Isopropyl Alcohol
- Formula: C3H8O
- Molecular weight: 60.0950
- IUPAC Standard InChIKey: KFZMGEQAYNKOFK-UHFFFAOYSA-N
- CAS Registry Number: 67-63-0
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: 2-Propanol; sec-Propyl Alcohol; Alcojel; Alcosolve 2; Avantin; Avantine; Combi-Schutz; Dimethylcarbinol; Hartosol; Imsol A; Isohol; Isopropanol; Lutosol; Petrohol; Propol; PRO; Takineocol; 1-Methylethyl Alcohol; iso-C3H7OH; 2-Hydroxypropane; Propane, 2-hydroxy-; sec-Propanol; Propan-2-ol; i-Propylalkohol; Alcolo; Alcool isopropilico; Alcool isopropylique; Alkolave; Arquad DMCB; iso-Propylalkohol; Isopropyl alcohol, rubbing; IPA; Lavacol; Visco 1152; Alcosolve; i-Propanol; 2-Propyl alcohol; Spectrar; Sterisol hand disinfectant; UN 1219; n-Propan-2-ol; 1-methylethanol; Propanol-2; Virahol; IPS 1
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -272.8 | kJ/mol | Eqk | Buckley and Herington, 1965 | ALS |
ΔfH°gas | -271.1 | kJ/mol | N/A | Chao and Rossini, 1965 | Value computed using ΔfHliquid° value of -317.0±0.3 kj/mol from Chao and Rossini, 1965 and ΔvapH° value of 45.9 kj/mol from Snelson and Skinner, 1961.; DRB |
ΔfH°gas | -272.3 ± 0.92 | kJ/mol | Ccb | Snelson and Skinner, 1961 | ALS |
ΔfH°gas | -272.8 | kJ/mol | N/A | Parks, Mosley, et al., 1950 | Value computed using ΔfHliquid° value of -318.7 kj/mol from Parks, Mosley, et al., 1950 and ΔvapH° value of 45.9 kj/mol from Snelson and Skinner, 1961.; DRB |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
35.32 | 50. | Thermodynamics Research Center, 1997 | p=1 bar. Discrepancies with other statistically calculated values [ Green J.H.S., 1963] and [51KOB] increase at high temperatures up to 5 and 9 J/mol*K, respectively, in Cp(T). There is a good agreement with results [ Chao J., 1986]. Please also see Chao J., 1986, 2.; GT |
46.04 | 100. | ||
57.98 | 150. | ||
68.28 | 200. | ||
83.72 | 273.15 | ||
89.32 ± 0.15 | 298.15 | ||
89.74 | 300. | ||
112.15 | 400. | ||
131.96 | 500. | ||
148.30 | 600. | ||
161.75 | 700. | ||
173.04 | 800. | ||
182.67 | 900. | ||
190.97 | 1000. | ||
198.16 | 1100. | ||
204.41 | 1200. | ||
209.85 | 1300. | ||
214.60 | 1400. | ||
218.75 | 1500. | ||
227.0 | 1750. | ||
233.1 | 2000. | ||
237.6 | 2250. | ||
241.0 | 2500. | ||
243.7 | 2750. | ||
245.7 | 3000. |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
103.06 | 358.72 | Stromsoe E., 1970 | Ideal gas heat capacities are given by [ Stromsoe E., 1970] as a linear function Cp=f1*(a+bT). This expression approximates the experimental values with the average deviation of 1.59 J/mol*K. The accuracy of the experimental heat capacities [ Stromsoe E., 1970] is estimated as less than 0.3%. Other experimental values of Cp [ Parks G.S., 1940] (118.83 at 427.9 K, 127.61 at 457.7 K, and 135.56 J/mol*K at 480.3 K) are believed to be less reliable. Please also see Hales J.L., 1963, Berman N.S., 1964.; GT |
105.7 ± 1.6 | 365.75 | ||
105.77 | 371.15 | ||
106.29 | 373.15 | ||
108.1 ± 1.6 | 378.85 | ||
109.2 ± 1.6 | 384.95 | ||
110.08 | 391.15 | ||
110.8 ± 1.6 | 393.65 | ||
111.65 | 398.15 | ||
113.0 ± 1.6 | 405.35 | ||
114.35 | 411.15 | ||
117.02 | 423.15 | ||
118.70 | 431.15 | ||
122.10 | 448.15 | ||
122.80 | 451.15 | ||
121.7 ± 1.6 | 453.15 | ||
124.2 ± 1.6 | 466.75 | ||
127.01 | 473.15 | ||
126.7 ± 1.6 | 480.55 | ||
130.3 ± 1.6 | 499.75 | ||
132.9 ± 1.6 | 513.95 | ||
137.5 ± 1.6 | 539.05 | ||
142.6 ± 1.6 | 567.05 | ||
148.1 ± 1.6 | 597.25 |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
RCD - Robert C. Dunbar
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
C3H7O- + =
By formula: C3H7O- + H+ = C3H8O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1569. ± 4.2 | kJ/mol | D-EA | Ramond, Davico, et al., 2000 | gas phase; B |
ΔrH° | 1571. ± 8.8 | kJ/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrH° | 1576. ± 4.2 | kJ/mol | CIDT | DeTuri and Ervin, 1999 | gas phase; B |
ΔrH° | 1572. ± 8.4 | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1542. ± 4.6 | kJ/mol | H-TS | Ramond, Davico, et al., 2000 | gas phase; B |
ΔrG° | 1543. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrG° | 1544. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
By formula: Cl- + C3H8O = (Cl- • C3H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 81.17 ± 0.84 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrH° | 76.6 ± 4.2 | kJ/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B,M |
ΔrH° | 73.6 ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1984 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 103. | J/mol*K | PHPMS | Hiraoka and Mizuse, 1987 | gas phase; M |
ΔrS° | 97.1 | J/mol*K | N/A | Larson and McMahon, 1984 | gas phase; switching reaction(cl-)t-C4H9OH, Entropy change calculated or estimated; Larson and McMahon, 1984, 2; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 47.36 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrG° | 45.61 | kJ/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B |
ΔrG° | 44.8 ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1984 | gas phase; B,M |
By formula: C2H7O+ + C3H8O = (C2H7O+ • C3H8O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 133. | kJ/mol | ICR | Bomse and Beauchamp, 1981 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 124. | J/mol*K | N/A | Bomse and Beauchamp, 1981 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 96.7 | kJ/mol | ICR | Bomse and Beauchamp, 1981 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M |
By formula: C3H9O+ + C3H8O = (C3H9O+ • C3H8O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 133. | kJ/mol | ICR | Bomse and Beauchamp, 1981 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 124. | J/mol*K | N/A | Bomse and Beauchamp, 1981 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 96.7 | kJ/mol | ICR | Bomse and Beauchamp, 1981 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M |
By formula: C4H11O+ + C3H8O = (C4H11O+ • C3H8O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 128. | kJ/mol | ICR | Bomse and Beauchamp, 1981 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 118. | J/mol*K | N/A | Bomse and Beauchamp, 1981 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 92.5 | kJ/mol | ICR | Bomse and Beauchamp, 1981 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M |
By formula: C4H11O+ + C3H8O = (C4H11O+ • C3H8O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 134. | kJ/mol | ICR | Bomse and Beauchamp, 1981 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 115. | J/mol*K | N/A | Bomse and Beauchamp, 1981 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 99.6 | kJ/mol | ICR | Bomse and Beauchamp, 1981 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M |
By formula: CN- + C3H8O = (CN- • C3H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 69.9 ± 3.3 | kJ/mol | TDAs | Larson, Szulejko, et al., 1988 | gas phase; B,M |
ΔrH° | 76. ± 15. | kJ/mol | IMRE | Larson and McMahon, 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 110. | J/mol*K | PHPMS | Larson, Szulejko, et al., 1988 | gas phase; M |
ΔrS° | 104. | J/mol*K | N/A | Larson and McMahon, 1987 | gas phase; switching reaction,Thermochemical ladder(CN-)H2O, Entropy change calculated or estimated; Payzant, Yamdagni, et al., 1971; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 37.7 ± 0.84 | kJ/mol | TDAs | Larson, Szulejko, et al., 1988 | gas phase; B |
ΔrG° | 44.8 ± 9.6 | kJ/mol | IMRE | Larson and McMahon, 1987 | gas phase; B,M |
By formula: F- + C3H8O = (F- • C3H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 140.2 ± 2.9 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrH° | 135. ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1983 | gas phase; B,M |
ΔrH° | 139. ± 9.2 | kJ/mol | CIDT | DeTuri and Ervin, 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 107. | J/mol*K | N/A | Larson and McMahon, 1983 | gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 107.5 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrG° | 103. ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1983 | gas phase; B,M |
By formula: C3H9Si+ + C3H8O = (C3H9Si+ • C3H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 184. | kJ/mol | PHPMS | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 129. | J/mol*K | N/A | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
123. | 468. | PHPMS | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M |
By formula: (Cl- • 2C3H8O) + C3H8O = (Cl- • 3C3H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 62.3 ± 2.1 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrH° | 52.3 ± 4.2 | kJ/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 109. | J/mol*K | PHPMS | Hiraoka and Mizuse, 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 22.2 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrG° | 20. ± 4.2 | kJ/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B |
By formula: (Cl- • C3H8O) + C3H8O = (Cl- • 2C3H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 69.9 ± 1.3 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrH° | 65.3 ± 4.2 | kJ/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 105. | J/mol*K | PHPMS | Hiraoka and Mizuse, 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 32.1 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrG° | 34. ± 4.2 | kJ/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B |
By formula: (Cl- • 7C3H8O) + C3H8O = (Cl- • 8C3H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 45.6 ± 4.2 | kJ/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; Estimated entropy; single temperature measurement; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 130. | J/mol*K | N/A | Hiraoka and Mizuse, 1987 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 6.7 ± 4.2 | kJ/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; Estimated entropy; single temperature measurement; B |
By formula: I- + C3H8O = (I- • C3H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 54.81 ± 0.84 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrH° | 51.0 ± 4.2 | kJ/mol | TDAs | Caldwell and Kebarle, 1984 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 79.9 | J/mol*K | PHPMS | Caldwell and Kebarle, 1984 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 26.5 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrG° | 27. ± 4.2 | kJ/mol | TDAs | Caldwell and Kebarle, 1984 | gas phase; B |
By formula: H2 + C3H6O = C3H8O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -68.74 ± 0.42 | kJ/mol | Cm | Wiberg, Crocker, et al., 1991 | liquid phase; ALS |
ΔrH° | -55.23 | kJ/mol | Eqk | Buckley and Herington, 1965 | gas phase; ALS |
ΔrH° | -55.40 ± 0.42 | kJ/mol | Chyd | Dolliver, Gresham, et al., 1938 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -56.1 ± 0.4 kJ/mol; At 355 °K; ALS |
+ = C3H8BrO-
By formula: Br- + C3H8O = C3H8BrO-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 60.25 ± 0.84 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 34.9 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrG° | 38. ± 8.4 | kJ/mol | IMRE | Tanabe, Morgon, et al., 1996 | gas phase; Anchored to H2O..Br- of Hiraoka, Mizure, et al., 19882; B |
By formula: Na+ + C3H8O = (Na+ • C3H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 113. ± 4.2 | kJ/mol | CIDT | Armentrout and Rodgers, 2000 | RCD |
ΔrH° | 113. ± 4.6 | kJ/mol | CIDT | Rodgers and Armentrout, 1999 | RCD |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
85.4 | 298. | IMRE | McMahon and Ohanessian, 2000 | Anchor alanine=39.89; RCD |
0.0 | 0. | CIDT | Rodgers and Armentrout, 1999 | RCD |
By formula: (Cl- • 3C3H8O) + C3H8O = (Cl- • 4C3H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 49.8 ± 4.2 | kJ/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 120. | J/mol*K | PHPMS | Hiraoka and Mizuse, 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 14. ± 4.2 | kJ/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B |
By formula: (Cl- • 4C3H8O) + C3H8O = (Cl- • 5C3H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 48.5 ± 4.2 | kJ/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 128. | J/mol*K | PHPMS | Hiraoka and Mizuse, 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 10. ± 4.2 | kJ/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B |
By formula: (Cl- • 5C3H8O) + C3H8O = (Cl- • 6C3H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 47.3 ± 4.2 | kJ/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 130. | J/mol*K | PHPMS | Hiraoka and Mizuse, 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 8.4 ± 4.2 | kJ/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B |
By formula: (Cl- • 6C3H8O) + C3H8O = (Cl- • 7C3H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 46.4 ± 4.2 | kJ/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 131. | J/mol*K | PHPMS | Hiraoka and Mizuse, 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 7.1 ± 4.2 | kJ/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B |
By formula: CH3S- + C3H8O = (CH3S- • C3H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 71.55 ± 0.84 | kJ/mol | TDAs | Sieck and Meot-ner, 1989 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 96.7 | J/mol*K | PHPMS | Sieck and Meot-ner, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 42.7 ± 3.3 | kJ/mol | TDAs | Sieck and Meot-ner, 1989 | gas phase; B |
+ 2 = C6H16FO2-
By formula: F- + 2C3H8O = C6H16FO2-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 87.03 ± 0.84 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 55.48 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
+ = C9H13OS-
By formula: C6H5S- + C3H8O = C9H13OS-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 62.76 ± 0.42 | kJ/mol | TDAs | Sieck and Meot-ner, 1989 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 30.5 ± 1.7 | kJ/mol | TDAs | Sieck and Meot-ner, 1989 | gas phase; B |
+ 3 = C9H24FO3-
By formula: F- + 3C3H8O = C9H24FO3-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 73.64 ± 0.84 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 35.0 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
+ 2 = C6H16IO2-
By formula: I- + 2C3H8O = C6H16IO2-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 46.0 ± 1.3 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 19.5 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
+ 2 = C6H16BrO2-
By formula: Br- + 2C3H8O = C6H16BrO2-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 51.46 ± 0.84 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 22.8 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
+ 3 = C9H24IO3-
By formula: I- + 3C3H8O = C9H24IO3-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 39.7 ± 2.9 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 14.8 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
By formula: C4H8 + C3H8O = C7H16O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -22.9 ± 1.3 | kJ/mol | Eqk | Calderon, Tejero, et al., 1997 | liquid phase; ALS |
ΔrH° | -21.7 ± 1.6 | kJ/mol | Cm | Sola, Pericas, et al., 1997 | liquid phase; ALS |
By formula: C3H8O = H2 + C3H6O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 55.23 | kJ/mol | Eqk | Buckley and Herington, 1965 | gas phase; ALS |
ΔrH° | 56.543 | kJ/mol | Eqk | Kolb and Burwell, 1945 | gas phase; ALS |
+ = C3H7D8FO-
By formula: F- + C3H8O = C3H7D8FO-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 102. ± 8.4 | kJ/mol | IMRE | Wilkinson, Szulejko, et al., 1992 | gas phase; Reported relative to ROH..F-, 0.5 kcal/mol weaker.; B |
By formula: Mg+ + C3H8O = (Mg+ • C3H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 270. ± 20. | kJ/mol | ICR | Operti, Tews, et al., 1988 | gas phase; switching reaction,Thermochemical ladder(Mg+)CH3OH; M |
By formula: C5H10O2 + H2O = C2H4O2 + C3H8O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 2.3 ± 0.2 | kJ/mol | Cm | Wadso, 1958 | liquid phase; Heat of Hydrolysis; ALS |
By formula: C3H8O + C2HCl3O = 2,2,2-trichloro-1-isopropoxyethanol
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -41.6 | kJ/mol | Eqk | Jensen and Pedersen, 1971 | liquid phase; solvent: Heptane; ALS |
By formula: C6H12O + C3H6O = C6H10O + C3H8O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.9 ± 1.9 | kJ/mol | Eqk | Fedoseenko, Yursha, et al., 1983 | gas phase; At 503 K; ALS |
+ = C5H8Cl2F2O
By formula: C3H8O + C2Cl2F2 = C5H8Cl2F2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -183. ± 1. | kJ/mol | Eqk | Kennedy, Lacher, et al., 1969 | gas phase; ALS |
By formula: C6H10O + C3H8O = C6H12O + C3H6O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -9.9 ± 1.9 | kJ/mol | Eqk | Kabo, Yursha, et al., 1988 | gas phase; ALS |
By formula: C3H8O + HNO3 = C3H7NO3 + H2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -23.4 | kJ/mol | Eqk | Rubtsov, 1986 | liquid phase; ALS |
By formula: C2H2O + C3H8O = C5H10O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -150.2 | kJ/mol | Cm | Rice and Greenberg, 1934 | liquid phase; ALS |
By formula: Li+ + C3H8O = (Li+ • C3H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 173. ± 7.9 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
MM - Michael M. Meot-Ner (Mautner)
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
View reactions leading to C3H8O+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 10.17 ± 0.02 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 793.0 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 762.6 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Proton affinity at 298K
Proton affinity (kJ/mol) | Reference | Comment |
---|---|---|
796. ± 6. | Cao and Holmes, 2001 | MM |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
10.15 ± 0.07 | EI | Bowen and Maccoll, 1984 | LBLHLM |
10.10 ± 0.02 | PI | Potapov and Sorokin, 1972 | LLK |
10.29 ± 0.02 | PE | Cocksey, Eland, et al., 1971 | LLK |
10.18 | PE | Dewar and Worley, 1969 | RDSH |
10.12 ± 0.03 | PI | Refaey and Chupka, 1968 | RDSH |
10.15 ± 0.05 | PI | Watanabe, 1957 | RDSH |
10.44 | PE | Benoit and Harrison, 1977 | Vertical value; LLK |
10.49 ± 0.03 | PE | Peel and Willett, 1975 | Vertical value; LLK |
10.42 | PE | Robin and Kuebler, 1973 | Vertical value; LLK |
10.36 | PE | Katsumata, Iwai, et al., 1973 | Vertical value; LLK |
10.42 | PE | Baker, Betteridge, et al., 1971 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
CH3+ | 30.2 ± 0.2 | ? | EI | Olmsted, Street, et al., 1964 | RDSH |
CH3O+ | 12.5 | ? | EI | Friedman, Long, et al., 1957 | RDSH |
C2H3+ | 14.6 | ? | EI | Friedman, Long, et al., 1957 | RDSH |
C2H4O+ | 10.27 ± 0.09 | CH4 | EI | Bowen and Maccoll, 1984 | LBLHLM |
C2H4O+ | 10.26 | CH4 | EI | Holmes, Burgers, et al., 1982 | LBLHLM |
C2H4O+ | 10.23 ± 0.02 | CH4 | PI | Potapov and Sorokin, 1972 | LLK |
C2H4O+ | 10.27 ± 0.03 | CH4 | PI | Refaey and Chupka, 1968 | RDSH |
C2H5O+ | 10.20 ± 0.08 | CH3 | EI | Bowen and Maccoll, 1984 | LBLHLM |
C2H5O+ | 10.26 | CH3 | EI | Lossing, 1977 | LLK |
C2H5O+ | 10.40 ± 0.03 | CH3 | PI | Potapov and Sorokin, 1972 | LLK |
C2H5O+ | 10.70 | CH3 | EI | Haney and Franklin, 1969 | RDSH |
C2H5O+ | 10.40 | CH3 | PI | Refaey and Chupka, 1968 | RDSH |
C3H6+ | ~12.0 ± 0.9 | H2O | EI | Bowen and Maccoll, 1984 | LBLHLM |
C3H6+ | ~12.0 | H2O | PI | Refaey and Chupka, 1968 | RDSH |
C3H7+ | 11.6 | OH | PI | Refaey and Chupka, 1968 | RDSH |
C3H7O+ | ≤10.48 ± 0.08 | H | EI | Bowen and Maccoll, 1984 | LBLHLM |
C3H7O+ | ≤10.48 | H | EI | Lossing, 1977 | LLK |
C3H7O+ | 10.3 ± 0.5 | H | PI | Potapov and Sorokin, 1972 | LLK |
C3H7O+ | 10.6 | H | PI | Refaey and Chupka, 1968 | RDSH |
C3H7O+ | 11.85 | H | EI | Lambdin, Tuffly, et al., 1959 | RDSH |
De-protonation reactions
C3H7O- + =
By formula: C3H7O- + H+ = C3H8O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1569. ± 4.2 | kJ/mol | D-EA | Ramond, Davico, et al., 2000 | gas phase; B |
ΔrH° | 1571. ± 8.8 | kJ/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrH° | 1576. ± 4.2 | kJ/mol | CIDT | DeTuri and Ervin, 1999 | gas phase; B |
ΔrH° | 1572. ± 8.4 | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1542. ± 4.6 | kJ/mol | H-TS | Ramond, Davico, et al., 2000 | gas phase; B |
ΔrG° | 1543. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrG° | 1544. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | VERIFINN |
NIST MS number | 289584 |
References
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Buckley and Herington, 1965
Buckley, E.; Herington, E.F.G.,
Equilibria in some secondary alcohol + hydrogen + ketone systems,
Trans. Faraday Soc., 1965, 61, 1618-1625. [all data]
Chao and Rossini, 1965
Chao, J.; Rossini, F.D.,
Heats of combustion, formation, and isomerization of nineteen alkanols,
J. Chem. Eng. Data, 1965, 10, 374-379. [all data]
Snelson and Skinner, 1961
Snelson, A.; Skinner, H.A.,
Heats of combustion: sec-propanol, 1,4-dioxan, 1,3-dioxan and tetrahydropyran,
Trans. Faraday Soc., 1961, 57, 2125-2131. [all data]
Parks, Mosley, et al., 1950
Parks, G.S.; Mosley, J.R.; Peterson, P.V., Jr.,
Heats of combustion and formation of some organic compounds containing oxygen,
J. Chem. Phys., 1950, 18, 152. [all data]
Thermodynamics Research Center, 1997
Thermodynamics Research Center,
Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]
Green J.H.S., 1963
Green J.H.S.,
Thermodynamic properties of organic oxygen compounds. Part 12. Vibrational assignment and calculated thermodynamic properties 0-1000 K of isopropyl alcohol,
Trans. Faraday Soc., 1963, 59, 1559-1563. [all data]
Chao J., 1986
Chao J.,
Ideal gas thermodynamic properties of simple alkanols,
Int. J. Thermophys., 1986, 7, 431-442. [all data]
Chao J., 1986, 2
Chao J.,
Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties,
J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]
Stromsoe E., 1970
Stromsoe E.,
Heat capacity of alcohol vapors at atmospheric pressure,
J. Chem. Eng. Data, 1970, 15, 286-290. [all data]
Parks G.S., 1940
Parks G.S.,
Some heat capacity data for isopropyl alcohol vapor,
J. Chem. Phys., 1940, 8, 429. [all data]
Hales J.L., 1963
Hales J.L.,
Thermodynamic properties of organic oxygen compounds. Part 10. Measurement of vapor heat capacities and latent heats of vaporization of isopropyl alcohol,
Trans. Faraday Soc., 1963, 59, 1544-1554. [all data]
Berman N.S., 1964
Berman N.S.,
Vapor heat capacity and heat of vaporization of 2-propanol,
J. Chem. Eng. Data, 1964, 9, 218-219. [all data]
Ramond, Davico, et al., 2000
Ramond, T.M.; Davico, G.E.; Schwartz, R.L.; Lineberger, W.C.,
Vibronic structure of alkoxy radicals via photoelectron spectroscopy,
J. Chem. Phys., 2000, 112, 3, 1158-1169, https://doi.org/10.1063/1.480767
. [all data]
Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr.,
The gas phase acidity scale from methanol to phenol,
J. Am. Chem. Soc., 1979, 101, 6047. [all data]
DeTuri and Ervin, 1999
DeTuri, V.F.; Ervin, K.M.,
Competitive threshold collision-induced dissociation: Gas-phase acidities and bond dissociation energies for a series of alcohols,
J. Phys. Chem. A, 1999, 103, 35, 6911-6920, https://doi.org/10.1021/jp991459m
. [all data]
Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G.,
The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols,
Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W
. [all data]
Bogdanov, Peschke, et al., 1999
Bogdanov, B.; Peschke, M.; Tonner, D.S.; Szulejko, J.E.; McMahon, T.B.,
Stepwise solvation of halides by alcohol molecules in the gas phase,
Int. J. Mass Spectrom., 1999, 187, 707-725, https://doi.org/10.1016/S1387-3806(98)14180-5
. [all data]
Hiraoka and Mizuse, 1987
Hiraoka, K.; Mizuse, S.,
Gas-Phase Solvation of Cl- with H2O, CH3OH, C2H4OH, i-C3H7OH, n-C3H7OH, and t-C4H9OH,
Chem. Phys., 1987, 118, 3, 457, https://doi.org/10.1016/0301-0104(87)85078-4
. [all data]
Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B.,
Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria,
J. Am. Chem. Soc., 1984, 106, 517. [all data]
Larson and McMahon, 1984, 2
Larson, J.W.; McMahon, T.B.,
Gas phase negative ion chemistry of alkylchloroformates,
Can. J. Chem., 1984, 62, 675. [all data]
Bomse and Beauchamp, 1981
Bomse, D.S.; Beauchamp, J.L.,
Slow Multiphoton Excitation as a Probe of Bimolecular and Unimolecular Reaction Energetics. Multiphoton Dissociation of Proton-Bound Alcohol Dimers,
J. Am. Chem. Soc., 1981, 103, 12, 3292, https://doi.org/10.1021/ja00402a011
. [all data]
Grimsrud and Kebarle, 1973
Grimsrud, E.P.; Kebarle, P.,
Gas Phase Ion Equilibria Studies of the Solvation of the Hydrogen Ion by Methanol, Dimethyl Ether and Water. Effect of Hydrogen Bonding,
J. Am. Chem. Soc., 1973, 95, 24, 7939, https://doi.org/10.1021/ja00805a002
. [all data]
Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D.,
Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules,
J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]
Larson, Szulejko, et al., 1988
Larson, J.W.; Szulejko, J.E.; McMahon, T.B.,
Gas Phase Lewis Acid-Base Interactions. An Experimental Determination of Cyanide Binding Energies From Ion Cyclotron Resonance and High-Pressure Mass Spectrometric Equilibrium Measurements.,
J. Am. Chem. Soc., 1988, 110, 23, 7604, https://doi.org/10.1021/ja00231a004
. [all data]
Larson and McMahon, 1987
Larson, J.W.; McMahon, T.B.,
Hydrogen bonding in gas phase anions. The energetics of interaction between cyanide ion and bronsted acids,
J. Am. Chem. Soc., 1987, 109, 6230. [all data]
Payzant, Yamdagni, et al., 1971
Payzant, J.D.; Yamdagni, R.; Kebarle, P.,
Hydration of CN-, NO2-, NO3-, and HO- in the gas phase,
Can. J. Chem., 1971, 49, 3308. [all data]
Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B.,
Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements,
J. Am. Chem. Soc., 1983, 105, 2944. [all data]
Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P.,
Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions,
J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014
. [all data]
Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J.,
A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases,
Can. J. Chem., 1986, 74, 59. [all data]
Caldwell and Kebarle, 1984
Caldwell, G.; Kebarle, P.,
Binding energies and structural effects in halide anion-ROH and -RCOOH complexes from gas phase equilibria measurements,
J. Am. Chem. Soc., 1984, 106, 967. [all data]
Wiberg, Crocker, et al., 1991
Wiberg, K.B.; Crocker, L.S.; Morgan, K.M.,
Thermochemical studies of carbonyl compounds. 5. Enthalpies of reduction of carbonyl groups,
J. Am. Chem. Soc., 1991, 113, 3447-3450. [all data]
Dolliver, Gresham, et al., 1938
Dolliver, M.A.; Gresham, T.L.; Kistiakowsky, G.B.; Smith, E.A.; Vaughan, W.E.,
Heats of organic reactions. VI. Heats of hydrogenation of some oxygen-containing compounds,
J. Am. Chem. Soc., 1938, 60, 440-450. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Tanabe, Morgon, et al., 1996
Tanabe, F.K.J.; Morgon, N.H.; Riveros, J.M.,
Relative Bromide and Iodide Affinity of Simple Solvent Molecules Determined by FT-ICR,
J. Phys. Chem., 1996, 100, 8, 2862-2866, https://doi.org/10.1021/jp952290p
. [all data]
Hiraoka, Mizure, et al., 1988
Hiraoka, K.; Mizure, S.; Yamabe, S.; Nakatsuji, Y.,
Gas Phase Clustering Reactions of CN- and CH2CN- with MeCN,
Chem. Phys. Lett., 1988, 148, 6, 497, https://doi.org/10.1016/0009-2614(88)80320-8
. [all data]
Armentrout and Rodgers, 2000
Armentrout, P.B.; Rodgers, M.T.,
An Absolute Sodium Cation Affinity Scale: Threshold Collision-Induced Dissociation Experiments and ab Initio Theory,
J. Phys. Chem A, 2000, 104, 11, 2238, https://doi.org/10.1021/jp991716n
. [all data]
Rodgers and Armentrout, 1999
Rodgers, M.T.; Armentrout, P.B.,
Absolute Binding Energies of Sodium Ions to Short-Chain Alcohols, CnH2n+2O, n=1-4, Determined by Threshold Collision-Induced Dissociation Experiments and Ab Initio Theory, 1999, 4955. [all data]
McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G.,
An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions,
Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7
. [all data]
Sieck and Meot-ner, 1989
Sieck, L.W.; Meot-ner, M.,
Ionic Hydrogen Bond and Ion Solvation. 8. RS-..HOR Bond Strengths. Correlation with Acidities.,
J. Phys. Chem., 1989, 93, 4, 1586, https://doi.org/10.1021/j100341a079
. [all data]
Calderon, Tejero, et al., 1997
Calderon, A.; Tejero, J.; Izuierdo, J.F.; Iborra, M.; Cunill, F.,
Equilibrium Constants for the liquid-phase synthesis of isopropyl tert-butyl ether from 2-propanol and isobutene,
Ind. Eng. Chem. Res., 1997, 36, 896-902. [all data]
Sola, Pericas, et al., 1997
Sola, L.; Pericas, M.A.; Cunill, F.; Izquierdo, J.F.,
A comparative thermodynamic and kinetic study of the reaction between olefins and light alcohols leading to branced ethers. Reaction calorimetry study of the formation of tert-amyl methyl ether (TAME) and tert-butyl isopropyl ether (IPTBE),
Ind. Eng. Chem. Res., 1997, 36, 2012-2018. [all data]
Kolb and Burwell, 1945
Kolb, H.J.; Burwell, R.L., Jr.,
Equilibrium in the dehydrogenation of secondary propyl and butyl alcohols,
J. Am. Chem. Soc., 1945, 67, 1084-1088. [all data]
Wilkinson, Szulejko, et al., 1992
Wilkinson, F.E.; Szulejko, J.E.; Allison, C.E.; Mcmahon, T.B.,
Fourier Transform Ion Cyclotron Resonance Investigation of the Deuterium Isotope Effect on Gas Phase Ion/Molecule Hydrogen Bonding Interactions in Alcohol-Fluoride Adduct Ions,
Int. J. Mass Spectrom., 1992, 117, 487-505, https://doi.org/10.1016/0168-1176(92)80110-M
. [all data]
Operti, Tews, et al., 1988
Operti, L.; Tews, E.C.; Freiser, B.S.,
Determination of Gas-Phase Ligand Binding Energies to Mg+ by FTMS Techniques,
J. Am. Chem. Soc., 1988, 110, 12, 3847, https://doi.org/10.1021/ja00220a020
. [all data]
Wadso, 1958
Wadso, I.,
The heats of hydrolysis of some alkyl acetates,
Acta Chem. Scand., 1958, 12, 630-633. [all data]
Jensen and Pedersen, 1971
Jensen, R.B.; Pedersen, S.B.,
Reaction between chloral and alcohols. 9. Dissociation of chloral hemiacetals of some aliphatic primary and secondary alcohols,
Acta Chem. Scand., 1971, 25, 2911-2930. [all data]
Fedoseenko, Yursha, et al., 1983
Fedoseenko, V.I.; Yursha, I.A.; Kabo, G.Ya.,
Equilibrium and thermodynamics of cyclohexanol dehydrogenation reactions,
Dokl. Akad. Nauk BSSR, 1983, 27, 926-929. [all data]
Kennedy, Lacher, et al., 1969
Kennedy, M.B.; Lacher, J.R.; Park, J.D.,
Reaction heats of organic compounds. VI. Heats of addition of some alcohols to 1,1-dichloro-2,2-difluoroethylene,
Trans. Faraday Soc., 1969, 65, 1435-1442. [all data]
Kabo, Yursha, et al., 1988
Kabo, G.J.; Yursha, I.A.; Frenkel, M.L.; Poleshchuk, P.A.; Fedoseenko, V.I.; Ladutko, A.I.,
Thermodynamic properties of cyclohexanol and cyclohexanone,
J. Chem. Thermodyn., 1988, 20, 429-437. [all data]
Rubtsov, 1986
Rubtsov, Yu.I.,
Thermodynamic calculation of equilibrium in nitration of alcohols,
Bull. Acad. Sci. USSR, Div. Chem. Sci., 1986, 19-22. [all data]
Rice and Greenberg, 1934
Rice, F.O.; Greenberg, J.,
Ketene. III. Heat of formation and heat of reaction with alcohols,
J. Am. Chem. Soc., 1934, 38, 2268-2270. [all data]
Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B.,
Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation,
Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X
. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Cao and Holmes, 2001
Cao, J.; Holmes, J.L.,
Determination of the proton affinities of secondary alcohols from the dissocation of proton-bound molecular trios,
European J. Mass Spectrom., 2001, 7, 243-247. [all data]
Bowen and Maccoll, 1984
Bowen, R.D.; Maccoll, A.,
Low energy, low temperature mass spectra,
Org. Mass Spectrom., 1984, 19, 379. [all data]
Potapov and Sorokin, 1972
Potapov, V.K.; Sorokin, V.V.,
Kinetic energies of products of dissociative photoionization of molecules. I. Aliphatic ketones and alcohols,
Khim. Vys. Energ., 1972, 6, 387. [all data]
Cocksey, Eland, et al., 1971
Cocksey, B.J.; Eland, J.H.D.; Danby, C.J.,
The effect of alkyl substitution on ionisation potential,
J. Chem. Soc., 1971, (B), 790. [all data]
Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D.,
Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation,
J. Chem. Phys., 1969, 50, 654. [all data]
Refaey and Chupka, 1968
Refaey, K.M.A.; Chupka, W.A.,
Photoionization of the lower aliphatic alcohols with mass analysis,
J. Chem. Phys., 1968, 48, 5205. [all data]
Watanabe, 1957
Watanabe, K.,
Ionization potentials of some molecules,
J. Chem. Phys., 1957, 26, 542. [all data]
Benoit and Harrison, 1977
Benoit, F.M.; Harrison, A.G.,
Predictive value of proton affinity. Ionization energy correlations involving oxygenated molecules,
J. Am. Chem. Soc., 1977, 99, 3980. [all data]
Peel and Willett, 1975
Peel, J.B.; Willett, G.D.,
Photoelectron spectroscopic studies of the higher alcohols,
Aust. J. Chem., 1975, 28, 2357. [all data]
Robin and Kuebler, 1973
Robin, M.B.; Kuebler, N.A.,
Excited electronic states of the simple alcohols,
J. Electron Spectrosc. Relat. Phenom., 1973, 1, 13. [all data]
Katsumata, Iwai, et al., 1973
Katsumata, S.; Iwai, T.; Kimura, K.,
Photoelectron spectra and sum rule consideration. Higher alkyl amines and alcohols,
Bull. Chem. Soc. Jpn., 1973, 46, 3391. [all data]
Baker, Betteridge, et al., 1971
Baker, A.D.; Betteridge, D.; Kemp, N.R.; Kirby, R.E.,
Application of photoelectron spectrometry to pesticide analysis. II.Photoelectron spectra of hydroxy-, and halo-alkanes and halohydrins,
Anal. Chem., 1971, 43, 375. [all data]
Olmsted, Street, et al., 1964
Olmsted, J., III; Street, K., Jr.; Newton, A.S.,
Excess-kinetic-energy ions in organic mass spectra,
J. Chem. Phys., 1964, 40, 2114. [all data]
Friedman, Long, et al., 1957
Friedman, L.; Long, F.A.; Wolfsberg, M.,
Study of the mass spectra of the lower aliphatic alcohols,
J. Chem. Phys., 1957, 27, 613. [all data]
Holmes, Burgers, et al., 1982
Holmes, J.L.; Burgers, P.C.; Mollah, Y.A.,
Alkane elimination from ionized alkanols,
Org. Mass Spectrom., 1982, 17, 127. [all data]
Lossing, 1977
Lossing, F.P.,
Heats of formation of some isomeric [CnH2n+1]+ ions. Substitutional effects on ion stability,
J. Am. Chem. Soc., 1977, 99, 7526. [all data]
Haney and Franklin, 1969
Haney, M.A.; Franklin, J.L.,
Excess energies in mass spectra of some oxygen-containing organic compounds,
J. Chem. Soc. Faraday Trans., 1969, 65, 1794. [all data]
Lambdin, Tuffly, et al., 1959
Lambdin, W.J.; Tuffly, B.L.; Yarborough, V.A.,
Appearance potentials as obtained with an analytical mass spectrometer,
Appl. Spectry., 1959, 13, 71. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), References
- Symbols used in this document:
AE Appearance energy Cp,gas Constant pressure heat capacity of gas IE (evaluated) Recommended ionization energy T Temperature ΔfH°gas Enthalpy of formation of gas at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.