH
liquid51.20cal/mol*KN/AParks and Huffman, 1926Extrapolation below 90 K, 64.85 J/mol*K.; DH
Quantity Value Units Method Reference Comment
solid,1 bar26.94cal/mol*KN/ACounsell, Lees, et al., 1968glass phase; DH

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
34.56298.Korolev, Kukharenko, et al., 1986DH
34.407298.15Tanaka, Toyama, et al., 1986DH
34.522298.15Zegers and Somsen, 1984DH
33.078288.15Benson and D'Arcy, 1982DH
35.105298.15Villamanan, Casanova, et al., 1982DH
33.89293.15Arutyunyan, Bagdasaryan, et al., 1981T = 293 to 353 K. p = 0.1 MPa. Unsmoothed experimental datum given as 2.360 kJ/kg*K. Cp given from 293.25 to 533.15 K for pressure range 10 to 60 MPa.; DH
34.976298.216Kalinowska, Jedlinska, et al., 1980T = 185 to 300 K. Unsmoothed experimental datum.; DH
35.35303.4Griigo'ev, Yanin, et al., 1979T = 303 to 463 K. p = 0.98 bar.; DH
34.362298.15Vesely, Zabransky, et al., 1979DH
35.61298.15Murthy and Subrahmanyam, 1977DH
34.364298.15Vesely, Svoboda, et al., 1977DH
34.386298.15Fortier, Benson, et al., 1976DH
34.4316298.15Fortier and Benson, 1976DH
37.91313.2Paz Andrade, Paz, et al., 1970DH
34.37298.15Counsell, Lees, et al., 1968T = 11 to 350 K.; DH
34.92298.Recko, 1968T = 24 to 40°C, equation only.; DH
37.19320.Swietoslawski and Zielenkiewicz, 1960Mean value 21 to 74°C.; DH
33.511303.Eucken and Eigen, 1951T = 303 to 393 K.; DH
34.80298.1Zhdanov, 1941T = 5 to 46°C.; DH
39.39301.2Phillip, 1939DH
32.50270.Mitsukuri and Hara, 1929T = 170 to 270 K.; DH
46.10298.1Parks, Kelley, et al., 1929Extrapolation below 90 K, 43.5 J/mol*K. Revision of previous data.; DH
31.91275.4Parks and Huffman, 1927T = 86 to 275 K. Value is unsmoothed experimental datum.; DH
31.91275.0Parks and Huffman, 1926T = 86 to 275 K. Value is unsmoothed experimental datum.; DH
31.38274.6Gibson, Parks, et al., 1920T = 77 to 274.6 K. Unsmoothed experimental datum.; DH
34.61298.von Reis, 1881T = 289 to 363 K.; DH

Constant pressure heat capacity of solid

Cp,solid (cal/mol*K) Temperature (K) Reference Comment
25.41150.Counsell, Lees, et al., 1968glass phase; T = 10 to 150 K.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Henry's Law data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil370.3 ± 0.5KAVGN/AAverage of 127 out of 139 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus146.7KN/ATschamler, Richter, et al., 1949Uncertainty assigned by TRC = 0.5 K; TRC
Tfus147.KN/ATimmermans, 1935Uncertainty assigned by TRC = 3. K; TRC
Quantity Value Units Method Reference Comment
Ttriple148.75KN/AWilhoit, Chao, et al., 1985Uncertainty assigned by TRC = 0.02 K; TRC
Ttriple148.75KN/ACounsell, Lees, et al., 1968, 2Uncertainty assigned by TRC = 0.02 K; TRC
Ttriple147.0KN/AParks and Huffman, 1926, 2Uncertainty assigned by TRC = 0.3 K; TRC
Quantity Value Units Method Reference Comment
Tc536.9 ± 0.8KAVGN/AAverage of 20 out of 25 values; Individual data points
Quantity Value Units Method Reference Comment
Pc51. ± 1.atmAVGN/AAverage of 12 values; Individual data points
Quantity Value Units Method Reference Comment
Vc0.218l/molN/AGude and Teja, 1995 
Vc0.216l/molN/AZawisza and Vejrosta, 1982Uncertainty assigned by TRC = 0.001 l/mol; Visual; TRC
Quantity Value Units Method Reference Comment
ρc4.58 ± 0.06mol/lAVGN/AAverage of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Δvap11.3 ± 0.4kcal/molAVGN/AAverage of 15 values; Individual data points

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
9.904370.3N/AMajer and Svoboda, 1985 
9.85371.N/AWormald and Vine, 2000AC
8.41423.N/AWormald and Vine, 2000AC
7.03453.N/AWormald and Vine, 2000AC
5.02498.N/AWormald and Vine, 2000AC
2.72528.N/AWormald and Vine, 2000AC
11.2318.N/AAucejo, Gonzalez-Alfaro, et al., 1995Based on data from 303. to 370. K.; AC
10.3375.N/AOrtega, Susial, et al., 1990Based on data from 360. to 377. K.; AC
11.5214.AStephenson and Malanowski, 1987Based on data from 200. to 228. K.; AC
10.4366.AStephenson and Malanowski, 1987Based on data from 356. to 376. K.; AC
10.1384.AStephenson and Malanowski, 1987Based on data from 369. to 407. K.; AC
9.58416.AStephenson and Malanowski, 1987Based on data from 401. to 482. K.; AC
8.72492.AStephenson and Malanowski, 1987Based on data from 478. to 507. K.; AC
11.1 ± 0.02313.CSvoboda, Veselý, et al., 1973AC
10.9 ± 0.02323.CSvoboda, Veselý, et al., 1973AC
10.7 ± 0.02333.CSvoboda, Veselý, et al., 1973AC
10.5 ± 0.02343.CSvoboda, Veselý, et al., 1973AC
10.3 ± 0.02353.CSvoboda, Veselý, et al., 1973AC
10.1 ± 0.02363.CSvoboda, Veselý, et al., 1973AC
11.8290.N/AWilhoit and Zwolinski, 1973Based on data from 275. to 373. K.; AC
10.7348.EBAmbrose, Counsell, et al., 1970Based on data from 333. to 377. K. See also Stephenson and Malanowski, 1987.; AC
11.2307.DTAKemme and Kreps, 1969Based on data from 292. to 370. K.; AC
11.2303.N/AVan Ness, Soczek, et al., 1967Based on data from 288. to 348. K.; AC
9.73420.N/AAmbrose and Townsend, 1963Based on data from 405. to 537. K.; AC
10.6353.EBBiddiscombe, Collerson, et al., 1963Based on data from 338. to 378. K.; AC
10.5358.N/AMathews and McKetta, 1961Based on data from 343. to 385. K.; AC
10.5 ± 0.02343.CMathews and McKetta, 1961AC
10.1 ± 0.02360.CMathews and McKetta, 1961AC
9.85 ± 0.02370.CMathews and McKetta, 1961AC
9.63 ± 0.02378.CMathews and McKetta, 1961AC
9.49 ± 0.02384.CMathews and McKetta, 1961AC
10.9321. to 367.N/AAronovich, Kastorskii, et al., 1959AC
10.3354.N/AWilliamson and Harrison, 1957AC
10.75 ± 0.10333.13VWilliamson and Harrison, 1957, 2ALS

Enthalpy of vaporization

ΔvapH = A exp(-αTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kcal/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) 298. to 390.
A (kcal/mol) 12.44
α -0.8386
β 0.6888
Tc (K) 536.7
ReferenceMajer and Svoboda, 1985

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
333.32 to 377.724.870301441.629-74.299Ambrose and Sprake, 1970Coefficents calculated by NIST from author's data.
292.4 to 370.55.308131690.864-51.804Kemme and Kreps, 1969 
405.46 to 536.714.593001300.491-86.364Ambrose and Townsend, 1963, 2Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Reference Comment
1.284148.75Counsell, Lees, et al., 1968DH
1.3148.7van Miltenburg and van den Berg, 2004AC
1.28148.8Counsell, Lees, et al., 1968, 2AC
1.241147.0Parks and Huffman, 1926DH

Entropy of fusion

ΔfusS (cal/mol*K) Temperature (K) Reference Comment
8.630148.75Counsell, Lees, et al., 1968DH
8.44147.0Parks and Huffman, 1926DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
110. QN/A missing citation give several references for the Henry's law constants but don't assign them to specific species.
130.7500.MN/A 
150. CN/A 
160. MN/A 
140. MButler, Ramchandani, et al., 1935This paper supersedes earlier work with more concentrated solutions Butler, Thomson, et al., 1933.

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
LL - Sharon G. Lias and Joel F. Liebman

View reactions leading to C3H8O+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)10.22 ± 0.06eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)188.0kcal/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity180.7kcal/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
10.22 ± 0.07EIBowen and Maccoll, 1984LBLHLM
10.0EIMcLafferty, Bente, et al., 1973LLK
10.15 ± 0.025PEJohnstone and Mellon, 1972LLK
10.16 ± 0.03EIJohnstone and Mellon, 1972LLK
10.32 ± 0.02PECocksey, Eland, et al., 1971LLK
10.25PEDewar and Worley, 1969RDSH
10.22 ± 0.04PIRefaey and Chupka, 1968RDSH
10.20PIWatanabe, Nakayama, et al., 1962RDSH
10.51PEBenoit and Harrison, 1977Vertical value; LLK
10.52 ± 0.03PEPeel and Willett, 1975Vertical value; LLK
10.51PERobin and Kuebler, 1973Vertical value; LLK
10.49PEKatsumata, Iwai, et al., 1973Vertical value; LLK
10.48PEBaker, Betteridge, et al., 1971Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
CH3O+11.20C2H5EIHolmes, Lossing, et al., 1988LL
CH3O+12.3 ± 0.9C2H5EIBowen and Maccoll, 1984LBLHLM
CH3O+11.50 ± 0.08C2H3EISelim and Helal, 1981LLK
CH3O+11.16 ± 0.03C2H5EIJohnstone and Mellon, 1972LLK
CH3O+~11.3C2H5PIRefaey and Chupka, 1968RDSH
CH3O+~11.11C2H5PIChupka, 1959RDSH
C2H3+14.7?EIFriedman, Long, et al., 1957RDSH
C2H4+~11.9?PIRefaey and Chupka, 1968RDSH
C2H5+12.3CH2OHPIRefaey and Chupka, 1968RDSH
C2H5O+11.35 ± 0.04CH3EISolka and Russell, 1974LLK
C2H5O+11.1 ± 0.1CH3PIRefaey and Chupka, 1968RDSH
C2H5O+11.1CH3EIFriedman, Long, et al., 1957RDSH
C3H3+15.6?EIFriedman, Long, et al., 1957RDSH
C3H5+12.6?PIRefaey and Chupka, 1968RDSH
C3H6+10.56 ± 0.05H2OEIHolmes, Mommers, et al., 1984LBLHLM
C3H6+10.65 ± 0.09H2OEIBowen and Maccoll, 1984LBLHLM
C3H6+10.3H2OEIMcLafferty, Bente, et al., 1973LLK
C3H6+10.33 ± 0.03H2OEIJohnstone and Mellon, 1972LLK
C3H6+10.65 ± 0.03H2OPIRefaey and Chupka, 1968RDSH
C3H6+10.50H2OPIChupka, 1959RDSH
C3H7+11.6 ± 0.1OHPIRefaey and Chupka, 1968RDSH
C3H7O+10.72 ± 0.09HEIBowen and Maccoll, 1984LBLHLM
C3H7O+10.2HEIMcLafferty, Bente, et al., 1973LLK
C3H7O+10.48 ± 0.03HEIJohnstone and Mellon, 1972LLK
C3H7O+10.72HPIRefaey and Chupka, 1968RDSH
C3H7O+10.69HEILambdin, Tuffly, et al., 1959RDSH

De-protonation reactions

C3H7O- + Hydrogen cation = 1-Propanol

By formula: C3H7O- + H+ = C3H8O

Quantity Value Units Method Reference Comment
Δr375.7 ± 1.3kcal/molD-EAEllison, Engleking, et al., 1982gas phase; B
Δr376.0 ± 2.1kcal/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr376.2 ± 2.0kcal/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Quantity Value Units Method Reference Comment
Δr369.2 ± 1.4kcal/molH-TSEllison, Engleking, et al., 1982gas phase; B
Δr369.4 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr369.6 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chao J., 1986
Chao J., Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties, J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]

Buckley E., 1967
Buckley E., Chemical equilibria. Part 2. Dehydrogenation of propanol and butanol, Trans. Faraday Soc., 1967, 63, 895-901. [all data]

Counsell J.F., 1968
Counsell J.F., Thermodynamic properties of organic oxygen compounds. Part XIX. Low-temperature heat capacity and entropy of propan-1-ol, 2-methylpropan-1-ol, and pentan-1-ol, J. Chem. Soc. A, 1968, 1819-1823. [all data]

Green J.H.S., 1961
Green J.H.S., Thermodynamic properties of the normal alcohols C1-C12, J. Appl. Chem., 1961, 11, 397-404. [all data]

Chermin H.A.G., 1961
Chermin H.A.G., Thermo data for petrochemicals. Part 28. Gaseous normal alcohols. The important thermo properties are presented for all the gaseous normal alcohols from methanol through n-decanol, Petrol. Refiner, 1961, 40 (4), 127-130. [all data]

Wilhoit R.C., 1973
Wilhoit R.C., Physical and thermodynamic properties of aliphatic alcohols, J. Phys. Chem. Ref. Data, 1973, 2, Suppl. 1, 1-420. [all data]

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Mathews J.F., 1961
Mathews J.F., The thermodynamic properties of the n-propyl alcohol, J. Phys. Chem., 1961, 65, 758-762. [all data]

Chao J., 1986, 2
Chao J., Ideal gas thermodynamic properties of simple alkanols, Int. J. Thermophys., 1986, 7, 431-442. [all data]

Kobe K.A., 1951
Kobe K.A., Thermochemistry for the petrochemical industry. Part XVII. Some C3 oxygenated hydrocarbons, Petrol. Refiner, 1951, 30 (8), 119-122. [all data]

Zhuravlev E.Z., 1959
Zhuravlev E.Z., Isotopic effect on thermodynamic functions of some organic deuterocompounds in the ideal gas state, Tr. Khim. i Khim. Tekhnol., 1959, 2, 475-485. [all data]

Stromsoe E., 1970
Stromsoe E., Heat capacity of alcohol vapors at atmospheric pressure, J. Chem. Eng. Data, 1970, 15, 286-290. [all data]

Mosselman and Dekker, 1975
Mosselman, C.; Dekker, H., Enthalpies of formation of n-alkan-1-ols, J. Chem. Soc. Faraday Trans. 1, 1975, 417-424. [all data]

Connett, 1972
Connett, J.E., Chemical equilibria. 5. Measurement of equilibrium constants for the dehydrogenation of propanol by a vapour flow technique, J. Chem. Thermodyn., 1972, 4, 233-237. [all data]

Chao and Rossini, 1965
Chao, J.; Rossini, F.D., Heats of combustion, formation, and isomerization of nineteen alkanols, J. Chem. Eng. Data, 1965, 10, 374-379. [all data]

Rossini, 1934
Rossini, F.D., Heats of combustion and of formation of the normal aliphatic alcohols in the gaseous and liquid states, and the energies of their atomic linkages, J. Res. NBS, 1934, 13, 189-197. [all data]

Snelson and Skinner, 1961
Snelson, A.; Skinner, H.A., Heats of combustion: sec-propanol, 1,4-dioxan, 1,3-dioxan and tetrahydropyran, Trans. Faraday Soc., 1961, 57, 2125-2131. [all data]

Green, 1960
Green, J.H.S., Revision of the values of the heats of formation of normal alcohols, Chem. Ind. (London), 1960, 1215-1216. [all data]

Richards and Davis, 1920
Richards, T.W.; Davis, H.S., The heats of combustion of benzene, toluene, aliphatic alcohols, cyclohexanol, and other carbon compounds, J. Am. Chem. Soc., 1920, 42, 1599-1617. [all data]

Counsell, Lees, et al., 1968
Counsell, J.F.; Lees, E.B.; Martin, J.F., Thermodynamic properties of organic oxygen compounds. Part XIX. Low temperature heat capacity and entropy of propan-1-ol, 2-methyl-propan-1-ol, and pentan-1-ol, 1968, J. [all data]

Parks and Huffman, 1926
Parks, G.S.; Huffman, H.M., Thermal data on organic compounds. IV. The heat capacities, entropies and free energies of normal propyl alcohol, ethyl ether and dulcitol, J. Am. Chem. Soc., 1926, 48, 2788-2793. [all data]

Korolev, Kukharenko, et al., 1986
Korolev, V.P.; Kukharenko, V.A.; Krestov, G.A., Specific heat of binary mixtures of aliphatic alcohols with N,N-dimethylformamide and dimethylsulphoxide, Zhur. Fiz. Khim., 1986, 60, 1854-1857. [all data]

Tanaka, Toyama, et al., 1986
Tanaka, R.; Toyama, S.; Murakami, S., Heat capacities of {xCnH2n+1OH+(1-x)C7H16} for n = 1 to 6 at 298.15 K, J. Chem. Thermodynam., 1986, 18, 63-73. [all data]

Zegers and Somsen, 1984
Zegers, H.C.; Somsen, G., Partial molar volumes and heat capacities in (dimethylformamide + an n-alkanol), J. Chem. Thermodynam., 1984, 16, 225-235. [all data]

Benson and D'Arcy, 1982
Benson, G.C.; D'Arcy, P.J., Excess isobaric heat capacities of water - n-alcohol mixtures, J. Chem. Eng. Data, 1982, 27, 439-442. [all data]

Villamanan, Casanova, et al., 1982
Villamanan, M.A.; Casanova, C.; Roux-Desgranges, G.; Grolier, J.-P.E., Thermochemical behavior of mixtures of n-alcohol + aliphatic ether: heat capacities and volumes at 298.15 K, Thermochim. Acta, 1982, 52, 279-283. [all data]

Arutyunyan, Bagdasaryan, et al., 1981
Arutyunyan, G.S.; Bagdasaryan, S.S.; Kerimov, A.M., Experimental investigation of the isobaric heat capacity of n-propyl, n-butyl and n-amyl alcohols at different temperatures and pressures, Izv. Akad. Nauk Azerb. SSr, 1981, (6), 94-97. [all data]

Kalinowska, Jedlinska, et al., 1980
Kalinowska, B.; Jedlinska, J.; Woycicki, W.; Stecki, J., Heat capacities of liquids at temperatures between 90 and 300 K and at atmospheric pressure. I. Method and apparatus, and the heat capacities of n-heptane, n-hexane, and n-propanol, J. Chem. Thermodynam., 1980, 12, 891-896. [all data]

Griigo'ev, Yanin, et al., 1979
Griigo'ev, B.A.; Yanin, G.S.; Rastorguev, Yu.L.; Thermophysical parameters of alcohols, Tr. GIAP, 54, 1979, 57-64. [all data]

Vesely, Zabransky, et al., 1979
Vesely, F.; Zabransky, M.; Svoboda, V.; Pick, J., The use of mixing calorimeter for measuring heat capacities of liquids, Coll. Czech. Chem. Commun., 1979, 44, 3529-3532. [all data]

Murthy and Subrahmanyam, 1977
Murthy, N.M.; Subrahmanyam, S.V., Behaviour of excess heat capacity of aqueous non-electrolytes, Indian J. Pure Appl. Phys., 1977, 15, 485-489. [all data]

Vesely, Svoboda, et al., 1977
Vesely, F.; Svoboda, V.; Pick, J., Heat capacities of some organic liquids determined with the mixing calorimeter, 1st Czech. Conf. Calorimetry (Lect. Short Commun.), 1977, C9-1-C9-4. [all data]

Fortier, Benson, et al., 1976
Fortier, J.-L.; Benson, G.C.; Picker, P., Heat capacities of some organic liquids determined with the Picker flow calorimeter, J. Chem. Thermodynam., 1976, 8, 289-299. [all data]

Fortier and Benson, 1976
Fortier, J.-L.; Benson, G.C., Excess heat capacities of binary liquid mixtures determined with a Picker flow calorimeter, J. Chem. Thermodynam., 1976, 8, 411-423. [all data]

Paz Andrade, Paz, et al., 1970
Paz Andrade, M.I.; Paz, J.M.; Recacho, E., Contribucion a la microcalorimetria de los calores especificos de solidos y liquidos, An. Quim., 1970, 66, 961-967. [all data]

Recko, 1968
Recko, W.M., Excess heat capacity of the binary systems formed by n-propyl alcohol with benzene, mesitylene and cyclohexane, Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1968, 16, 549-552. [all data]

Swietoslawski and Zielenkiewicz, 1960
Swietoslawski, W.; Zielenkiewicz, A., Mean specific heat in homologous series of binary and ternary positive azeotropes, Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1960, 8, 651-653. [all data]

Eucken and Eigen, 1951
Eucken, A.; Eigen, M., Untersuchung der Assoziationsstruktur in schwerem Wasser und n-Propanol mit Hilfe thermisch-kalorischer Eigenschaften, insbesondere Messungen der spezifischen Wäarmen, Z. Elektrochem., 1951, 55, 343-354. [all data]

Zhdanov, 1941
Zhdanov, A.K., Specific heats of some liquids and azeotropic mixtures, Zhur. Obshch. Khim., 1941, 11, 471-482. [all data]

Phillip, 1939
Phillip, N.M., Adiabatic and isothermal compressibilities of liquids, Proc. Indian Acad. Sci., 1939, A9, 109-120. [all data]

Mitsukuri and Hara, 1929
Mitsukuri, S.; Hara, K., Specific heats of acetone, methyl-, ethyl-, and n-propyl-alcohols at low temperatures, Bull. Chem. Soc. Japan, 1929, 4, 77-81. [all data]

Parks, Kelley, et al., 1929
Parks, G.S.; Kelley, K.K.; Huffman, H.M., Thermal data on organic compounds. V. A revision of the entropies and free energies of nineteen organic compounds, J. Am. Chem. Soc., 1929, 51, 1969-1973. [all data]

Parks and Huffman, 1927
Parks, G.S.; Huffman, H.M., Studies on glass. I. The transition between the glassy and liquid states in the case of some simple organic compounds, J. Phys. Chem., 1927, 31, 1842-1855. [all data]

Gibson, Parks, et al., 1920
Gibson, G.E.; Parks, G.S.; Latimer, W.M., Entropy changes at low temperatures. II. Ethyl and propyl alcohols and their equal molal mixture, J. Am. Chem. Soc., 1920, 42, 1542-1550. [all data]

von Reis, 1881
von Reis, M.A., Die specifische Wärme flüssiger organischer Verbindungen und ihre Beziehung zu deren Moleculargewicht, Ann. Physik [3], 1881, 13, 447-464. [all data]

Tschamler, Richter, et al., 1949
Tschamler, H.; Richter, E.; Wettig, F., Mixtures of Primry Aliphatic Alcohols with Chlorex and Other Organic Substances. Binary Liquid Mixtures XII., Monatsh. Chem., 1949, 80, 749. [all data]

Timmermans, 1935
Timmermans, J., Researches in Stoichiometry. I. The Heat of Fusion of Organic Compounds., Bull. Soc. Chim. Belg., 1935, 44, 17-40. [all data]

Wilhoit, Chao, et al., 1985
Wilhoit, R.C.; Chao, J.; Hall, K.R., Thermodynamic Properties of Key Organic Compounds in the Carbon Range C1 to C4. Part 1. Properties of Condensed Phases, J. Phys. Chem. Ref. Data, 1985, 14, 1. [all data]

Counsell, Lees, et al., 1968, 2
Counsell, J.F.; Lees, E.B.; Martin, J.F., Thermodynamic properties of organic oxygen compounds. Part XIX. Low-temperature heat capacity and entropy of propan-1-ol, 2-methylpropan-1-ol, and pentan-1-ol, J. Chem. Soc., A, 1968, 1819, https://doi.org/10.1039/j19680001819 . [all data]

Parks and Huffman, 1926, 2
Parks, G.S.; Huffman, H.M., Thermal data on organic compounds: IV the heat capacites, entropies, and free energies of normal propyl alcohol, ethyl ether, and dulcitol, J. Am. Chem. Soc., 1926, 48, 2788-93. [all data]

Gude and Teja, 1995
Gude, M.; Teja, A.S., Vapor-Liquid Critical Properties of Elements and Compounds. 4. Aliphatic Alkanols, J. Chem. Eng. Data, 1995, 40, 1025-1036. [all data]

Zawisza and Vejrosta, 1982
Zawisza, A.; Vejrosta, J., High-pressure liquid-vapor equilibria, critical stat, and p(V, T, x) up to 573.15 K and 5.066 MPa for (heptane + propan-1-ol), J. Chem. Thermodyn., 1982, 14, 239-49. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Wormald and Vine, 2000
Wormald, C.J.; Vine, M.D., Specific enthalpy increments for propan-1-ol at temperatures up to 573.2 K and 11.3 MPa, The Journal of Chemical Thermodynamics, 2000, 32, 3, 329-339, https://doi.org/10.1006/jcht.1999.0594 . [all data]

Aucejo, Gonzalez-Alfaro, et al., 1995
Aucejo, Antonio; Gonzalez-Alfaro, Vicenta; Monton, Juan B.; Vazquez, M. Isabel, Isobaric Vapor-Liquid Equilibria of Trichloroethylene with 1-Propanol and 2-Propanol at 20 and 100 kPa, J. Chem. Eng. Data, 1995, 40, 1, 332-335, https://doi.org/10.1021/je00017a073 . [all data]

Ortega, Susial, et al., 1990
Ortega, Juan; Susial, Pedro; De Alfonso, Casiano, Isobaric vapor-liquid equilibrium of methyl butanoate with ethanol and 1-propanol binary systems, J. Chem. Eng. Data, 1990, 35, 2, 216-219, https://doi.org/10.1021/je00060a037 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Svoboda, Veselý, et al., 1973
Svoboda, V.; Veselý, F.; Holub, R.; Pick, J., Enthalpy data of liquids. II. The dependence of heats of vaporization of methanol, propanol, butanol, cyclohexane, cyclohexene, and benzene on temperature, Collect. Czech. Chem. Commun., 1973, 38, 12, 3539-3543, https://doi.org/10.1135/cccc19733539 . [all data]

Wilhoit and Zwolinski, 1973
Wilhoit, R.C.; Zwolinski, B.J., Physical and thermodynamic properties of aliphatic alcohols, J. Phys. Chem. Ref. Data Suppl., 1973, 1, 2, 1. [all data]

Ambrose, Counsell, et al., 1970
Ambrose, D.; Counsell, J.F.; Davenport, A.J., The use of Chebyshev polynomials for the representation of vapour pressures between the triple point and the critical point, The Journal of Chemical Thermodynamics, 1970, 2, 2, 283-294, https://doi.org/10.1016/0021-9614(70)90093-5 . [all data]

Kemme and Kreps, 1969
Kemme, Herbert R.; Kreps, Saul I., Vapor pressure of primary n-alkyl chlorides and alcohols, J. Chem. Eng. Data, 1969, 14, 1, 98-102, https://doi.org/10.1021/je60040a011 . [all data]

Van Ness, Soczek, et al., 1967
Van Ness, Hendrick C.; Soczek, C.A.; Peloquin, G.L.; Machado, R.L., Thermodynamic excess properties of three alcohol-hydrocarbon systems, J. Chem. Eng. Data, 1967, 12, 2, 217-224, https://doi.org/10.1021/je60033a017 . [all data]

Ambrose and Townsend, 1963
Ambrose, D.; Townsend, R., 681. Thermodynamic properties of organic oxygen compounds. Part IX. The critical properties and vapour pressures, above five atmospheres, of six aliphatic alcohols, J. Chem. Soc., 1963, 3614, https://doi.org/10.1039/jr9630003614 . [all data]

Biddiscombe, Collerson, et al., 1963
Biddiscombe, D.P.; Collerson, R.R.; Handley, R.; Herington, E.F.G.; Martin, J.F.; Sprake, C.H.S., 364. Thermodynamic properties of organic oxygen compounds. Part VIII. Purification and vapour pressures of the propyl and butyl alcohols, J. Chem. Soc., 1963, 1954, https://doi.org/10.1039/jr9630001954 . [all data]

Mathews and McKetta, 1961
Mathews, J.F.; McKetta, J.J., THE THERMODYNAMIC PROPERTIES OF n-PROPYL ALCOHOL, J. Phys. Chem., 1961, 65, 5, 758-762, https://doi.org/10.1021/j100823a013 . [all data]

Aronovich, Kastorskii, et al., 1959
Aronovich, Kh.A.; Kastorskii, L.P.; Fedorova, K.F., Zh. Fiz. Khim., 1959, 41, 20. [all data]

Williamson and Harrison, 1957
Williamson, Kenneth D.; Harrison, Roland H., Heats of Vaporization of 1,1,2-Trichloroethane, 1-Propanol, and 2-Propanol; Vapor Heat Capacity of 1,1,2-Trichloroethane, J. Chem. Phys., 1957, 26, 6, 1409, https://doi.org/10.1063/1.1743555 . [all data]

Williamson and Harrison, 1957, 2
Williamson, K.D.; Harrison, R.H., Heats of vaporization of 1,1,2-trichloroethane, 1-propanol, and 2-propanol; vapor heat capacity of 1,1,2-trichloroethane, J. Chem. Phys., 1957, 26, 1409-14. [all data]

Ambrose and Sprake, 1970
Ambrose, D.; Sprake, C.H.S., Thermodynamic properties of organic oxygen compounds XXV. Vapour pressures and normal boiling temperatures of aliphatic alcohols, The Journal of Chemical Thermodynamics, 1970, 2, 5, 631-645, https://doi.org/10.1016/0021-9614(70)90038-8 . [all data]

Ambrose and Townsend, 1963, 2
Ambrose, D.; Townsend, R., Thermodynamic Properties of Organic Oxygen Compounds. Part 9. The Critical Properties and Vapour Pressures, above Five Atmospheres, of Six Aliphatic Alcohols, J. Chem. Soc., 1963, 3614-3625, https://doi.org/10.1039/jr9630003614 . [all data]

van Miltenburg and van den Berg, 2004
van Miltenburg, J. Cees; van den Berg, Gerrit J.K., Heat Capacities and Derived Thermodynamic Functions of 1-Propanol between 10 K and 350 K and of 1-Pentanol between 85 K and 370 K, J. Chem. Eng. Data, 2004, 49, 3, 735-739, https://doi.org/10.1021/je0499768 . [all data]

Butler, Ramchandani, et al., 1935
Butler, J.A.V.; Ramchandani, C.N.; Thomson, D.W., The Solubility of Non-Electrolytes. Part 1. The Free Energy of Hydration of Some Alphatic Alcohols, J. Chem. Soc., 1935, 280-285, https://doi.org/10.1039/jr9350000280 . [all data]

Butler, Thomson, et al., 1933
Butler, J.A.V.; Thomson, D.W.; Maclennan, W.H., The Free Energy of the Normal Aliphatic Alcohols in Aqueous Solution. Part I. The Partial Vapor Pressures of Aqueous Solutions of Methyl, n-Propyl, and n-Butyl Alcohols. Part II. THe Solubilities of, J. Chem. Soc., 1933, 1933, 674-686. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Bowen and Maccoll, 1984
Bowen, R.D.; Maccoll, A., Low energy, low temperature mass spectra, Org. Mass Spectrom., 1984, 19, 379. [all data]

McLafferty, Bente, et al., 1973
McLafferty, F.W.; Bente, P.F., III; Kornfeld, R.; Tsai, S.-C.; Howe, I., Collisional activation spectra of organic ions, J. Am. Chem. Soc., 1973, 95, 2120. [all data]

Johnstone and Mellon, 1972
Johnstone, R.A.W.; Mellon, F.A., Electron-impact ionization and appearance potentials, J. Chem. Soc. Faraday Trans. 2, 1972, 68, 1209. [all data]

Cocksey, Eland, et al., 1971
Cocksey, B.J.; Eland, J.H.D.; Danby, C.J., The effect of alkyl substitution on ionisation potential, J. Chem. Soc., 1971, (B), 790. [all data]

Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D., Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation, J. Chem. Phys., 1969, 50, 654. [all data]

Refaey and Chupka, 1968
Refaey, K.M.A.; Chupka, W.A., Photoionization of the lower aliphatic alcohols with mass analysis, J. Chem. Phys., 1968, 48, 5205. [all data]

Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J., Ionization potentials of some molecules, J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]

Benoit and Harrison, 1977
Benoit, F.M.; Harrison, A.G., Predictive value of proton affinity. Ionization energy correlations involving oxygenated molecules, J. Am. Chem. Soc., 1977, 99, 3980. [all data]

Peel and Willett, 1975
Peel, J.B.; Willett, G.D., Photoelectron spectroscopic studies of the higher alcohols, Aust. J. Chem., 1975, 28, 2357. [all data]

Robin and Kuebler, 1973
Robin, M.B.; Kuebler, N.A., Excited electronic states of the simple alcohols, J. Electron Spectrosc. Relat. Phenom., 1973, 1, 13. [all data]

Katsumata, Iwai, et al., 1973
Katsumata, S.; Iwai, T.; Kimura, K., Photoelectron spectra and sum rule consideration. Higher alkyl amines and alcohols, Bull. Chem. Soc. Jpn., 1973, 46, 3391. [all data]

Baker, Betteridge, et al., 1971
Baker, A.D.; Betteridge, D.; Kemp, N.R.; Kirby, R.E., Application of photoelectron spectrometry to pesticide analysis. II.Photoelectron spectra of hydroxy-, and halo-alkanes and halohydrins, Anal. Chem., 1971, 43, 375. [all data]

Holmes, Lossing, et al., 1988
Holmes, J.L.; Lossing, F.P.; Maccoll, A., Heats of formation of alkyl radicals from appearance energies, J. Am. Chem. Soc., 1988, 110, 7339. [all data]

Selim and Helal, 1981
Selim, E.T.M.; Helal, A.I., Heat of formation of CH2=OH+ fragment ion, Indian J. Pure Appl. Phys., 1981, 19, 977. [all data]

Chupka, 1959
Chupka, W.A., Effect of unimolecular decay kinetics on the interpretation of appearance potentials, J. Chem. Phys., 1959, 30, 191. [all data]

Friedman, Long, et al., 1957
Friedman, L.; Long, F.A.; Wolfsberg, M., Study of the mass spectra of the lower aliphatic alcohols, J. Chem. Phys., 1957, 27, 613. [all data]

Solka and Russell, 1974
Solka, B.H.; Russell, M.E., Energetics of formation of some structural isomers of gaseous C2H5O+ C2H6N+ ions, J. Phys. Chem., 1974, 78, 1268. [all data]

Holmes, Mommers, et al., 1984
Holmes, J.L.; Mommers, A.A.; Szulejko, J.E.; Terlouw, J.K., Two new stable [C3H8O]+ isomers: The radical cations [C3H6OH2]+, J. Chem. Soc., Chem. Commun., 1984, 165. [all data]

Lambdin, Tuffly, et al., 1959
Lambdin, W.J.; Tuffly, B.L.; Yarborough, V.A., Appearance potentials as obtained with an analytical mass spectrometer, Appl. Spectry., 1959, 13, 71. [all data]

Ellison, Engleking, et al., 1982
Ellison, G.B.; Engleking, P.C.; Lineberger, W.C., Photoelectron spectroscopy of alkoxide and enolate negative ions, J. Phys. Chem., 1982, 86, 4873. [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G., The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols, Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, References