Methyl Alcohol
- Formula: CH4O
- Molecular weight: 32.0419
- IUPAC Standard InChIKey: OKKJLVBELUTLKV-UHFFFAOYSA-N
- CAS Registry Number: 67-56-1
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: Methanol; Carbinol; Methyl hydroxide; Methylol; Monohydroxymethane; Wood alcohol; CH3OH; Colonial spirit; Columbian spirit; Hydroxymethane; Wood naphtha; Alcool methylique; Alcool metilico; Columbian spirits; Metanolo; Methylalkohol; Metylowy alkohol; Pyroxylic spirit; Wood spirit; Rcra waste number U154; UN 1230; Pyro alcohol; Spirit of wood; Bieleski's solution; NSC 85232
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -49. ± 3. | kcal/mol | AVG | N/A | Average of 9 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°gas | -182.52 ± 0.048 | kcal/mol | Cm | Rossini, 1932 | Flame Calorimetry; Corresponding ΔfHºgas = -48.157 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
8.126 | 50. | Thermodynamics Research Center, 1997 | p=1 bar. Recommended entropies and heat capacities are in good agreement with other statistically calculated values [ Ivash E.V., 1955, Zhuravlev E.Z., 1959, Chen S.S., 1977, Chao J., 1986, Gurvich, Veyts, et al., 1989]. Please also see Chao J., 1986, 2.; GT |
8.831 | 100. | ||
9.235 | 150. | ||
9.491 | 200. | ||
10.18 | 273.15 | ||
10.53 ± 0.007 | 298.15 | ||
10.56 | 300. | ||
12.34 | 400. | ||
14.27 | 500. | ||
16.06 | 600. | ||
17.65 | 700. | ||
19.06 | 800. | ||
20.30 | 900. | ||
21.40 | 1000. | ||
22.36 | 1100. | ||
23.21 | 1200. | ||
23.958 | 1300. | ||
24.613 | 1400. | ||
25.191 | 1500. | ||
26.34 | 1750. | ||
27.20 | 2000. | ||
27.84 | 2250. | ||
28.35 | 2500. | ||
28.7 | 2750. | ||
28.9 | 3000. |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
10.13 ± 0.30 | 279. | Stromsoe E., 1970 | Heat capacity at 279 K was obtained by thermal conductivity [ Halford J.O., 1957]. Vapor heat capacities from calorimetric measurements [ De Vries T., 1941] were converted to the ideal gas heat capacities by corrections for the gas imperfection effects [ Chen S.S., 1977, Chao J., 1986, 2]. Ideal gas heat capacities are given by [ Stromsoe E., 1970] as a linear function Cp=f1*(a+bT). This expression approximates the experimental values with the average deviation of 1.17 J/mol*K. The accuracy of the experimental heat capacities [ Stromsoe E., 1970] is estimated as less than 0.3%. Please also see De Vries T., 1941, Weltner W., 1951, Halford J.O., 1957.; GT |
11.46 ± 0.30 | 345.6 | ||
11.19 ± 0.28 | 347.35 | ||
11.01 ± 0.30 | 349.65 | ||
11.37 ± 0.28 | 356.55 | ||
11.17 ± 0.30 | 358.15 | ||
11.52 ± 0.30 | 358.85 | ||
11.67 ± 0.30 | 359.85 | ||
12.02 ± 0.30 | 368.15 | ||
11.71 ± 0.28 | 373.35 | ||
12.26 ± 0.30 | 382.15 | ||
12.22 ± 0.28 | 398.95 | ||
12.51 ± 0.30 | 401.15 | ||
12.27 ± 0.28 | 401.35 | ||
12.43 ± 0.10 | 403.2 | ||
12.72 ± 0.30 | 420.15 | ||
12.88 ± 0.28 | 431.45 | ||
13.09 ± 0.28 | 442.15 | ||
13.36 ± 0.30 | 442.65 | ||
13.39 ± 0.28 | 457.35 | ||
13.67 ± 0.10 | 464.0 | ||
13.80 ± 0.28 | 477.75 | ||
13.95 ± 0.28 | 485.05 | ||
14.23 ± 0.28 | 498.95 | ||
14.44 ± 0.30 | 521.2 | ||
14.68 ± 0.28 | 521.35 | ||
15.37 ± 0.28 | 555.95 | ||
15.88 ± 0.28 | 581.35 | ||
15.96 ± 0.28 | 585.35 |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -56.97 | kcal/mol | Ccr | Baroody and Carpenter, 1972 | ALS |
ΔfH°liquid | -57.24 ± 0.04 | kcal/mol | Ccb | Chao and Rossini, 1965 | see Rossini, 1934; ALS |
ΔfH°liquid | -57.10 ± 0.86 | kcal/mol | Ccb | Green, 1960 | Reanalyzed by Cox and Pilcher, 1970, Original value = -57.01 ± 0.05 kcal/mol; ALS |
ΔfH°liquid | -59.89 | kcal/mol | Ccb | Parks, 1925 | ALS |
ΔfH°liquid | -60.1 ± 1.2 | kcal/mol | Ccb | Richards and Davis, 1920 | DRB |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -173.45 ± 0.03 | kcal/mol | Ccb | Chao and Rossini, 1965 | see Rossini, 1934; Corresponding ΔfHºliquid = -57.23 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -173.64 ± 0.05 | kcal/mol | Ccb | Green, 1960 | Corresponding ΔfHºliquid = -57.04 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -173.60 ± 0.048 | kcal/mol | Ccb | Rossini, 1931 | Corresponding ΔfHºliquid = -57.082 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -170.90 | kcal/mol | Ccb | Parks, 1925 | Corresponding ΔfHºliquid = -59.78 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -170.61 | kcal/mol | Ccb | Richards and Davis, 1920 | At 291 K; Corresponding ΔfHºliquid = -60.072 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 30.399 | cal/mol*K | N/A | Carlson and Westrum, 1971 | DH |
S°liquid | 30.31 | cal/mol*K | N/A | Kelley, 1929 | DH |
S°liquid | 31.00 | cal/mol*K | N/A | Parks, Kelley, et al., 1929 | Extrapolation below 90 K, 34.3 J/mol*K. Revision of previous data.; DH |
S°liquid | 32.60 | cal/mol*K | N/A | Parks, 1925 | Extrapolation below 90 K, 40.75 J/mol*K.; DH |
Quantity | Value | Units | Method | Reference | Comment |
S°solid,1 bar | 0.2670 | cal/mol*K | N/A | Ahlberg, Blanchard, et al., 1937 | DH |
Constant pressure heat capacity of liquid
Cp,liquid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
19.0 | 298.15 | Filatov and Afanas'ev, 1992 | DH |
19.39 | 298.15 | Khasanshin and Zykova, 1989 | T = 175 to 338 K. Unsmoothed experimental datum.; DH |
19.18 | 298.15 | Andreoli-Ball, Patterson, et al., 1988 | DH |
19.20 | 298.15 | Okano, Ogawa, et al., 1988 | DH |
19.4 | 298.15 | Lankford and Criss, 1987 | DH |
19.44 | 298. | Korolev, Kukharenko, et al., 1986 | DH |
19.19 | 298.15 | Ogawa and Murakami, 1986 | DH |
19.49 | 298.15 | Tanaka, Toyama, et al., 1986 | DH |
19.17 | 298.15 | Costas and Patterson, 1985 | T = 298.15, 313.15 K.; DH |
19.47 | 298.15 | Zegers and Somsen, 1984 | DH |
18.86 | 288.15 | Benson and D'Arcy, 1982 | DH |
19.58 | 298.15 | Villamanan, Casanova, et al., 1982 | DH |
19.3 | 293.15 | Atalla, El-Sharkawy, et al., 1981 | DH |
19.39 | 298.15 | Carlson and Westrum, 1971 | T = 5 to 332 K.; DH |
20.0 | 298. | Deshpande and Bhatagadde, 1971 | T = 298 to 318 K.; DH |
20.5 | 313.2 | Paz Andrade, Paz, et al., 1970 | DH |
20.5 | 298.2 | Katayama, 1962 | T = 10 to 60°C.; DH |
19.3 | 311. | Swietoslawski and Zielenkiewicz, 1960 | Mean value 21 to 56°C.; DH |
20.6 | 323. | Hough, Mason, et al., 1950 | T = 323 to 353 K.; DH |
18.11 | 270. | Staveley and Gupta, 1949 | T = 90 to 270 K.; DH |
20.7 | 300.8 | Phillip, 1939 | DH |
19.97 | 313.15 | Fiock, Ginnings, et al., 1931 | T = 40 to 110°C.; DH |
19.1 | 292.0 | Kelley, 1929 | T = 16 to 293 K. Value is unsmoothed experimental datum.; DH |
18.7 | 270. | Mitsukuri and Hara, 1929 | T = 190 to 270 K.; DH |
19.1 | 290.1 | Parks, 1925 | T = 89 to 290 K. Value is unsmoothed experimental datum.; DH |
19.9 | 298. | von Reis, 1881 | T = 288 to 335 K.; DH |
Constant pressure heat capacity of solid
Cp,solid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
16.35 | 120. | Sugisaki, Suga, et al., 1968 | glass phase; T = 20 to 120 K.; DH |
1.29 | 20.5 | Ahlberg, Blanchard, et al., 1937 | T = 5 to 28 K.; DH |
25.1 | 173. | Maass and Walbauer, 1925 | T = 93 to 173 K.; DH |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
DH - Eugene S. Domalski and Elizabeth D. Hearing
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 337.8 ± 0.3 | K | AVG | N/A | Average of 154 out of 171 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 176. ± 1. | K | AVG | N/A | Average of 13 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 175.5 ± 0.5 | K | AVG | N/A | Average of 8 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 513. ± 1. | K | AVG | N/A | Average of 27 out of 31 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 79. ± 1. | atm | AVG | N/A | Average of 17 out of 20 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Vc | 0.117 | l/mol | N/A | Gude and Teja, 1995 | |
Vc | 0.113024 | l/mol | N/A | Craven and de Reuck, 1986 | TRC |
Vc | 0.118 | l/mol | N/A | Francesconi, Lentz, et al., 1981 | Uncertainty assigned by TRC = 0.004 l/mol; TRC |
Vc | 0.11663 | l/mol | N/A | Zubarev and Bagdonas, 1969 | Uncertainty assigned by TRC = 0.0035 l/mol; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 8.51 ± 0.07 | mol/l | AVG | N/A | Average of 7 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 9.0 ± 0.1 | kcal/mol | AVG | N/A | Average of 11 out of 12 values; Individual data points |
Enthalpy of vaporization
ΔvapH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
8.415 | 337.7 | N/A | Majer and Svoboda, 1985 | |
9.37 | 258. | A | Stephenson and Malanowski, 1987 | Based on data from 175. to 273. K.; AC |
8.82 | 353. | A | Stephenson and Malanowski, 1987 | Based on data from 338. to 487. K.; AC |
10.4 | 213. | A | Stephenson and Malanowski, 1987 | Based on data from 188. to 228. K.; AC |
9.30 | 275. | A | Stephenson and Malanowski, 1987 | Based on data from 224. to 290. K.; AC |
9.15 | 300. | A | Stephenson and Malanowski, 1987 | Based on data from 285. to 345. K.; AC |
8.84 | 350. | A | Stephenson and Malanowski, 1987 | Based on data from 335. to 376. K.; AC |
8.63 | 388. | A | Stephenson and Malanowski, 1987 | Based on data from 373. to 458. K.; AC |
8.39 | 468. | A | Stephenson and Malanowski, 1987 | Based on data from 453. to 513. K.; AC |
7.82 | 373. | C | Yerlett and Wormald, 1986 | AC |
6.72 | 423. | C | Yerlett and Wormald, 1986 | AC |
4.92 | 473. | C | Yerlett and Wormald, 1986 | AC |
1.8 | 510. | C | Yerlett and Wormald, 1986 | AC |
8.96 | 331. | EB | Cervenkova and Boublik, 1984 | Based on data from 316. to 336. K.; AC |
9.15 | 303. | N/A | Gibbard and Creek, 1974 | Based on data from 288. to 337. K. See also Boublik, Fried, et al., 1984.; AC |
8.41 ± 0.02 | 338. | C | Counsell and Lee, 1973 | AC |
8.51 ± 0.02 | 331. | C | Counsell and Lee, 1973 | AC |
8.65 ± 0.02 | 321. | C | Counsell and Lee, 1973 | AC |
8.84 ± 0.02 | 306. | C | Counsell and Lee, 1973 | AC |
8.77 ± 0.02 | 313. | C | Svoboda, Veselý, et al., 1973 | AC |
8.65 ± 0.02 | 323. | C | Svoboda, Veselý, et al., 1973 | AC |
8.51 ± 0.02 | 333. | C | Svoboda, Veselý, et al., 1973 | AC |
8.44 ± 0.02 | 338. | C | Svoboda, Veselý, et al., 1973 | AC |
8.29 ± 0.02 | 343. | C | Svoboda, Veselý, et al., 1973 | AC |
8.84 | 352. | N/A | Wilhoit and Zwolinski, 1973 | Based on data from 337. to 383. K.; AC |
9.25 | 290. | EB | Boublík and Aim, 1972 | Based on data from 275. to 336. K. See also Stephenson and Malanowski, 1987.; AC |
9.15 | 303. | EB | Ambrose and Sprake, 1970 | Based on data from 288. to 357. K.; AC |
8.68 | 368. | N/A | Hirata, Suda, et al., 1967 | Based on data from 353. to 483. K.; AC |
9.18 | 293. | N/A | Klyueva, Mischenko, et al., 1960 | Based on data from 278. to 323. K.; AC |
Enthalpy of vaporization
ΔvapH = A exp(-αTr)
(1 − Tr)β
ΔvapH =
Enthalpy of vaporization (at saturation pressure)
(kcal/mol)
Tr = reduced temperature (T / Tc)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 477. |
---|---|
A (kcal/mol) | 10.8 |
α | -0.31 |
β | 0.4241 |
Tc (K) | 512.6 |
Reference | Majer and Svoboda, 1985 |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (atm)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
353.5 to 512.63 | 5.15282 | 1569.613 | -34.846 | Ambrose, Sprake, et al., 1975 | Coefficents calculated by NIST from author's data. |
288.1 to 356.83 | 5.19838 | 1581.341 | -33.50 | Ambrose and Sprake, 1970 | Coefficents calculated by NIST from author's data. |
353. to 483. | 5.30730 | 1676.569 | -21.728 | Hirata and Suda, 1967 | Coefficents calculated by NIST from author's data. |
Enthalpy of fusion
ΔfusH (kcal/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
0.760 | 175.3 | Domalski and Hearing, 1996 | AC |
0.5249 | 176. | Maass and Walbauer, 1925 | DH |
Entropy of fusion
ΔfusS (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
2.99 | 176. | Maass and Walbauer, 1925 | DH |
Entropy of fusion
ΔfusS (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
0.88 | 161.1 | Domalski and Hearing, 1996 | CAL |
4.33 | 175.3 | ||
0.96 | 157.3 | ||
4.37 | 175.6 |
Enthalpy of phase transition
ΔHtrs (kcal/mol) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
0.1520 | 157.34 | crystaline, II | crystaline, I | Carlson and Westrum, 1971 | DH |
0.76850 | 175.59 | crystaline, I | liquid | Carlson and Westrum, 1971 | DH |
0.3681 | 103. | crystaline | glass | Sugisaki, Suga, et al., 1968 | Glass transition.; DH |
0.170 | 157.8 | crystaline, II | crystaline, I | Staveley and Gupta, 1949 | DH |
0.7550 | 175.4 | crystaline, I | liquid | Staveley and Gupta, 1949 | DH |
0.1543 | 157.4 | crystaline, II | crystaline, I | Kelley, 1929 | DH |
0.7569 | 175.2 | crystaline, I | liquid | Kelley, 1929 | DH |
0.141 | 161.1 | crystaline, II | crystaline, I | Parks, 1925 | DH |
0.7591 | 175.3 | crystaline, I | liquid | Parks, 1925 | DH |
Entropy of phase transition
ΔStrs (cal/mol*K) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
0.966 | 157.34 | crystaline, II | crystaline, I | Carlson and Westrum, 1971 | DH |
4.376 | 175.59 | crystaline, I | liquid | Carlson and Westrum, 1971 | DH |
3.573 | 103. | crystaline | glass | Sugisaki, Suga, et al., 1968 | Glass; DH |
1.08 | 157.8 | crystaline, II | crystaline, I | Staveley and Gupta, 1949 | DH |
4.304 | 175.4 | crystaline, I | liquid | Staveley and Gupta, 1949 | DH |
0.980 | 157.4 | crystaline, II | crystaline, I | Kelley, 1929 | DH |
4.321 | 175.2 | crystaline, I | liquid | Kelley, 1929 | DH |
0.875 | 161.1 | crystaline, II | crystaline, I | Parks, 1925 | DH |
4.331 | 175.3 | crystaline, I | liquid | Parks, 1925 | DH |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, IR Spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Reactions 1 to 50
By formula: Cl- + CH4O = (Cl- • CH4O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 17. ± 3. | kcal/mol | AVG | N/A | Average of 8 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 22.6 | cal/mol*K | HPMS | Evans and Keesee, 1991 | gas phase; M |
ΔrS° | 24.1 | cal/mol*K | PHPMS | Hiraoka and Mizuse, 1987 | gas phase; M |
ΔrS° | 22.0 | cal/mol*K | PHPMS | Sieck, 1985 | gas phase; M |
ΔrS° | 22.9 | cal/mol*K | N/A | Larson and McMahon, 1984 | gas phase; switching reaction(Cl-)t-C4H9OH, Entropy change calculated or estimated; French, Ikuta, et al., 1982; M |
ΔrS° | 14.8 | cal/mol*K | PHPMS | Yamdagni, Payzant, et al., 1973 | gas phase; Entropy change is questionable; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 10.1 ± 0.8 | kcal/mol | AVG | N/A | Average of 10 values; Individual data points |
CH3O- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 382. ± 2. | kcal/mol | AVG | N/A | Average of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 376.02 ± 0.62 | kcal/mol | H-TS | Nee, Osterwalder, et al., 2006 | gas phase; B |
ΔrG° | 376.04 ± 0.55 | kcal/mol | H-TS | Osborn, Leahy, et al., 1998 | gas phase; B |
ΔrG° | 374.0 ± 2.0 | kcal/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; The acidity is 1.2 kcal/mol stronger than that from the D-EA cycle, due to the multi-compound fit for the acidity scale.; value altered from reference due to change in acidity scale; B |
ΔrG° | 374.6 ± 2.1 | kcal/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
ΔrG° | 375.10 ± 0.60 | kcal/mol | TDEq | Meot-ner and Sieck, 1986 | gas phase; Experimental entropy: 21.5 eu, 0.6 less than H2O; B |
By formula: CH5O+ + CH4O = (CH5O+ • CH4O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 32.6 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
ΔrH° | 32.3 | kcal/mol | PHPMS | Szulejko and McMahon, 1992 | gas phase; M |
ΔrH° | 32.1 | kcal/mol | PHPMS | Meot-Ner(Mautner), 1986 | gas phase; M |
ΔrH° | 33.1 | kcal/mol | PHPMS | Grimsrud and Kebarle, 1973 | gas phase; M |
ΔrH° | 33.7 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O; Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 29.0 | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
ΔrS° | 29.2 | cal/mol*K | PHPMS | Szulejko and McMahon, 1992 | gas phase; M |
ΔrS° | 26.6 | cal/mol*K | PHPMS | Meot-Ner(Mautner), 1986 | gas phase; M |
ΔrS° | 30.5 | cal/mol*K | PHPMS | Grimsrud and Kebarle, 1973 | gas phase; M |
ΔrS° | 28.5 | cal/mol*K | N/A | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O; Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 25.2 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O; Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
By formula: CH3O- + CH4O = (CH3O- • CH4O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 29.3 ± 1.0 | kcal/mol | TDAs | Paul and Kebarle, 1990 | gas phase; B,M |
ΔrH° | 28.80 ± 0.30 | kcal/mol | TDAs | Meot-ner and Sieck, 1986 | gas phase; B,M |
ΔrH° | 29.4 ± 2.5 | kcal/mol | TDAs | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B |
ΔrH° | 19.0 ± 2.0 | kcal/mol | N/A | Moylan, Dodd, et al., 1985 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 31.8 | cal/mol*K | PHPMS | Paul and Kebarle, 1990 | gas phase; M |
ΔrS° | 26.7 | cal/mol*K | PHPMS | Meot-Ner(Mautner), 1986 | gas phase; n; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 20.30 | kcal/mol | IMRE | Mustanir, Matsuoka, et al., 2006 | gas phase; B |
ΔrG° | 19.8 ± 1.0 | kcal/mol | TDAs | Paul and Kebarle, 1990 | gas phase; B |
ΔrG° | 20.80 ± 0.50 | kcal/mol | TDAs | Meot-ner and Sieck, 1986 | gas phase; B |
ΔrG° | 20.3 ± 1.6 | kcal/mol | TDAs | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
19.1 | 296. | FA | MacKay and Bohme, 1978 | gas phase; From thermochemical cycle,switching reaction(CH3O-)H2O; Meot-Ner(Mautner), 1986; M |
By formula: C4H9O- + CH4O = (C4H9O- • CH4O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 25.5 ± 1.0 | kcal/mol | TDEq | Meot-Ner and Sieck, 1986 | gas phase; B,M |
ΔrH° | 23.4 ± 2.2 | kcal/mol | CIDT | DeTuri and Ervin, 1999 | gas phase; B |
ΔrH° | 26.0 ± 2.5 | kcal/mol | N/A | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 27.9 | cal/mol*K | N/A | Meot-Ner and Sieck, 1986 | gas phase; Entropy change calculated or estimated; M |
ΔrS° | 29.3 | cal/mol*K | N/A | Caldwell, Rozeboom, et al., 1984 | gas phase; switching reaction(CH3O-)CH3OH, Entropy change calculated or estimated; re-evaluated using Meot-Ner(Mautner), 1986 and Paul and Kebarle, 1990; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 10.20 | kcal/mol | IMRE | Mustanir, Matsuoka, et al., 2006 | gas phase; B |
ΔrG° | 17.1 ± 1.6 | kcal/mol | TDEq | Meot-Ner and Sieck, 1986 | gas phase; B |
ΔrG° | 17.3 ± 1.6 | kcal/mol | IMRE | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; B,M |
By formula: C2H5O- + CH4O = (C2H5O- • CH4O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 27.3 ± 2.9 | kcal/mol | IMRE | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M |
ΔrH° | 25.6 ± 1.9 | kcal/mol | CIDT | DeTuri and Ervin, 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 29.3 | cal/mol*K | N/A | Caldwell, Rozeboom, et al., 1984 | gas phase; switching reaction(CH3O-)CH3OH, Entropy change calculated or estimated; re-evaluated using Meot-Ner(Mautner), 1986 and Paul and Kebarle, 1990; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 18.6 ± 2.0 | kcal/mol | IMRE | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
13.4 | 296. | FA | Mackay, Rakshit, et al., 1982 | gas phase; From thermochemical cycle,switching reaction(CH3O-)CH3OH; Caldwell and Kebarle, 1986, Taft, 1983; M |
By formula: (Cl- • CH4O) + CH4O = (Cl- • 2CH4O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.10 ± 0.40 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrH° | 13.70 ± 0.20 | kcal/mol | TDAs | Evans and Keesee, 1991 | gas phase; B,M |
ΔrH° | 14.1 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B,M |
ΔrH° | 13.00 ± 0.70 | kcal/mol | TDAs | Yamdagni, Payzant, et al., 1973 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 24.2 | cal/mol*K | PHPMS | Hiraoka and Mizuse, 1987 | gas phase; M |
ΔrS° | 22.0 | cal/mol*K | HPMS | Evans and Keesee, 1991 | gas phase; M |
ΔrS° | 19.4 | cal/mol*K | PHPMS | Yamdagni, Payzant, et al., 1973 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 7.30 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrG° | 7.10 | kcal/mol | TDAs | Evans and Keesee, 1991 | gas phase; B |
ΔrG° | 6.8 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B |
ΔrG° | 7.20 ± 0.40 | kcal/mol | TDAs | Yamdagni, Payzant, et al., 1973 | gas phase; B |
By formula: (Cl- • 2CH4O) + CH4O = (Cl- • 3CH4O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.50 ± 0.20 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrH° | 10.80 ± 0.30 | kcal/mol | TDAs | Evans and Keesee, 1991 | gas phase; B,M |
ΔrH° | 11.8 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B,M |
ΔrH° | 12.30 ± 0.60 | kcal/mol | N/A | Yamdagni, Payzant, et al., 1973 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 22.9 | cal/mol*K | PHPMS | Hiraoka and Mizuse, 1987 | gas phase; M |
ΔrS° | 22.7 | cal/mol*K | HPMS | Evans and Keesee, 1991 | gas phase; M |
ΔrS° | 23.6 | cal/mol*K | PHPMS | Yamdagni, Payzant, et al., 1973 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 5.06 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrG° | 4.00 | kcal/mol | TDAs | Evans and Keesee, 1991 | gas phase; B |
ΔrG° | 4.9 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B |
ΔrG° | 5.20 ± 0.30 | kcal/mol | TDAs | Yamdagni, Payzant, et al., 1973 | gas phase; B |
By formula: C8H5- + CH4O = (C8H5- • CH4O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 21.5 ± 2.0 | kcal/mol | IMRE | Chabinyc and Brauman, 1999 | gas phase; B |
ΔrH° | 21.4 ± 2.9 | kcal/mol | N/A | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 29.3 | cal/mol*K | N/A | Caldwell, Rozeboom, et al., 1984 | gas phase; switching reaction(CH3O-)CH3OH, Entropy change calculated or estimated; re-evaluated using Meot-Ner(Mautner), 1986 and Paul and Kebarle, 1990; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 11.0 ± 2.0 | kcal/mol | IMRE | Chabinyc and Brauman, 1999 | gas phase; B |
ΔrG° | 12.7 ± 2.0 | kcal/mol | IMRE | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M |
By formula: CN- + CH4O = (CN- • CH4O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15.70 ± 0.80 | kcal/mol | TDAs | Larson, Szulejko, et al., 1988 | gas phase; B,M |
ΔrH° | 16.6 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988 | gas phase; B |
ΔrH° | 16.5 ± 3.5 | kcal/mol | IMRE | Larson and McMahon, 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 23. | cal/mol*K | PHPMS | Larson, Szulejko, et al., 1988 | gas phase; M |
ΔrS° | 24.3 | cal/mol*K | N/A | Larson and McMahon, 1987 | gas phase; switching reaction,Thermochemical ladder(CN-)H2O, Entropy change calculated or estimated; Payzant, Yamdagni, et al., 1971; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 8.80 ± 0.20 | kcal/mol | TDAs | Larson, Szulejko, et al., 1988 | gas phase; B |
ΔrG° | 10.4 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988 | gas phase; B |
ΔrG° | 9.2 ± 2.3 | kcal/mol | IMRE | Larson and McMahon, 1987 | gas phase; B,M |
By formula: Li+ + CH4O = (Li+ • CH4O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 36.8 ± 1.9 | kcal/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
ΔrH° | 38.1 | kcal/mol | ICR | Woodin and Beauchamp, 1978 | gas phase; switching reaction(Li+)H20, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M |
ΔrH° | 38. | kcal/mol | ICR | Staley and Beauchamp, 1975 | gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 26. | cal/mol*K | N/A | Woodin and Beauchamp, 1978 | gas phase; switching reaction(Li+)H20, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 30.3 | kcal/mol | ICR | Woodin and Beauchamp, 1978 | gas phase; switching reaction(Li+)H20, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M |
By formula: I- + CH4O = (I- • CH4O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.90 ± 0.20 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrH° | 11.3 ± 1.0 | kcal/mol | TDAs | Caldwell and Kebarle, 1984 | gas phase; B,M |
ΔrH° | 11.2 | kcal/mol | PHPMS | Hiraoka and Yamabe, 1991 | gas phase; M |
ΔrH° | 11. | kcal/mol | PHPMS | Caldwell, Masucci, et al., 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 17.1 | cal/mol*K | PHPMS | Hiraoka and Yamabe, 1991 | gas phase; M |
ΔrS° | 17.8 | cal/mol*K | PHPMS | Caldwell and Kebarle, 1984 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 5.76 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrG° | 6.0 ± 1.0 | kcal/mol | TDAs | Caldwell and Kebarle, 1984 | gas phase; B |
ΔrG° | 5.7 ± 2.0 | kcal/mol | IMRE | Tanabe, Morgon, et al., 1996 | gas phase; Anchored to H2O..I- of Caldwell and Kebarle, 1984; B |
By formula: C2H5O+ + CH4O = (C2H5O+ • CH4O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 30.3 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 26.9 | cal/mol*K | N/A | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 22.3 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
By formula: C2H7O+ + CH4O = (C2H7O+ • CH4O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 29.6 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 26.6 | cal/mol*K | N/A | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 21.7 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
By formula: C3H7O- + CH4O = (C3H7O- • CH4O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 26.9 ± 2.9 | kcal/mol | N/A | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 29.3 | cal/mol*K | N/A | Caldwell, Rozeboom, et al., 1984 | gas phase; switching reaction(CH3O-)CH3OH, Entropy change calculated or estimated; re-evaluated using Meot-Ner(Mautner), 1986 and Paul and Kebarle, 1990; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 18.2 ± 2.0 | kcal/mol | IMRE | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M |
By formula: F- + CH4O = (F- • CH4O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 29.6 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1983 | gas phase; B,M |
ΔrH° | 29.4 ± 2.2 | kcal/mol | CIDT | DeTuri and Ervin, 1999 | gas phase; B |
ΔrH° | 23.3 ± 2.0 | kcal/mol | TDAs | Hiraoka and Yamabe, 1991 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 25.0 | cal/mol*K | PHPMS | Hiraoka and Yamabe, 1991 | gas phase; M |
ΔrS° | 22.6 | cal/mol*K | N/A | Larson and McMahon, 1983 | gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 22.8 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1983 | gas phase; B,M |
ΔrG° | 15.8 ± 2.0 | kcal/mol | TDAs | Hiraoka and Yamabe, 1991 | gas phase; B |
By formula: (Cl- • 3CH4O) + CH4O = (Cl- • 4CH4O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 10.5 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B,M |
ΔrH° | 10.50 | kcal/mol | TDAs | Evans and Keesee, 1991 | gas phase; B |
ΔrH° | 11.20 ± 0.60 | kcal/mol | TDAs | Yamdagni, Payzant, et al., 1973 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 22.9 | cal/mol*K | PHPMS | Hiraoka and Mizuse, 1987 | gas phase; M |
ΔrS° | 26.4 | cal/mol*K | PHPMS | Yamdagni, Payzant, et al., 1973 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 3.6 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B |
ΔrG° | 3.70 | kcal/mol | TDAs | Evans and Keesee, 1991 | gas phase; B |
ΔrG° | 3.30 ± 0.20 | kcal/mol | TDAs | Yamdagni, Payzant, et al., 1973 | gas phase; B |
By formula: Br- + CH4O = (Br- • CH4O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.50 ± 0.10 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrH° | 13.9 ± 1.0 | kcal/mol | TDAs | Hiraoka and Yamabe, 1991 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 17.6 | cal/mol*K | PHPMS | Hiraoka and Yamabe, 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 8.00 ± 0.10 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrG° | 8.7 ± 2.0 | kcal/mol | TDAs | Hiraoka and Yamabe, 1991 | gas phase; B |
ΔrG° | 8.4 ± 2.0 | kcal/mol | IMRE | Tanabe, Morgon, et al., 1996 | gas phase; Anchored to H2O..Br- of Hiraoka, Mizure, et al., 19882; B |
By formula: C3H9Si+ + CH4O = (C3H9Si+ • CH4O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 39.2 | kcal/mol | PHPMS | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 29.7 | cal/mol*K | N/A | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
25.3 | 468. | PHPMS | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M |
By formula: Na+ + CH4O = (Na+ • CH4O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 23.2 ± 1.3 | kcal/mol | CIDC | Amicangelo and Armentrout, 2001 | Anchor NH3=24.41; RCD |
ΔrH° | 21.9 ± 1.4 | kcal/mol | CIDT | Armentrout and Rodgers, 2000 | RCD |
ΔrH° | 24.0 ± 0.2 | kcal/mol | HPMS | Hoyau, Norrman, et al., 1999 | RCD |
ΔrH° | 26.6 ± 0.2 | kcal/mol | HPMS | Guo, Conklin, et al., 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 20500. | cal/mol*K | HPMS | Hoyau, Norrman, et al., 1999 | RCD |
ΔrS° | 24.3 | cal/mol*K | HPMS | Guo, Conklin, et al., 1989 | gas phase; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
17.3 | 298. | IMRE | McMahon and Ohanessian, 2000 | Anchor alanine=39.89; RCD |
By formula: (Cl- • 4CH4O) + CH4O = (Cl- • 5CH4O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.2 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B,M |
ΔrH° | 10.50 ± 0.50 | kcal/mol | N/A | Yamdagni, Payzant, et al., 1973 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 21.7 | cal/mol*K | PHPMS | Hiraoka and Mizuse, 1987 | gas phase; M |
ΔrS° | 25.5 | cal/mol*K | PHPMS | Yamdagni, Payzant, et al., 1973 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 2.7 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B |
ΔrG° | 2.90 ± 0.10 | kcal/mol | TDAs | Yamdagni, Payzant, et al., 1973 | gas phase; B |
By formula: H2O + C5H12O2 = 2CH4O + C3H6O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 4.86 ± 0.01 | kcal/mol | Cm | Wiberg, Morgan, et al., 1994 | liquid phase; ALS |
ΔrH° | 4.88 ± 0.01 | kcal/mol | Cm | Wiberg and Squires, 1979 | liquid phase; Heat of hydrolysis; ALS |
ΔrH° | 4.8836 ± 0.0067 | kcal/mol | Cm | Wiberg and Squires, 1979, 2 | liquid phase; solvent: Water; Hydrolysis; ALS |
ΔrH° | -3.95 ± 0.05 | kcal/mol | Cm | Stern and Dorer, 1962 | liquid phase; Reanalyzed by Cox and Pilcher, 1970, Original value = 3.69 ± 0.05 kcal/mol; Heat of hydrolysis; ALS |
By formula: (CH5O+ • CH4O) + CH4O = (CH5O+ • 2CH4O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 21.2 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
ΔrH° | 21.0 | kcal/mol | PHPMS | Meot-Ner(Mautner), 1986 | gas phase; M |
ΔrH° | 21.3 | kcal/mol | PHPMS | Grimsrud and Kebarle, 1973 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 27.0 | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
ΔrS° | 25.8 | cal/mol*K | PHPMS | Meot-Ner(Mautner), 1986 | gas phase; M |
ΔrS° | 28.2 | cal/mol*K | PHPMS | Grimsrud and Kebarle, 1973 | gas phase; M |
By formula: C5H11O- + CH4O = (C5H11O- • CH4O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 25.7 ± 2.9 | kcal/mol | N/A | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 17.0 ± 2.0 | kcal/mol | IMRE | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B |
By formula: C6H11S2- + CH4O = (C6H11S2- • CH4O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 21.9 ± 2.5 | kcal/mol | N/A | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 13.2 ± 1.6 | kcal/mol | IMRE | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B |
By formula: (Cu+ • CH4O) + CH4O = (Cu+ • 2CH4O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13.8 | kcal/mol | HPMS | El-Shall, Schriver, et al., 1989 | gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 25. | cal/mol*K | N/A | El-Shall, Schriver, et al., 1989 | gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 6.3 | kcal/mol | HPMS | El-Shall, Schriver, et al., 1989 | gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M |
(CH5O+ • 2 • 3) + = (CH5O+ • 3 • 3)
By formula: (CH5O+ • 2H2O • 3CH4O) + H2O = (CH5O+ • 3H2O • 3CH4O)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.1 | kcal/mol | PHPMS | Meot-Ner(Mautner), 1986 | gas phase; n, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 22. | cal/mol*K | N/A | Meot-Ner(Mautner), 1986 | gas phase; n, Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
3.1 | 272. | PHPMS | Meot-Ner(Mautner), 1986 | gas phase; n, Entropy change calculated or estimated; M |
(CH5O+ • 3 • 2) + = (CH5O+ • 4 • 2)
By formula: (CH5O+ • 3H2O • 2CH4O) + H2O = (CH5O+ • 4H2O • 2CH4O)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.3 | kcal/mol | PHPMS | Meot-Ner(Mautner), 1986 | gas phase; n, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 22. | cal/mol*K | N/A | Meot-Ner(Mautner), 1986 | gas phase; n, Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
3.2 | 272. | PHPMS | Meot-Ner(Mautner), 1986 | gas phase; n, Entropy change calculated or estimated; M |
(CH5O+ • 4 • ) + = (CH5O+ • 5 • )
By formula: (CH5O+ • 4H2O • CH4O) + H2O = (CH5O+ • 5H2O • CH4O)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.4 | kcal/mol | PHPMS | Meot-Ner(Mautner), 1986 | gas phase; n, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 22. | cal/mol*K | N/A | Meot-Ner(Mautner), 1986 | gas phase; n, Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
3.5 | 269. | PHPMS | Meot-Ner(Mautner), 1986 | gas phase; n, Entropy change calculated or estimated; M |
By formula: (CH5O+ • H2O) + CH4O = (CH5O+ • CH4O • H2O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 24.5 | kcal/mol | PHPMS | Meot-Ner(Mautner), 1986 | gas phase; n, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 29. | cal/mol*K | N/A | Meot-Ner(Mautner), 1986 | gas phase; n, Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
11.6 | 452. | PHPMS | Meot-Ner(Mautner), 1986 | gas phase; n, Entropy change calculated or estimated; M |
By formula: C6H5NO2- + CH4O = (C6H5NO2- • CH4O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15.10 ± 0.20 | kcal/mol | TDAs | Sieck, 1985 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 26.1 | cal/mol*K | PHPMS | Sieck, 1985 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 7.30 ± 0.40 | kcal/mol | TDAs | Sieck, 1985 | gas phase; B |
ΔrG° | 6.3 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
6.3 | 343. | PHPMS | Chowdhury, 1987 | gas phase; M |
By formula: Cu+ + CH4O = (Cu+ • CH4O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13.4 | kcal/mol | HPMS | El-Shall, Schriver, et al., 1989 | gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 25. | cal/mol*K | N/A | El-Shall, Schriver, et al., 1989 | gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 5.9 | kcal/mol | HPMS | El-Shall, Schriver, et al., 1989 | gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M |
By formula: (F- • CH4O) + CH4O = (F- • 2CH4O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20.30 ± 0.30 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrH° | 19.3 ± 1.0 | kcal/mol | TDAs | Hiraoka and Yamabe, 1991 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 23.2 | cal/mol*K | PHPMS | Hiraoka and Yamabe, 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 12.97 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrG° | 12.4 ± 2.0 | kcal/mol | TDAs | Hiraoka and Yamabe, 1991 | gas phase; B |
By formula: (F- • 2CH4O) + CH4O = (F- • 3CH4O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15.10 ± 0.60 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrH° | 14.5 ± 1.0 | kcal/mol | TDAs | Hiraoka and Yamabe, 1991 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 21.2 | cal/mol*K | PHPMS | Hiraoka and Yamabe, 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 8.06 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrG° | 8.2 ± 2.0 | kcal/mol | TDAs | Hiraoka and Yamabe, 1991 | gas phase; B |
By formula: (Br- • 2CH4O) + CH4O = (Br- • 3CH4O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.50 ± 0.50 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrH° | 10.6 ± 1.0 | kcal/mol | TDAs | Hiraoka and Yamabe, 1991 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 21.6 | cal/mol*K | PHPMS | Hiraoka and Yamabe, 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 4.25 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrG° | 4.2 ± 2.0 | kcal/mol | TDAs | Hiraoka and Yamabe, 1991 | gas phase; B |
By formula: (Br- • CH4O) + CH4O = (Br- • 2CH4O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12.00 ± 0.20 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrH° | 12.5 ± 1.0 | kcal/mol | TDAs | Hiraoka and Yamabe, 1991 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 20.7 | cal/mol*K | PHPMS | Hiraoka and Yamabe, 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 5.62 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrG° | 6.3 ± 2.0 | kcal/mol | TDAs | Hiraoka and Yamabe, 1991 | gas phase; B |
By formula: (I- • 2CH4O) + CH4O = (I- • 3CH4O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.70 ± 0.60 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrH° | 9.8 ± 1.0 | kcal/mol | TDAs | Hiraoka and Yamabe, 1991 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 22.4 | cal/mol*K | PHPMS | Hiraoka and Yamabe, 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 3.41 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrG° | 3.1 ± 2.0 | kcal/mol | TDAs | Hiraoka and Yamabe, 1991 | gas phase; B |
By formula: (I- • CH4O) + CH4O = (I- • 2CH4O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.50 ± 0.20 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrH° | 11.1 ± 1.0 | kcal/mol | TDAs | Hiraoka and Yamabe, 1991 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 22.6 | cal/mol*K | PHPMS | Hiraoka and Yamabe, 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 4.25 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrG° | 4.4 ± 2.0 | kcal/mol | TDAs | Hiraoka and Yamabe, 1991 | gas phase; B |
By formula: (Cl- • 10CH4O) + CH4O = (Cl- • 11CH4O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.3 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; Estimated entropy; single temperature measurement; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 20. | cal/mol*K | N/A | Hiraoka and Mizuse, 1987 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1.3 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; Estimated entropy; single temperature measurement; B |
By formula: (Na+ • CH4O) + CH4O = (Na+ • 2CH4O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20.5 ± 1.4 | kcal/mol | CIDC | Amicangelo and Armentrout, 2001 | Anchor NH3=24.41; RCD |
ΔrH° | 21.4 ± 1.6 | kcal/mol | CIDC | Amicangelo and Armentrout, 2001 | Anchor NH3=24.41; RCD |
ΔrH° | 20.5 ± 1.6 | kcal/mol | CIDC | Amicangelo and Armentrout, 2001 | Anchor NH3=24.41; RCD |
ΔrH° | 20.2 ± 0.2 | kcal/mol | HPMS | Guo, Conklin, et al., 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 21.7 | cal/mol*K | HPMS | Guo, Conklin, et al., 1989 | gas phase; M |
By formula: H4ClO2- + CH4O + 2H2O = CH8ClO3-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 10.40 ± 0.20 | kcal/mol | TDAs | Evans and Keesee, 1991 | gas phase; B |
ΔrH° | 11.40 ± 0.30 | kcal/mol | TDAs | Evans and Keesee, 1991 | gas phase; For solvation by MeOH of core ion; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 5.80 | kcal/mol | TDAs | Evans and Keesee, 1991 | gas phase; B |
ΔrG° | 6.00 | kcal/mol | TDAs | Evans and Keesee, 1991 | gas phase; For solvation by MeOH of core ion; B |
By formula: (CH5O+ • 2CH4O) + C2H6O = (CH5O+ • C2H6O • 2CH4O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 17.2 | kcal/mol | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n, note proton affinities, core ion may be (CH3)2OH+; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 28.6 | cal/mol*K | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n, note proton affinities, core ion may be (CH3)2OH+; M |
By formula: (CH5O+ • 3CH4O) + C2H6O = (CH5O+ • C2H6O • 3CH4O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13.7 | kcal/mol | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n, note proton affinities, core ion may be (CH3)2OH+; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 30.8 | cal/mol*K | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n, note proton affinities, core ion may be (CH3)2OH+; M |
By formula: (CH5O+ • 2CH4O) + CH4O = (CH5O+ • 3CH4O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.0 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
ΔrH° | 16.1 | kcal/mol | PHPMS | Grimsrud and Kebarle, 1973 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 24.0 | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
ΔrS° | 28.9 | cal/mol*K | PHPMS | Grimsrud and Kebarle, 1973 | gas phase; M |
By formula: (CH5O+ • 3CH4O) + CH4O = (CH5O+ • 4CH4O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.3 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
ΔrH° | 13.5 | kcal/mol | PHPMS | Grimsrud and Kebarle, 1973 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 22.3 | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
ΔrS° | 28.7 | cal/mol*K | PHPMS | Grimsrud and Kebarle, 1973 | gas phase; M |
By formula: (CH5O+ • 4CH4O) + CH4O = (CH5O+ • 5CH4O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 10.2 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
ΔrH° | 12.5 | kcal/mol | PHPMS | Grimsrud and Kebarle, 1973 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 23.5 | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
ΔrS° | 31.1 | cal/mol*K | PHPMS | Grimsrud and Kebarle, 1973 | gas phase; M |
By formula: (CH5O+ • CH4O) + C2H6O = (CH5O+ • C2H6O • CH4O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 21.9 | kcal/mol | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n, note proton affinities, core ion may be (CH3)2OH+; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 25.2 | cal/mol*K | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n, note proton affinities, core ion may be (CH3)2OH+; M |
By formula: (CH5O+ • 5CH4O) + CH4O = (CH5O+ • 6CH4O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.3 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
ΔrH° | 11.9 | kcal/mol | PHPMS | Grimsrud and Kebarle, 1973 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 23.5 | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
ΔrS° | 32.9 | cal/mol*K | PHPMS | Grimsrud and Kebarle, 1973 | gas phase; M |
By formula: (CH5O+ • 6CH4O) + CH4O = (CH5O+ • 7CH4O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.0 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
ΔrH° | 12.0 | kcal/mol | PHPMS | Grimsrud and Kebarle, 1973 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 25.7 | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
ΔrS° | 35.7 | cal/mol*K | PHPMS | Grimsrud and Kebarle, 1973 | gas phase; M |
By formula: (F- • 11CH4O) + CH4O = (F- • 12CH4O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.5 ± 1.0 | kcal/mol | TDAs | Hiraoka and Yamabe, 1991 | gas phase; Entropy estimated.; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 25. | cal/mol*K | N/A | Hiraoka and Yamabe, 1991 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1.1 ± 2.0 | kcal/mol | TDAs | Hiraoka and Yamabe, 1991 | gas phase; Entropy estimated.; B |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
View reactions leading to CH4O+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 10.84 ± 0.01 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 180.3 | kcal/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 173.2 | kcal/mol | N/A | Hunter and Lias, 1998 | HL |
Ionization energy determinations
Appearance energy determinations
De-protonation reactions
CH3O- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 382. ± 2. | kcal/mol | AVG | N/A | Average of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 376.02 ± 0.62 | kcal/mol | H-TS | Nee, Osterwalder, et al., 2006 | gas phase; B |
ΔrG° | 376.04 ± 0.55 | kcal/mol | H-TS | Osborn, Leahy, et al., 1998 | gas phase; B |
ΔrG° | 374.0 ± 2.0 | kcal/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; The acidity is 1.2 kcal/mol stronger than that from the D-EA cycle, due to the multi-compound fit for the acidity scale.; value altered from reference due to change in acidity scale; B |
ΔrG° | 374.6 ± 2.1 | kcal/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
ΔrG° | 375.10 ± 0.60 | kcal/mol | TDEq | Meot-ner and Sieck, 1986 | gas phase; Experimental entropy: 21.5 eu, 0.6 less than H2O; B |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Gas Chromatography, References, Notes
Data compiled by: Coblentz Society, Inc.
- GAS (70 mmHg, N2 ADDED, TOTAL PRESSURE 600 mmHg); DOW KBr FOREPRISM-GRATING; DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 2 cm-1 resolution
- GAS (VAPOR); PERKIN-ELMER 21 (GRATING); DIGITIZED BY NIST FROM HARD COPY; 4 cm-1 resolution
- SOLUTION (2% IN CCl4 FOR 3800-1330, 2% IN CS2 FOR 1330-400 CM-1) VS SOLVENT; DOW KBr FOREPRISM-GRATING; DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 4 cm-1 resolution
Data compiled by: Pamela M. Chu, Franklin R. Guenther, George C. Rhoderick, and Walter J. Lafferty
- gas; IFS66V (Bruker); 3-Term B-H Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); Boxcar Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); Happ Genzel Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); NB Strong Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); Triangular Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution
Gas Chromatography
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Kovats' RI, non-polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | SE-30 | 140. | 340. | Haken and Korhonen, 1985 | Column length: 25. m; Column diameter: 0.33 mm |
Packed | SE-30 | 100. | 384. | Winskowski, 1983 | Gaschrom Q; Column length: 2. m |
Packed | SE-30 | 150. | 356. | Haken, Nguyen, et al., 1979 | Celatom AW silanized; Column length: 3.7 m |
Packed | Apiezon L | 120. | 336. | Bogoslovsky, Anvaer, et al., 1978 | Celite 545 |
Packed | SE-30 | 100. | 373. | Pías and Gascó, 1975 | Ar, Chromosorb W AW DMCS HP (80-100 mesh); Column length: 1. m |
Packed | Apiezon L | 100. | 355. | Brown, Chapman, et al., 1968 | N2, DCMS-treated Chromosorb W; Column length: 2.3 m |
Packed | SE-30 | 80. | 330. | Viani, Müggler-Chavan, et al., 1965 | He, Chromosorb P; Column length: 6. m |
Kovats' RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Petrocol DH-100 | 380. | Haagen-Smit Laboratory, 1997 | He; Column length: 100. m; Column diameter: 0.2 mm; Program: 5C(10min) => 5C/min => 50C(48min) => 1.5C/min => 195C(91min) |
Kovats' RI, polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | OV-351 | 100. | 917. | Haken and Korhonen, 1985 | N2; Column length: 25. m; Column diameter: 0.32 mm |
Capillary | OV-351 | 80. | 891. | Haken and Korhonen, 1985 | N2; Column length: 25. m; Column diameter: 0.32 mm |
Packed | PEG-2000 | 152. | 860. | Anderson, Jurel, et al., 1973 | He, Celite 545 (44-60 mesh); Column length: 3. m |
Packed | PEG-2000 | 179. | 881. | Anderson, Jurel, et al., 1973 | He, Celite 545 (44-60 mesh); Column length: 3. m |
Packed | Carbowax 20M | 100. | 892. | Zarazir, Chovin, et al., 1970 | Chromosorb W; Column length: 2. m |
Packed | Polyethylene Glycol 4000 | 100. | 904. | Bonastre and Grenier, 1968 | Chromosorb P; Column length: 6. m |
Packed | Polyethylene Glycol 4000 | 120. | 897. | Bonastre and Grenier, 1968 | Chromosorb P; Column length: 6. m |
Packed | Polyethylene Glycol 4000 | 140. | 886. | Bonastre and Grenier, 1968 | Chromosorb P; Column length: 6. m |
Packed | Polyethylene Glycol 4000 | 80. | 914. | Bonastre and Grenier, 1968 | Chromosorb P; Column length: 6. m |
Kovats' RI, polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | CBP-20 | 899. | Shimadzu, 2003 | 25. m/0.2 mm/0.25 μm, He, 50. C @ 5. min, 4. K/min; Tend: 200. C |
Capillary | DB-Wax | 888. | Shimoda and Shibamoto, 1990 | He, 40. C @ 6. min, 3. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 190. C |
Kovats' RI, polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Packed | Carbowax 20M | 869. | Kevei and Kozma, 1976 | Chromosorb; Program: not specified |
Van Den Dool and Kratz RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Petrocol DH | 372.7 | Censullo, Jones, et al., 2003 | 50. m/0.25 mm/0.5 μm, He, 35. C @ 10. min, 3. K/min, 200. C @ 10. min |
Capillary | Petrocol DH | 378.2 | Censullo, Jones, et al., 2003 | 50. m/0.25 mm/0.5 μm, He, 35. C @ 10. min, 3. K/min, 200. C @ 10. min |
Capillary | SE-30 | 400.0 | Golovnya, Kuz'menko, et al., 2000 | 25. m/0.32 mm/1. μm, He, 4. K/min; Tstart: 60. C |
Capillary | SE-30 | 400.0 | Golovnya, Kuz'menko, et al., 2000, 2 | 25. m/0.32 mm/1. μm, He, 4. K/min; Tstart: 60. C |
Capillary | DB-1 | 361. | Bartelt, 1997 | 30. m/0.32 mm/5. μm, He, 35. C @ 1. min, 10. K/min; Tend: 270. C |
Van Den Dool and Kratz RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Packed | SE-30 | 368. | Peng, Ding, et al., 1988 | Supelcoport; Chromosorb; Column length: 3.05 m; Program: 40C(5min) => 10C/min => 200C or 250C (60min) |
Van Den Dool and Kratz RI, polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Carbowax | 910.4 | Censullo, Jones, et al., 2003 | 60. m/0.25 mm/0.5 μm, He, 50. C @ 10. min, 5. K/min, 250. C @ 10. min |
Capillary | FFAP | 916. | Ott, Fay, et al., 1997 | 30. m/0.25 mm/0.25 μm, He, 20. C @ 1. min, 4. K/min, 200. C @ 1. min |
Packed | Carbowax 20M | 866. | van den Dool and Kratz, 1963 | Celite 545, 4.6 K/min; Tstart: 75. C; Tend: 228. C |
Normal alkane RI, non-polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | DB-1 | 60. | 382. | Shimadzu, 2003, 2 | 60. m/0.32 mm/1. μm, He |
Packed | Squalane | 100. | 338. | Vernon, 1971 | N2 |
Packed | DC-400 | 150. | 370. | Anderson, 1968 | Helium, Gas-Pak (60-80 mesh); Column length: 3.0 m |
Packed | Squalane | 125. | 348. | Cremer and Nonn, 1964 | H2, Chromosorb W (80-100 mesh); Column length: 3. m |
Normal alkane RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Polydimethyl siloxane: CP-Sil 5 CB | 395. | Bramston-Cook, 2013 | 60. m/0.25 mm/1.0 μm, Helium, 45. C @ 1.45 min, 3.6 K/min, 210. C @ 2.72 min |
Capillary | Petrocol DH | 379. | Supelco, 2012 | 100. m/0.25 mm/0.50 μm, Helium, 20. C @ 15. min, 15. K/min, 220. C @ 30. min |
Capillary | HP-5 | 367.5 | Leffingwell and Alford, 2005 | 60. m/0.32 mm/0.25 μm, He, 30. C @ 2. min, 2. K/min, 260. C @ 28. min |
Capillary | OV-101 | 381. | Zenkevich, 2005 | 25. m/0.20 mm/0.10 μm, N2/He, 6. K/min; Tstart: 50. C; Tend: 250. C |
Capillary | BP-1 | 370. | Health Safety Executive, 2000 | 50. m/0.22 mm/0.75 μm, He, 5. K/min; Tstart: 50. C; Tend: 200. C |
Capillary | DB-5MS | 353.5 | Shoenmakers, Oomen, et al., 2000 | 30. m/0.25 mm/0.25 μm, He, 40. C @ 1. min, 3. K/min; Tend: 250. C |
Normal alkane RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | HP-5 MS | 381. | Kotowska, Zalikowski, et al., 2012 | 30. m/0.25 mm/0.25 μm, Helium; Program: not specified |
Capillary | Methyl Silicone | 373. | Chen and Feng, 2007 | Program: not specified |
Capillary | Methyl Silicone | 373. | Kou, Zhang, et al., 2006 | Program: not specified |
Capillary | Methyl Silicone | 408. | Blunden, Aneja, et al., 2005 | 60. m/0.32 mm/1.0 μm, Helium; Program: -50 0C (2 min) 8 0C/min -> 200 0C (7.75 min) 25 0C -> 225 0C (8 min) |
Capillary | Methyl Silicone | 373. | Fu and Wang, 2004 | Program: not specified |
Capillary | Methyl Silicone | 362. | N/A | Program: not specified |
Capillary | Polydimethyl siloxanes | 381. | Zenkevich, 2001 | Program: not specified |
Capillary | Polydimethyl siloxanes | 381. | Zenkevich, 2001, 2 | Program: not specified |
Capillary | Methyl Silicone | 381. | Zenkevich, 1999 | Program: not specified |
Capillary | SPB-1 | 353. | Flanagan, Streete, et al., 1997 | 60. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C |
Capillary | Polydimethyl siloxanes | 381. | Zenkevich and Chupalov, 1996 | Program: not specified |
Capillary | Methyl Silicone | 381. | Zenkevich, Korolenko, et al., 1995 | Program: not specified |
Capillary | DB-1 | 348. | Schuberth, 1994 | 30. m/0.25 mm/1. μm, He; Program: 40C (4min) => 10C/min => 200C => 50C/min => 250C |
Capillary | SPB-1 | 353. | Strete, Ruprah, et al., 1992 | 60. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C |
Capillary | SPB-1 | 391. | Strete, Ruprah, et al., 1992 | 60. m/0.53 mm/5.0 μm, Helium; Program: not specified |
Capillary | CP Sil 8 CB | 404. | Weller and Wolf, 1989 | 40. m/0.25 mm/0.25 μm, He; Program: 30 0C (1 min) 15 0C/min -> 45 0C 3 0C/min -> 120 0C |
Capillary | OV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc. | 384. | Waggott and Davies, 1984 | Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified |
Normal alkane RI, polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | Carbowax 20M | 100. | 892. | Sun, Siepmann, et al., 2006 | 30. m/0.25 mm/0.25 μm, Helium |
Capillary | Carbowax 20M | 60. | 899. | Sun, Siepmann, et al., 2006 | 30. m/0.25 mm/0.25 μm, Helium |
Capillary | Carbowax 20M | 80. | 895. | Sun, Siepmann, et al., 2006 | 30. m/0.25 mm/0.25 μm, Helium |
Capillary | DB-Wax | 60. | 921. | Shimadzu, 2003, 2 | 50. m/0.32 mm/1. μm, He |
Normal alkane RI, polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | DB-Wax | 911. | Shimadzu, 2012 | 30. m/0.32 mm/0.50 μm, Helium, 4. K/min; Tstart: 40. C; Tend: 260. C |
Capillary | DB-Wax | 907. | Chida, Sone, et al., 2004 | 60. m/0.25 mm/0.5 μm, 35. C @ 5. min, 4. K/min, 240. C @ 10. min |
Capillary | DB-Wax | 911. | Shimadzu Corporation, 2003 | 30. m/0.32 mm/0.5 μm, He, 4. K/min; Tstart: 40. C; Tend: 260. C |
Capillary | DB-Wax | 903. | Tanaka, Yamauchi, et al., 2003 | 30. m/0.25 mm/0.25 μm, 30. C @ 1. min, 4. K/min; Tend: 250. C |
Capillary | DB-Wax | 905. | Tanaka, Yamauchi, et al., 2003 | 30. m/0.25 mm/0.25 μm, 30. C @ 1. min, 4. K/min; Tend: 250. C |
Capillary | TC-Wax | 898. | Suhardi, Suzuki, et al., 2002 | 60. m/0.25 mm/0.25 μm, He, 40. C @ 10. min, 3. K/min, 230. C @ 10. min |
Capillary | DB-Wax | 905. | Duque, Bonilla, et al., 2001 | 30. m/0.25 mm/0.25 μm, Helium, 4. K/min, 220. C @ 30. min; Tstart: 25. C |
Normal alkane RI, polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Carbowax 20M | 920. | Vinogradov, 2004 | Program: not specified |
Capillary | Polyethylene Glycol | 897. | Zenkevich, Korolenko, et al., 1995 | Program: not specified |
Capillary | DB-Wax | 909. | Peng, Yang, et al., 1991 | Program: not specified |
Capillary | Carbowax 400, Carbowax 20M, Carbowax 1540, Carbowax 4000, Superox 06, PEG 20M, etc. | 907. | Waggott and Davies, 1984 | Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified |
Capillary | Carbowax 400, Carbowax 20M, Carbowax 1540, Carbowax 4000, Superox 06, PEG 20M, etc. | 920. | Waggott and Davies, 1984 | Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified |
Capillary | Carbowax 20M | 883. | Ramsey and Flanagan, 1982 | Program: not specified |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Gas Chromatography, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Rossini, 1932
Rossini, F.D.,
The heats of combustion of methyl and ethyl alcohols,
J. Res. NBS, 1932, 8, 119-139. [all data]
Thermodynamics Research Center, 1997
Thermodynamics Research Center,
Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]
Ivash E.V., 1955
Ivash E.V.,
Thermodynamic properties of ideal gaseous methanol,
J. Chem. Phys., 1955, 23, 1814-1818. [all data]
Zhuravlev E.Z., 1959
Zhuravlev E.Z.,
Isotopic effect on thermodynamic functions of some organic deuterocompounds in the ideal gas state,
Tr. Khim. i Khim. Tekhnol., 1959, 2, 475-485. [all data]
Chen S.S., 1977
Chen S.S.,
Thermodynamic properties of normal and deuterated methanols,
J. Phys. Chem. Ref. Data, 1977, 6, 105-112. [all data]
Chao J., 1986
Chao J.,
Ideal gas thermodynamic properties of simple alkanols,
Int. J. Thermophys., 1986, 7, 431-442. [all data]
Gurvich, Veyts, et al., 1989
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B.,
Thermodynamic Properties of Individual Substances, 4th ed.; Vols. 1 and 2, Hemisphere, New York, 1989. [all data]
Chao J., 1986, 2
Chao J.,
Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties,
J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]
Stromsoe E., 1970
Stromsoe E.,
Heat capacity of alcohol vapors at atmospheric pressure,
J. Chem. Eng. Data, 1970, 15, 286-290. [all data]
Halford J.O., 1957
Halford J.O.,
Standard heat capacities of gaseous methanol, ethanol, methane and ethane at 279 K by thermal conductivity,
J. Phys. Chem., 1957, 61, 1536-1539. [all data]
De Vries T., 1941
De Vries T.,
The heat capacity of organic vapors. I. Methyl alcohol,
J. Am. Chem. Soc., 1941, 63, 1343-1346. [all data]
Weltner W., 1951
Weltner W., Jr.,
Methyl alcohol: the entropy, heat capacity and polymerization equilibria in the vapor, and potential barrier to internal rotation,
J. Am. Chem. Soc., 1951, 73, 2606-2610. [all data]
Baroody and Carpenter, 1972
Baroody, E.E.; Carpenter, G.A.,
Heats of formation of propellant compounds (U), Rpt. Naval Ordnance Systems Command Task No. 331-003/067-1/UR2402-001 for Naval Ordance Station, Indian Head, MD, 1972, 1-9. [all data]
Chao and Rossini, 1965
Chao, J.; Rossini, F.D.,
Heats of combustion, formation, and isomerization of nineteen alkanols,
J. Chem. Eng. Data, 1965, 10, 374-379. [all data]
Rossini, 1934
Rossini, F.D.,
Heats of combustion and of formation of the normal aliphatic alcohols in the gaseous and liquid states, and the energies of their atomic linkages,
J. Res. NBS, 1934, 13, 189-197. [all data]
Green, 1960
Green, J.H.S.,
Revision of the values of the heats of formation of normal alcohols,
Chem. Ind. (London), 1960, 1215-1216. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Parks, 1925
Parks, G.S.,
Thermal data on organic compounds I. The heat capacities and free energies of methyl, ethyl and normal-butyl alcohols,
J. Am. Chem. Soc., 1925, 47, 338-345. [all data]
Richards and Davis, 1920
Richards, T.W.; Davis, H.S.,
The heats of combustion of benzene, toluene, aliphatic alcohols, cyclohexanol, and other carbon compounds,
J. Am. Chem. Soc., 1920, 42, 1599-1617. [all data]
Rossini, 1931
Rossini, F.D.,
The heat of combustion of methyl alcohol,
Proc. Nat'l Acad. Sci., 1931, 17, 343-347. [all data]
Carlson and Westrum, 1971
Carlson, H.G.; Westrum, E.F., Jr.,
Methanol: heat capacity, enthalpies of transition and melting, and thermodynamic properties from 5-300K,
J. Chem. Phys., 1971, 54, 1464-1471. [all data]
Kelley, 1929
Kelley, K.K.,
The heat capacity of methyl alcohol from 16K to 298K and the corresponding entropy and free energy,
J. Am. Chem. Soc., 1929, 51, 180-187. [all data]
Parks, Kelley, et al., 1929
Parks, G.S.; Kelley, K.K.; Huffman, H.M.,
Thermal data on organic compounds. V. A revision of the entropies and free energies of nineteen organic compounds,
J. Am. Chem. Soc., 1929, 51, 1969-1973. [all data]
Ahlberg, Blanchard, et al., 1937
Ahlberg, J.E.; Blanchard, E.R.; Lundberg, W.O.,
The heat capacities of benzene, methyl alcohol and glycerol at very low temperatures,
J. Chem. Phys., 1937, 5, 537-551. [all data]
Filatov and Afanas'ev, 1992
Filatov, V.A.; Afanas'ev, V.N.,
Differential heat-flux calorimeter, Izv. Vysshikh. Uchebn. Zaved.,
Khim. Khim. Tekhnol., 1992, 35(8), 97-100. [all data]
Khasanshin and Zykova, 1989
Khasanshin, T.S.; Zykova, T.B.,
Specific heat of saturated monatomic alcohols,
Inzh. -Fiz. Zhur., 1989, 56(6), 991-994. [all data]
Andreoli-Ball, Patterson, et al., 1988
Andreoli-Ball, L.; Patterson, D.; Costas, M.; Caceres-Alonso, M.,
Heat capacity and corresponding states in alkan-1-ol-n-alkane systems, J. Chem. Soc.,
Faraday Trans. 1, 1988, 84(11), 3991-4012. [all data]
Okano, Ogawa, et al., 1988
Okano, T.; Ogawa, H.; Murakami, S.,
Molar excess volumes, isentropic compressions, and isobaric heat capacities of methanol-isomeric butanol systems at 298.15 K,
Can. J. Chem., 1988, 66, 713-717. [all data]
Lankford and Criss, 1987
Lankford, J.I.; Criss, C.M.,
Partial molar heat caqpacities of selected electrolytes and benzene in methanol and dimethyldulfoxide at 25, 40 and 80°C,
J. Solution Chem., 1987, 16(11), 885-906. [all data]
Korolev, Kukharenko, et al., 1986
Korolev, V.P.; Kukharenko, V.A.; Krestov, G.A.,
Specific heat of binary mixtures of aliphatic alcohols with N,N-dimethylformamide and dimethylsulphoxide,
Zhur. Fiz. Khim., 1986, 60, 1854-1857. [all data]
Ogawa and Murakami, 1986
Ogawa, H.; Murakami, S.,
Excess isobaric heat capacities for water + alkanol mixtures at 298.15 K,
Thermochim. Acta, 1986, 109, 145-154. [all data]
Tanaka, Toyama, et al., 1986
Tanaka, R.; Toyama, S.; Murakami, S.,
Heat capacities of {xCnH2n+1OH+(1-x)C7H16} for n = 1 to 6 at 298.15 K,
J. Chem. Thermodynam., 1986, 18, 63-73. [all data]
Costas and Patterson, 1985
Costas, M.; Patterson, D.,
Self-association of alcohols in inert solvents, J. Chem. Soc.,
Faraday Trans. 1, 1985, 81, 635-654. [all data]
Zegers and Somsen, 1984
Zegers, H.C.; Somsen, G.,
Partial molar volumes and heat capacities in (dimethylformamide + an n-alkanol),
J. Chem. Thermodynam., 1984, 16, 225-235. [all data]
Benson and D'Arcy, 1982
Benson, G.C.; D'Arcy, P.J.,
Excess isobaric heat capacities of water - n-alcohol mixtures,
J. Chem. Eng. Data, 1982, 27, 439-442. [all data]
Villamanan, Casanova, et al., 1982
Villamanan, M.A.; Casanova, C.; Roux-Desgranges, G.; Grolier, J.-P.E.,
Thermochemical behavior of mixtures of n-alcohol + aliphatic ether: heat capacities and volumes at 298.15 K,
Thermochim. Acta, 1982, 52, 279-283. [all data]
Atalla, El-Sharkawy, et al., 1981
Atalla, S.R.; El-Sharkawy, A.A.; Gasser, F.A.,
Measurement of thermal properties of liquids with an AC heated-wire technique,
Inter. J. Thermophys., 1981, 2(2), 155-162. [all data]
Deshpande and Bhatagadde, 1971
Deshpande, D.D.; Bhatagadde, L.G.,
Heat capacities at constant volume, free volumes, and rotational freedom in some liquids,
Aust. J. Chem., 1971, 24, 1817-1822. [all data]
Paz Andrade, Paz, et al., 1970
Paz Andrade, M.I.; Paz, J.M.; Recacho, E.,
Contribucion a la microcalorimetria de los calores especificos de solidos y liquidos,
An. Quim., 1970, 66, 961-967. [all data]
Katayama, 1962
Katayama, T.,
Heats of mixing, liquid heat capacities and enthalpy, concentration charts for methanol-water and isopropanol-water systems,
Kagaku Kogaku, 1962, 26, 361-372. [all data]
Swietoslawski and Zielenkiewicz, 1960
Swietoslawski, W.; Zielenkiewicz, A.,
Mean specific heat in homologous series of binary and ternary positive azeotropes,
Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1960, 8, 651-653. [all data]
Hough, Mason, et al., 1950
Hough, E.W.; Mason, D.M.; Sage, B.H.,
Heat capacities of several organic liquids,
J. Am. Chem. Soc., 1950, 72, 5775-5777. [all data]
Staveley and Gupta, 1949
Staveley, L.A.K.; Gupta, A.K.,
A semi-micro low-temperature calorimeter, and a comparison of some thermodynamic properties of methyl alcohol and methyl deuteroxide,
Trans. Faraday Soc., 1949, 45, 50-61. [all data]
Phillip, 1939
Phillip, N.M.,
Adiabatic and isothermal compressibilities of liquids,
Proc. Indian Acad. Sci., 1939, A9, 109-120. [all data]
Fiock, Ginnings, et al., 1931
Fiock, E.F.; Ginnings, D.C.; Holton, W.B.,
Calorimetric determinations of thermal properties of methyl alcohol, ethyl alcohol, and benzene,
J. Res., 1931, NBS 6, 881-900. [all data]
Mitsukuri and Hara, 1929
Mitsukuri, S.; Hara, K.,
Specific heats of acetone, methyl-, ethyl-, and n-propyl-alcohols at low temperatures,
Bull. Chem. Soc. Japan, 1929, 4, 77-81. [all data]
von Reis, 1881
von Reis, M.A.,
Die specifische Wärme flüssiger organischer Verbindungen und ihre Beziehung zu deren Moleculargewicht,
Ann. Physik [3], 1881, 13, 447-464. [all data]
Sugisaki, Suga, et al., 1968
Sugisaki, M.; Suga, H.; Seki, S.,
Calorimetric study of the glassy state. III. Novel type calorimeter for study of glassy state and heat capacity of glassy methanol,
Bull. Chem. Soc. Japan, 1968, 41, 2586-2591. [all data]
Maass and Walbauer, 1925
Maass, O.; Walbauer, L.J.,
The specific heats and latent heats of fusion of ice and of several organic compounds,
J. Am. Chem. Soc., 1925, 47, 1-9. [all data]
Gude and Teja, 1995
Gude, M.; Teja, A.S.,
Vapor-Liquid Critical Properties of Elements and Compounds. 4. Aliphatic Alkanols,
J. Chem. Eng. Data, 1995, 40, 1025-1036. [all data]
Craven and de Reuck, 1986
Craven, R.J.B.; de Reuck, K.M.,
Ideal-Gas and Saturation Properties of Methanol,
Int. J. Thermophys., 1986, 7, 541. [all data]
Francesconi, Lentz, et al., 1981
Francesconi, A.Z.; Lentz, H.; Franck, E.U.,
Phase Equilibriums and PVT Data for the Methane-Methanol System to 300 MPa and 240 degree C,
J. Phys. Chem., 1981, 85, 3303. [all data]
Zubarev and Bagdonas, 1969
Zubarev, V.N.; Bagdonas, A.,
Saturation Curve Properties and Specific Volumes of Methanol,
Teploenergetika (Moscow), 1969, 16, 88-91. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Yerlett and Wormald, 1986
Yerlett, T.K.; Wormald, C.J.,
The enthalpy of methanol,
The Journal of Chemical Thermodynamics, 1986, 18, 8, 719-726, https://doi.org/10.1016/0021-9614(86)90105-9
. [all data]
Cervenkova and Boublik, 1984
Cervenkova, Irena; Boublik, Tomas,
Vapor pressure, refractive indexes and densities at 20.0.degree.C, and vapor-liquid equilibrium at 101.325 kPa in the tert-amyl methyl ether-methanol system,
J. Chem. Eng. Data, 1984, 29, 4, 425-427, https://doi.org/10.1021/je00038a017
. [all data]
Gibbard and Creek, 1974
Gibbard, H. Frank; Creek, Jefferson L.,
Vapor pressure of methanol from 288.15 to 337.65.deg.K,
J. Chem. Eng. Data, 1974, 19, 4, 308-310, https://doi.org/10.1021/je60063a013
. [all data]
Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E.,
The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]
Counsell and Lee, 1973
Counsell, J.F.; Lee, D.A.,
Thermodynamic properties of organic oxygen compounds 31. Vapour heat capacity and enthalpy of vaporization of methanol,
The Journal of Chemical Thermodynamics, 1973, 5, 4, 583-589, https://doi.org/10.1016/S0021-9614(73)80107-7
. [all data]
Svoboda, Veselý, et al., 1973
Svoboda, V.; Veselý, F.; Holub, R.; Pick, J.,
Enthalpy data of liquids. II. The dependence of heats of vaporization of methanol, propanol, butanol, cyclohexane, cyclohexene, and benzene on temperature,
Collect. Czech. Chem. Commun., 1973, 38, 12, 3539-3543, https://doi.org/10.1135/cccc19733539
. [all data]
Wilhoit and Zwolinski, 1973
Wilhoit, R.C.; Zwolinski, B.J.,
Physical and thermodynamic properties of aliphatic alcohols,
J. Phys. Chem. Ref. Data Suppl., 1973, 1, 2, 1. [all data]
Boublík and Aim, 1972
Boublík, T.; Aim, K.,
Heats of vaporization of simple non-spherical molecule compounds,
Collect. Czech. Chem. Commun., 1972, 37, 11, 3513-3521, https://doi.org/10.1135/cccc19723513
. [all data]
Ambrose and Sprake, 1970
Ambrose, D.; Sprake, C.H.S.,
Thermodynamic properties of organic oxygen compounds XXV. Vapour pressures and normal boiling temperatures of aliphatic alcohols,
The Journal of Chemical Thermodynamics, 1970, 2, 5, 631-645, https://doi.org/10.1016/0021-9614(70)90038-8
. [all data]
Hirata, Suda, et al., 1967
Hirata, Mitsuho; Suda, Seijiro; Onodera, Yutaka,
Vapor Pressure of Methanol in High Pressure Regions,
Chemical engineering, 1967, 31, 4, 339-342,a1, https://doi.org/10.1252/kakoronbunshu1953.31.339
. [all data]
Klyueva, Mischenko, et al., 1960
Klyueva, M.L.; Mischenko, K.P.; Fedorov, M.K.,
Zh. Prikl. Khim. (S.-Peterburg), 1960, 3, 473. [all data]
Ambrose, Sprake, et al., 1975
Ambrose, D.; Sprake, C.H.S.; Townsend, R.,
Thermodynamic Properties of Organic Oxygen Compounds. XXXVII. Vapour Pressures of Methanol, Ethanol, Pentan-1-ol, and Octan-1-ol from the Normal Boiling Temperature to the Critical Temperature,
J. Chem. Thermodyn., 1975, 7, 2, 185-190, https://doi.org/10.1016/0021-9614(75)90267-0
. [all data]
Hirata and Suda, 1967
Hirata, M.; Suda, S.,
Vapor Pressure on Methanol in High Pressure Regions,
Kagaku Kogaku, 1967, 31, 4, 339-342, https://doi.org/10.1252/kakoronbunshu1953.31.339
. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Evans and Keesee, 1991
Evans, D.H.; Keesee, R.G.,
Thermodynamics of Gas-Phase Mixed-Solvent Cluster Ions - Water and Methanol on K+ and Cl- and Comparison to Liquid Solutions,
J. Phys. Chem., 1991, 95, 9, 3558, https://doi.org/10.1021/j100162a024
. [all data]
Hiraoka and Mizuse, 1987
Hiraoka, K.; Mizuse, S.,
Gas-Phase Solvation of Cl- with H2O, CH3OH, C2H4OH, i-C3H7OH, n-C3H7OH, and t-C4H9OH,
Chem. Phys., 1987, 118, 3, 457, https://doi.org/10.1016/0301-0104(87)85078-4
. [all data]
Sieck, 1985
Sieck, L.W.,
Thermochemistry of Solvation of NO2- and C6H5NO2- by Polar Molecules in the Vapor Phase. Comparison with Cl- and Variation with Ligand Structure.,
J. Phys. Chem., 1985, 89, 25, 5552, https://doi.org/10.1021/j100271a049
. [all data]
Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B.,
Gas phase negative ion chemistry of alkylchloroformates,
Can. J. Chem., 1984, 62, 675. [all data]
French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P.,
Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-,
Can. J. Chem., 1982, 60, 1907. [all data]
Yamdagni, Payzant, et al., 1973
Yamdagni, R.; Payzant, J.D.; Kebarle, P.,
Solvation of Cl- and O2- with H2O, CH3OH, and CH3CN in the gas phase,
Can. J. Chem., 1973, 51, 2507. [all data]
Nee, Osterwalder, et al., 2006
Nee, M.J.; Osterwalder, A.; Zhou, J.; Neumark, D.M.,
Slow electron velocity-map imaging photoelectron spectra of the methoxide anion,
J. Chem. Phys., 2006, 125, 1, 014306, https://doi.org/10.1063/1.2212411
. [all data]
Osborn, Leahy, et al., 1998
Osborn, D.L.; Leahy, D.J.; Kim, E.H.; deBeer, E.; Neumark, D.M.,
Photoelectron spectroscopy of CH3O- and CD3O-,
Chem. Phys. Lett., 1998, 292, 4-6, 651-655, https://doi.org/10.1016/S0009-2614(98)00717-9
. [all data]
Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr.,
The gas phase acidity scale from methanol to phenol,
J. Am. Chem. Soc., 1979, 101, 6047. [all data]
Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G.,
The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols,
Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W
. [all data]
Meot-ner and Sieck, 1986
Meot-ner, M.; Sieck, L.W.,
Relative acidities of water and methanol, and the stabilities of the dimer adducts,
J. Phys. Chem., 1986, 90, 6687. [all data]
Meot-Ner (Mautner), 1992
Meot-Ner (Mautner), M.,
Intermolecular Forces in Organic Clusters,
J. Am. Chem. Soc., 1992, 114, 9, 3312, https://doi.org/10.1021/ja00035a024
. [all data]
Szulejko and McMahon, 1992
Szulejko, J.; McMahon, T.B.,
personal communication, 1992. [all data]
Meot-Ner(Mautner), 1986
Meot-Ner(Mautner), M.,
Comparative Stabilities of Cationic and Anionic Hydrogen-Bonded Networks. Mixed Clusters of Water-Methanol,
J. Am. Chem. Soc., 1986, 108, 20, 6189, https://doi.org/10.1021/ja00280a014
. [all data]
Grimsrud and Kebarle, 1973
Grimsrud, E.P.; Kebarle, P.,
Gas Phase Ion Equilibria Studies of the Solvation of the Hydrogen Ion by Methanol, Dimethyl Ether and Water. Effect of Hydrogen Bonding,
J. Am. Chem. Soc., 1973, 95, 24, 7939, https://doi.org/10.1021/ja00805a002
. [all data]
Larson and McMahon, 1982
Larson, J.W.; McMahon, T.B.,
Formation, Thermochemistry, and Relative Stabilities of Proton - Bound dimers of Oxygen n - Donor Bases from Ion Cyclotron Resonance Solvent - Exchange Equilibria Measurements,
J. Am. Chem. Soc., 1982, 104, 23, 6255, https://doi.org/10.1021/ja00387a016
. [all data]
Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D.,
Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules,
J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]
Keesee and Castleman, 1986
Keesee, R.G.; Castleman, A.W., Jr.,
Thermochemical data on Ggs-phase ion-molecule association and clustering reactions,
J. Phys. Chem. Ref. Data, 1986, 15, 1011. [all data]
Paul and Kebarle, 1990
Paul, G.J.C.; Kebarle, P.,
Thermodynamics of the Association Reactions OH- - H2O = HOHOH- and CH3O- - CH3OH = CH3OHOCH3- in the Gas Phase,
J. Phys. Chem., 1990, 94, 12, 5184, https://doi.org/10.1021/j100375a076
. [all data]
Caldwell, Rozeboom, et al., 1984
Caldwell, G.; Rozeboom, M.D.; Kiplinger, J.P.; Bartmess, J.E.,
Anion-alcohol hydrogen bond strengths in the gas phase,
J. Am. Chem. Soc., 1984, 106, 4660. [all data]
Moylan, Dodd, et al., 1985
Moylan, C.R.; Dodd, J.A.; Brauman, J.I.,
Electron photodetachment spectroscopy of Sslvated anions. A probe of structure and energetics,
Chem. Phys. Lett., 1985, 118, 38. [all data]
Mustanir, Matsuoka, et al., 2006
Mustanir; Matsuoka, M.; Mishima, M.; Koch, H.,
Stability of complexes of phenylacetylides and benzyl alkoxides with methanol in the gas phase. Acid-base correlation in the ionic hydrogen-bond strength,
Bull. Chem. Soc. Japan, 2006, 79, 7, 1118-1125, https://doi.org/10.1246/bcsj.79.1118
. [all data]
MacKay and Bohme, 1978
MacKay, G.I.; Bohme, D.K.,
Proton-Transfer Reactions in Nitromethane at 297K,
Int. J. Mass Spectrom. Ion Phys., 1978, 26, 4, 327, https://doi.org/10.1016/0020-7381(78)80052-7
. [all data]
Meot-Ner and Sieck, 1986
Meot-Ner, M.; Sieck, L.W.,
The ionic hydrogen bond and ion solvation. 5. OH...O- bonds. Gas phase solvation and clustering of alkoxide and carboxylate anions,
J. Am. Chem. Soc., 1986, 108, 7525. [all data]
DeTuri and Ervin, 1999
DeTuri, V.F.; Ervin, K.M.,
Competitive threshold collision-induced dissociation: Gas-phase acidities and bond dissociation energies for a series of alcohols,
J. Phys. Chem. A, 1999, 103, 35, 6911-6920, https://doi.org/10.1021/jp991459m
. [all data]
Mackay, Rakshit, et al., 1982
Mackay, G.I.; Rakshit, A.B.; Bohme, D.K.,
An Experimental Study of the Reactivity and Relative Basicity of the Methoxide Anion in the Gas Phase at Room Temperature, and their Perturbation by Methanol Solvent,
Can. J. Chem., 1982, 60, 20, 2594, https://doi.org/10.1139/v82-373
. [all data]
Caldwell and Kebarle, 1986
Caldwell, G.; Kebarle, P.,
Mobility of Gaseous Ions in Weak Electric Fields
in Unpublished results, 1986. [all data]
Taft, 1983
Taft, R.W.,
Protonic acidities and basicities in the gas phase and in solution: Substiuent and solvent effects,
Prog. Phys. Org. Chem., 1983, 14, 247. [all data]
Bogdanov, Peschke, et al., 1999
Bogdanov, B.; Peschke, M.; Tonner, D.S.; Szulejko, J.E.; McMahon, T.B.,
Stepwise solvation of halides by alcohol molecules in the gas phase,
Int. J. Mass Spectrom., 1999, 187, 707-725, https://doi.org/10.1016/S1387-3806(98)14180-5
. [all data]
Chabinyc and Brauman, 1999
Chabinyc, M.L.; Brauman, J.I.,
Hydrogen bond strength and acidity. Structural and energetic correlations for acetylides and alcohols,
J. Phys. Chem. A, 1999, 103, 46, 9163-9166, https://doi.org/10.1021/jp992852v
. [all data]
Larson, Szulejko, et al., 1988
Larson, J.W.; Szulejko, J.E.; McMahon, T.B.,
Gas Phase Lewis Acid-Base Interactions. An Experimental Determination of Cyanide Binding Energies From Ion Cyclotron Resonance and High-Pressure Mass Spectrometric Equilibrium Measurements.,
J. Am. Chem. Soc., 1988, 110, 23, 7604, https://doi.org/10.1021/ja00231a004
. [all data]
Meot-ner, 1988
Meot-ner, M.,
Ionic Hydrogen Bond and Ion Solvation. 6. Interaction Energies of the Acetate Ion with Organic Molecules. Comparison of CH3COO- with Cl-, CN-, and SH-,
J. Am. Chem. Soc., 1988, 110, 12, 3854, https://doi.org/10.1021/ja00220a022
. [all data]
Larson and McMahon, 1987
Larson, J.W.; McMahon, T.B.,
Hydrogen bonding in gas phase anions. The energetics of interaction between cyanide ion and bronsted acids,
J. Am. Chem. Soc., 1987, 109, 6230. [all data]
Payzant, Yamdagni, et al., 1971
Payzant, J.D.; Yamdagni, R.; Kebarle, P.,
Hydration of CN-, NO2-, NO3-, and HO- in the gas phase,
Can. J. Chem., 1971, 49, 3308. [all data]
Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B.,
Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation,
Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X
. [all data]
Woodin and Beauchamp, 1978
Woodin, R.L.; Beauchamp, J.L.,
Bonding of Li+ to Lewis Bases in the Gas Phase. Reversals in Methyl Substituent Effects for Different Reference Acids,
J. Am. Chem. Soc., 1978, 100, 2, 501, https://doi.org/10.1021/ja00470a024
. [all data]
Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P.,
Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n,
J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013
. [all data]
Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L.,
Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases,
J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050
. [all data]
Caldwell and Kebarle, 1984
Caldwell, G.; Kebarle, P.,
Binding energies and structural effects in halide anion-ROH and -RCOOH complexes from gas phase equilibria measurements,
J. Am. Chem. Soc., 1984, 106, 967. [all data]
Hiraoka and Yamabe, 1991
Hiraoka, K.; Yamabe, S.,
Solvation of Halide Ions with CH3OH in the gas Phase,
Int. J. Mass Spectrom. Ion Proc., 1991, 109, 133, https://doi.org/10.1016/0168-1176(91)85101-Q
. [all data]
Caldwell, Masucci, et al., 1989
Caldwell, G.W.; Masucci, J.A.; Ikonomou, M.G.,
Negative Ion Chemical Ionization Mass Spectrometry - Binding of Molecules to Bromide and Iodide Anions,
Org. Mass Spectrom., 1989, 24, 1, 8, https://doi.org/10.1002/oms.1210240103
. [all data]
Tanabe, Morgon, et al., 1996
Tanabe, F.K.J.; Morgon, N.H.; Riveros, J.M.,
Relative Bromide and Iodide Affinity of Simple Solvent Molecules Determined by FT-ICR,
J. Phys. Chem., 1996, 100, 8, 2862-2866, https://doi.org/10.1021/jp952290p
. [all data]
Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B.,
Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements,
J. Am. Chem. Soc., 1983, 105, 2944. [all data]
Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P.,
Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions,
J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014
. [all data]
Hiraoka, Mizure, et al., 1988
Hiraoka, K.; Mizure, S.; Yamabe, S.; Nakatsuji, Y.,
Gas Phase Clustering Reactions of CN- and CH2CN- with MeCN,
Chem. Phys. Lett., 1988, 148, 6, 497, https://doi.org/10.1016/0009-2614(88)80320-8
. [all data]
Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J.,
A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases,
Can. J. Chem., 1986, 74, 59. [all data]
Amicangelo and Armentrout, 2001
Amicangelo, J.C.; Armentrout, P.B.,
Relative and Absolute Bond Dissociation Energies of Sodium Cation Complexes Determined Using Competitive Collision-Induced Dissociation Experiments,
Int. J. Mass Spectrom., 2001, 212, 1-3, 301, https://doi.org/10.1016/S1387-3806(01)00494-8
. [all data]
Armentrout and Rodgers, 2000
Armentrout, P.B.; Rodgers, M.T.,
An Absolute Sodium Cation Affinity Scale: Threshold Collision-Induced Dissociation Experiments and ab Initio Theory,
J. Phys. Chem A, 2000, 104, 11, 2238, https://doi.org/10.1021/jp991716n
. [all data]
Hoyau, Norrman, et al., 1999
Hoyau, S.; Norrman, K.; McMahon, T.B.; Ohanessian, G.,
A Quantitative Basis for a Scale of Na+ Affinities of Organic and Small Biological Molecules in the Gas Phase,
J. Am. Chem. Soc., 1999, 121, 38, 8864, https://doi.org/10.1021/ja9841198
. [all data]
Guo, Conklin, et al., 1989
Guo, B.C.; Conklin, B.J.; Castleman, A.W.,
Thermochemical Properties of Ion Complexes Na+(M)n in the Gas Phase,
J. Am. Chem. Soc., 1989, 111, 17, 6506, https://doi.org/10.1021/ja00199a005
. [all data]
McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G.,
An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions,
Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7
. [all data]
Wiberg, Morgan, et al., 1994
Wiberg, K.B.; Morgan, K.M.; Maltz, H.,
Thermochemistry of carbonyl reactions. 6. A study of hydration equilibria,
J. Am. Chem. Soc., 1994, 116, 11067-11077. [all data]
Wiberg and Squires, 1979
Wiberg, K.B.; Squires, R.R.,
Thermodynamics of hydrolysis aliphatic ketals. An entropy component of steric effects,
J. Am. Chem. Soc., 1979, 101, 5512-5515. [all data]
Wiberg and Squires, 1979, 2
Wiberg, K.B.; Squires, R.R.,
A microprocessor-controlled system for precise measurement of temperature changes. Determination of the enthalpies of hydrolysis of some polyoxygenated hydrocarbons,
J. Chem. Thermodyn., 1979, 11, 773-786. [all data]
Stern and Dorer, 1962
Stern, J.H.; Dorer, F.H.,
Standard heats of formation of 2,2-Dimethoxypropane (1), and 2,2 -Diethoxypropane (1). Group additivity theory and calculated heats of formation and five ketals,
J. Phys. Chem., 1962, 66, 97-99. [all data]
El-Shall, Schriver, et al., 1989
El-Shall, M.S.; Schriver, K.E.; Whetten, R.L.; Meot-Ner (Mautner), M.,
Ion/Molecule Clustering Thermochemistry by Laser Ionization High - Pressure Mass Spectrometry,
J. Phys. Chem., 1989, 93, 24, 7969, https://doi.org/10.1021/j100361a002
. [all data]
Chowdhury, Grimsrud, et al., 1987
Chowdhury, S.; Grimsrud, E.P.; Kebarle, P.,
Bonding of Charged Delocalized Anions to Protic and Dipolar Aprotic Solvent Molecules,
J. Phys. Chem., 1987, 91, 10, 2551, https://doi.org/10.1021/j100294a021
. [all data]
Chowdhury, 1987
Chowdhury, S. Grimsrud,
Bonding of Charge Delocalized Anions to Protic and Dipolar Aprotic Solvents,
J. Phys. Chem., 1987, 91, 10, 2551, https://doi.org/10.1021/j100294a021
. [all data]
Hiraoka, Grimsrud, et al., 1974
Hiraoka, K.; Grimsrud, E.P.; Kebarle, P.,
Gas Phase Ion Equilibria Studies of the Hydrogen Ion in Water - Dimethyl Ether and Methanol - Dimethyl Ether Mixtures,
J. Am. Chem. Soc., 1974, 96, 11, 3359, https://doi.org/10.1021/ja00818a004
. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Tao, Klemm, et al., 1992
Tao, W.; Klemm, R.B.; Nesbitt, F.L.; Stief, J.L.,
A discharge flow-photoionization mass spectrometric study of hydroxymethyl radicals (H2COH and H2COD): Photoionization spectrum and ionization energy,
J. Phys. Chem., 1992, 96, 104. [all data]
Holmes and Lossing, 1991
Holmes, J.L.; Lossing, F.P.,
Ionization energies of homologous organic compounds and correlation with molecular size,
Org. Mass Spectrom., 1991, 26, 537. [all data]
Bowen and Maccoll, 1984
Bowen, R.D.; Maccoll, A.,
Low energy, low temperature mass spectra,
Org. Mass Spectrom., 1984, 19, 379. [all data]
Mishchanchuk, Pokrovskii, et al., 1982
Mishchanchuk, B.G.; Pokrovskii, V.A.; Shabel'nikov, V.P.; Korol, E.N.,
Mass spectrometric study of energy characteristics of methanol and ethanol ions during ionization by a strong electric field,
Teor. Eksp. Khim., 1982, 18, 307. [all data]
Allam, Migahed, et al., 1982
Allam, S.H.; Migahed, M.D.; El-Khodary, A.,
Electron impact ionization and dissociation of deuterated and non-deuterated methanol, methyl cyanide, nitromethane and nitrobenzene,
Egypt. J. Phys., 1982, 13, 167. [all data]
Sahini, Constantin, et al., 1978
Sahini, V.E.; Constantin, V.; Serban, I.,
Determination of ionization potentials using a MI-1305 mass spectrometer,
Rev. Roum. Chim., 1978, 23, 479. [all data]
Berkowitz, 1978
Berkowitz, J.,
Photoionization of CH3OH, CD3OH, and CH3OD: Dissociative ionization mechanisms and ionic structures,
J. Chem. Phys., 1978, 69, 3044. [all data]
MacNeil and Dixon, 1977
MacNeil, K.A.G.; Dixon, R.N.,
High-resolution photoelectron spectroscopy of methanol and its deuterated derivatives: Internal rotation in the ground ionic state,
J. Electron Spectrosc. Relat. Phenom., 1977, 11, 315. [all data]
Finney and Harrison, 1972
Finney, C.D.; Harrison, A.G.,
A third-derivative method for determining electron-impact onset potentials,
Int. J. Mass Spectrom. Ion Phys., 1972, 9, 221. [all data]
Warneck, 1971
Warneck, P.,
Photoionisation von methanol und formaldehyd,
Z. Naturforsch. A:, 1971, 26, 2047. [all data]
Cocksey, Eland, et al., 1971
Cocksey, B.J.; Eland, J.H.D.; Danby, C.J.,
The effect of alkyl substitution on ionisation potential,
J. Chem. Soc., 1971, (B), 790. [all data]
Baker, Betteridge, et al., 1971
Baker, A.D.; Betteridge, D.; Kemp, N.R.; Kirby, R.E.,
Application of photoelectron spectrometry to pesticide analysis. II.Photoelectron spectra of hydroxy-, and halo-alkanes and halohydrins,
Anal. Chem., 1971, 43, 375. [all data]
Omura, Kaneko, et al., 1969
Omura, I.; Kaneko, T.; Yamada, Y.; Tanaka, K.,
Mass spectrometric studies of photoionization. V. Methanol and methanol-d,
J. Phys. Soc. Japan, 1969, 27, 981. [all data]
Lifshitz, Shapiro, et al., 1969
Lifshitz, C.; Shapiro, M.; Sternberg, R.,
Isotopic effects on metastable transitions. IV. Isotopic methanols,
Israel J. Chem., 1969, 7, 391. [all data]
Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D.,
Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation,
J. Chem. Phys., 1969, 50, 654. [all data]
Refaey and Chupka, 1968
Refaey, K.M.A.; Chupka, W.A.,
Photoionization of the lower aliphatic alcohols with mass analysis,
J. Chem. Phys., 1968, 48, 5205. [all data]
Cermak, 1968
Cermak, V.,
Penning ionization electron spectroscopy. I. Determination of ionization potentials of polyatomic molecules,
Collection Czech. Chem. Commun., 1968, 33, 2739. [all data]
Al-Joboury and Turner, 1964
Al-Joboury, M.I.; Turner, D.W.,
Molecular photoelectron spectroscopy. Part II. A summary of ionization potentials,
J. Chem. Soc., 1964, 4434. [all data]
Watanabe, 1954
Watanabe, K.,
Photoionization and total absorption cross section of gases. I. Ionization potentials of several molecules. Cross sections of NH3 and NO,
J. Chem. Phys., 1954, 22, 1564. [all data]
Vorob'ev, Furlei, et al., 1989
Vorob'ev, A.S.; Furlei, I.I.; Sultanov, A.S.; Khvostenko, V.I.; Leplyanin, G.V.; Derzhinskii, A.R.; Tolstikov, G.A.,
Mass spectrometry of reasonance capture of electrons and photoelectron spectroscopy of molecules of ethylene oxide, ethylene sulfide, and their derivatives,
Bull. Acad. Sci. USSR, Div. Chem. Sci., 1989, 1388. [all data]
Von Niessen, Bieri, et al., 1980
Von Niessen, W.; Bieri, G.; Asbrink, L.,
30.4 nm He(II) photoelectron spectra of organic molecules. Part III. Oxo-compounds (C,H,O),
J. Electron Spectrosc. Relat. Phenom., 1980, 21, 175. [all data]
Utsunomiya, Kobayashi, et al., 1980
Utsunomiya, C.; Kobayashi, T.; Nagakura, S.,
Photoelectron angular distribution measurements for some aliphatic alcohols, amines, halides,
Bull. Chem. Soc. Jpn., 1980, 53, 1216. [all data]
Kobayashi, 1978
Kobayashi, T.,
A simple general tendency in photoelectron angular distributions of some monosubstituted benzenes,
Phys. Lett., 1978, 69, 105. [all data]
Benoit and Harrison, 1977
Benoit, F.M.; Harrison, A.G.,
Predictive value of proton affinity. Ionization energy correlations involving oxygenated molecules,
J. Am. Chem. Soc., 1977, 99, 3980. [all data]
Peel and Willett, 1975
Peel, J.B.; Willett, G.D.,
Photoelectron spectroscopic studies of the higher alcohols,
Aust. J. Chem., 1975, 28, 2357. [all data]
Robin and Kuebler, 1973
Robin, M.B.; Kuebler, N.A.,
Excited electronic states of the simple alcohols,
J. Electron Spectrosc. Relat. Phenom., 1973, 1, 13. [all data]
Ogata, Onizuka, et al., 1973
Ogata, H.; Onizuka, H.; Nihei, Y.; Kamada, H.,
The photoelectron spectra of alcohols, mercaptans and amines,
Bull. Chem. Soc. Jpn., 1973, 46, 3036. [all data]
Katsumata, Iwai, et al., 1973
Katsumata, S.; Iwai, T.; Kimura, K.,
Photoelectron spectra and sum rule consideration. Higher alkyl amines and alcohols,
Bull. Chem. Soc. Jpn., 1973, 46, 3391. [all data]
Ogata, Onizuka, et al., 1972
Ogata, H.; Onizuka, H.; Nihei, Y.; Kamada, H.,
On the first bands of the photoelectron spectra of amines, alcohols, and mercaptans,
Chem. Lett., 1972, 895. [all data]
Reed and Snedden, 1956
Reed, R.I.; Snedden, W.,
Studies in electron impact methods. Part 6.-The formation of the methine and carbon ions,
J. Chem. Soc. Faraday Trans., 1956, 55, 876. [all data]
Haney and Franklin, 1968
Haney, M.A.; Franklin, J.L.,
Correlation of excess energies of electron-impact dissociations with the translational energies of the products,
J.Chem. Phys., 1968, 48, 4093. [all data]
Friedman, Long, et al., 1957
Friedman, L.; Long, F.A.; Wolfsberg, M.,
Study of the mass spectra of the lower aliphatic alcohols,
J. Chem. Phys., 1957, 27, 613. [all data]
Selim and Helal, 1981
Selim, E.T.M.; Helal, A.I.,
Heat of formation of CH2=OH+ fragment ion,
Indian J. Pure Appl. Phys., 1981, 19, 977. [all data]
Lossing, 1977
Lossing, F.P.,
Heats of formation of some isomeric [CnH2n+1]+ ions. Substitutional effects on ion stability,
J. Am. Chem. Soc., 1977, 99, 7526. [all data]
Berkowitz, Ellison, et al., 1994
Berkowitz, J.; Ellison, G.B.; Gutman, D.,
Three methods to measure RH bond energies,
J. Phys. Chem., 1994, 98, 2744. [all data]
Friedland and Strakna, 1956
Friedland, S.S.; Strakna, R.E.,
Appearance potential studies. I,
J. Phys. Chem., 1956, 60, 815. [all data]
Haken and Korhonen, 1985
Haken, J.K.; Korhonen, I.O.O.,
Gas chromatography of homologous esters. XXVII. Retention increments of C1-C18 primary alkanols and their 2-chloropropanoyl and 3-chloropropanoyl derivatives on SE-30 and OV-351 capillary columns,
J. Chromatogr., 1985, 319, 131-142, https://doi.org/10.1016/S0021-9673(01)90548-5
. [all data]
Winskowski, 1983
Winskowski, J.,
Gaschromatographische Identifizierung von Stoffen anhand von Indexziffem und unterschiedlichen Detektoren,
Chromatographia, 1983, 17, 3, 160-165, https://doi.org/10.1007/BF02271041
. [all data]
Haken, Nguyen, et al., 1979
Haken, J.K.; Nguyen, A.; Wainwright, M.S.,
Application of linear extrathermodynamic relationships to alcohols, aldehydes, ketones, amd ethoxy alcohols,
J. Chromatogr., 1979, 179, 1, 75-85, https://doi.org/10.1016/S0021-9673(00)80658-5
. [all data]
Bogoslovsky, Anvaer, et al., 1978
Bogoslovsky, Yu.N.; Anvaer, B.I.; Vigdergauz, M.S.,
Chromatographic constants in gas chromatography (in Russian), Standards Publ. House, Moscow, 1978, 192. [all data]
Pías and Gascó, 1975
Pías, J.B.; Gascó, L.,
GC Retention Data of Alcohols and Benzoyl Derivatives of Alcohols,
J. Chromatogr. - Chrom. Data, 1975, d14-d16. [all data]
Brown, Chapman, et al., 1968
Brown, I.; Chapman, I.L.; Nicholson, G.J.,
Gas chromatography of polar solutes in electron acceptor stationary phases,
Aust. J. Chem., 1968, 21, 5, 1125-1141, https://doi.org/10.1071/CH9681125
. [all data]
Viani, Müggler-Chavan, et al., 1965
Viani, R.; Müggler-Chavan, F.; Reymond, D.; Egli, R.H.,
196. Sur la composition de l'arôme de café,
Helv. Chim. Acta, 1965, 48, 195-196, 1809-1815, https://doi.org/10.1002/hlca.19650480743
. [all data]
Haagen-Smit Laboratory, 1997
Haagen-Smit Laboratory,
Procedure for the detailed hydrocarbon analysis of gasolines by single column high efficiency (capillary) column gas chromatography, SOP NO. MLD 118, Revision No. 1.1, California Environmental Protection Agency, Air Resources Board, El Monte, California, 1997, 22. [all data]
Anderson, Jurel, et al., 1973
Anderson, A.; Jurel, S.; Shymanska, M.; Golender, L.,
Gas-liquid chromatography of some aliphatic and heterocyclic mono- and pollyfunctional amines. VII. Retention indices of amines in some polar and unpolar stationary phases,
Latv. PSR Zinat. Akad. Vestis Kim. Ser., 1973, 1, 51-63. [all data]
Zarazir, Chovin, et al., 1970
Zarazir, D.; Chovin, P.; Guiochon, G.,
Identification of hydroxylic compounds and their derivatives by gas chromatography,
Chromatographia, 1970, 3, 4, 180-195, https://doi.org/10.1007/BF02269018
. [all data]
Bonastre and Grenier, 1968
Bonastre, J.; Grenier, P.,
Contribution à l'étude de la polarité des phases stationnaires en chromatographie gaz-liquide. III. Calcul des coefficients d'activité relatifs et des indices de rétention de quelques alcools aliphatiques,
Bull. Soc. Chim. Fr., 1968, 1, 118-125. [all data]
Shimadzu, 2003
Shimadzu,
Gas chromatography analysis of organic solvents using capillary columns (No. 2), 2003, retrieved from http://www.shimadzu.com/apps/form.cfm. [all data]
Shimoda and Shibamoto, 1990
Shimoda, M.; Shibamoto, T.,
Isolation and identification of headspace volatiles from brewed coffee with an on-column GC/MS method,
J. Agric. Food Chem., 1990, 38, 3, 802-804, https://doi.org/10.1021/jf00093a045
. [all data]
Kevei and Kozma, 1976
Kevei, E.; Kozma, E.,
Gaschromatographische Untersuchungsmethoden zur Aromaprüfung in gekochtem Schweinefleisch (M. semimembranosus),
Nahrung, 1976, 20, 3, 243-252, https://doi.org/10.1002/food.19760200303
. [all data]
Censullo, Jones, et al., 2003
Censullo, A.C.; Jones, D.R.; Wills, M.T.,
Speciation of the volatile organic compounds (VOCs) in solventborne aerosol coatings by solid phase microextraction-gas chromatography,
J. Coat. Technol., 2003, 75, 936, 47-53, https://doi.org/10.1007/BF02697922
. [all data]
Golovnya, Kuz'menko, et al., 2000
Golovnya, R.V.; Kuz'menko, T.e.; Samusenko, A.L.,
Method for prediction of the ability of analyte for self-association in pure liquid, Proceedings 23rd ISCC; CD-ROM, 2000, retrieved from http://www.richrom.com/assets/CD23PDF/a09.pdf. [all data]
Golovnya, Kuz'menko, et al., 2000, 2
Golovnya, R.V.; Kuz'menko, T.E.; Samusenko, A.L.,
Gas-chromatographic method of evaluation of n-alkanol ability for self-association in pure liquid,
Russ. Chem. Bull. (Engl. Transl.), 2000, 49, 2, 317-320, https://doi.org/10.1007/BF02494680
. [all data]
Bartelt, 1997
Bartelt, R.J.,
Calibration of a commercial solid-phase microextraction device for measuring headspace concentrations of organic volatiles,
Anal. Chem., 1997, 69, 3, 364-372, https://doi.org/10.1021/ac960820n
. [all data]
Peng, Ding, et al., 1988
Peng, C.T.; Ding, S.F.; Hua, R.L.; Yang, Z.C.,
Prediction of Retention Indexes I. Structure-Retention Index Relationship on Apolar Columns,
J. Chromatogr., 1988, 436, 137-172, https://doi.org/10.1016/S0021-9673(00)94575-8
. [all data]
Ott, Fay, et al., 1997
Ott, A.; Fay, L.B.; Chaintreau, A.,
Determination and origin of the aroma impact compounds of yogurt flavor,
J. Agric. Food Chem., 1997, 45, 3, 850-858, https://doi.org/10.1021/jf960508e
. [all data]
van den Dool and Kratz, 1963
van den Dool, H.; Kratz, P. Dec.,
A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography,
J. Chromatogr., 1963, 11, 463-471, https://doi.org/10.1016/S0021-9673(01)80947-X
. [all data]
Shimadzu, 2003, 2
Shimadzu,
Gas chromatography analysis of organic solvents using capillary columns (No. 3), 2003, retrieved from http://www.shimadzu.com/apps/form.cfm. [all data]
Vernon, 1971
Vernon, F.,
An investigation into hydrogen bonding in gas-liquid chromatography,
J. Chromatogr., 1971, 63, 249-257, https://doi.org/10.1016/S0021-9673(01)85637-5
. [all data]
Anderson, 1968
Anderson, D.G.,
USe of Kovats retention indices and response factors for the qualitative and quantitative analysis of coating solvents,
J. Paint Technol., 1968, 40, 527, 549-557. [all data]
Cremer and Nonn, 1964
Cremer, E.; Nonn, H.,
Kennzahlen zur Identifizierung chromatographisch getrennter Komponenten,
Monatsh. Chem., 1964, 3, 3, 910-921, https://doi.org/10.1007/BF00908804
. [all data]
Bramston-Cook, 2013
Bramston-Cook, R.,
Kovats indices for C2-C13 hydrocarbons and selected oxygenated/halocarbons with 100 % dimethylpolysiloxane columns, 2013, retrieved from http://lotusinstruments.com/monographs/List .... [all data]
Supelco, 2012
Supelco, CatalogNo. 24160-U,
Petrocol DH Columns. Catalog No. 24160-U, 2012, retrieved from http://www.sigmaaldrich.com/etc/medialib/docs/Supelco/Datasheet/1/w97949.Par.0001.File.tmp/w97949.pdf. [all data]
Leffingwell and Alford, 2005
Leffingwell, J.C.; Alford, E.D.,
Volatile constituents of Perique tobacco,
Electron. J. Environ. Agric. Food Chem., 2005, 4, 2, 899-915. [all data]
Zenkevich, 2005
Zenkevich, I.G.,
Experimentally measured retention indices., 2005. [all data]
Health Safety Executive, 2000
Health Safety Executive,
MDHS 96 Volatile organic compounds in air - Laboratory method using pumed solid sorbent tubes, solvent desorption and gas chromatography
in Methods for the Determination of Hazardous Substances (MDHS) guidance, Crown, Colegate, Norwich, 2000, 1-24, retrieved from http://www.hse.gov.uk/pubns/mdhs/pdfs/mdhs96.pdf. [all data]
Shoenmakers, Oomen, et al., 2000
Shoenmakers, P.J.; Oomen, J.L.M.M.; Blomberg, J.; Genuit, W.; van Velzen, G.,
Comparison of comprehensive two-dimensional gas chromatography and gas chromatography-mass spectrometry for the characterization of complex hydrocarbon mixtures,
J. Chromatogr. A, 2000, 892, 1-2, 29-46, https://doi.org/10.1016/S0021-9673(00)00744-5
. [all data]
Kotowska, Zalikowski, et al., 2012
Kotowska, U.; Zalikowski, M.; Isidorov, V.A.,
HS-SPME/GC-MS analysis of volatile and semi-volatile organic compounds emitted from municipal sewage sludge,
Environ. Monit. Asses., 2012, 184, 5, 2893-2907, https://doi.org/10.1007/s10661-011-2158-8
. [all data]
Chen and Feng, 2007
Chen, Y.; Feng, C.,
QSPR study on gas chromatography retention index of some organic pollutants,
Comput. Appl. Chem. (China), 2007, 24, 10, 1404-1408. [all data]
Kou, Zhang, et al., 2006
Kou, J.; Zhang, S.; Hu, Y.; Qiao, H.; Li, J.,
Stidy on the relationships between structures and gas chromatographic retention indices of alcohols,
Comput. Appl. Chem. (Chinese), 2006, 23, 7, 651-654. [all data]
Blunden, Aneja, et al., 2005
Blunden, J.; Aneja, V.P.; Lonneman, W.A.,
Characterization of non-methane volatile organic compounds at swine facilities in eastern North Carolina,
Atm. Environ., 2005, 39, 36, 6707-6718, https://doi.org/10.1016/j.atmosenv.2005.03.053
. [all data]
Fu and Wang, 2004
Fu, S.-P.; Wang, Y.-Q.,
Estimation and prediction of gas chromatographic retention indices of alcohols by molecular electronegativity-distance vector,
J. Chongqing Univ., 2004, 27, 6, 106-109. [all data]
Zenkevich, 2001
Zenkevich, I.G.,
Encyclopedia of Chromatography. Derivatization of Acids for GC Analysis, Marcel Dekker, Inc., New York - Basel, 2001, 221. [all data]
Zenkevich, 2001, 2
Zenkevich, I.G.,
Encyclopedia of Chromatography. Derivatization of Carbonyls for GC Analysis, MArcel Dekker, Inc., New York - Basel, 2001, 233. [all data]
Zenkevich, 1999
Zenkevich, I.G.,
New Application of the Retention Index Concept in Gas and High Performance Liquid Chromatography,
Fresenius' J. Anal. Chem., 1999, 365, 4, 305-309, https://doi.org/10.1007/s002160051491
. [all data]
Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D.,
Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]
Zenkevich and Chupalov, 1996
Zenkevich, I.G.; Chupalov, A.A.,
New Possibilities of Chromato Mass Pectrometric Identification of Organic Compounds Using Increments of Gas Chromatographic Retention Indices of Molecular Structural Fragments,
Zh. Org. Khim. (Rus.), 1996, 32, 5, 656-666. [all data]
Zenkevich, Korolenko, et al., 1995
Zenkevich, I.G.; Korolenko, L.I.; Khralenkova, N.B.,
Desorption with solvent vapor as a method of sample preparation in the sorption preconcentration of organic-compounds from the air of a working area and from industrial-waste gases,
J. Appl. Chem. USSR (Engl. Transl.), 1995, 50, 10, 937-944. [all data]
Schuberth, 1994
Schuberth, J.,
Joint use of retention index and mass spectrum in postmortem tests for volatile organics by headspace capillary gas chromatography with ion-trap detection,
J. Chromatogr. A, 1994, 674, 1-2, 63-71, https://doi.org/10.1016/0021-9673(94)85217-0
. [all data]
Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J.,
Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning,
Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111
. [all data]
Weller and Wolf, 1989
Weller, J.-P.; Wolf, M.,
Massenspektroskopie und Headspace-GC,
Beitr. Gerichtl. Med., 1989, 47, 525-532. [all data]
Waggott and Davies, 1984
Waggott, A.; Davies, I.W.,
Identification of organic pollutants using linear temperature programmed retention indices (LTPRIs) - Part II, 1984, retrieved from http://dwi.defra.gov.uk/research/completed-research/reports/dwi0383.pdf. [all data]
Sun, Siepmann, et al., 2006
Sun, L.; Siepmann, J.I.; Klotz, W.L.; Schure, M.R.,
retention in gas-liquid chromatography with a polyethylene oxide stationary phase: molecular simulation and experiment,
J. Chromatogr. A, 2006, 1126, 1-2, 373-380, https://doi.org/10.1016/j.chroma.2006.05.084
. [all data]
Shimadzu, 2012
Shimadzu, Pharmaceutical Related,
Analysis of pharmaceutical residual solvent (observation of separation) (1) - GC, 2012, retrieved from www.shimadzu.ru/applications/Applicationspdf/GC/Pharma/Pharmaceutical residual solvents GC.pdf. [all data]
Chida, Sone, et al., 2004
Chida, M.; Sone, Y.; Tamura, H.,
Aroma characteristics of stored tobacco cut leaves analyzed by a high vacuum distillation and canister system,
J. Agric. Food Chem., 2004, 52, 26, 7918-7924, https://doi.org/10.1021/jf049223p
. [all data]
Shimadzu Corporation, 2003
Shimadzu Corporation,
Analysis of pharmaceutical residual solvent (observation of separation), 2003, retrieved from http://www.shimadzu.com.br/analitica/aplicacoes/book/pharm69.pdf. [all data]
Tanaka, Yamauchi, et al., 2003
Tanaka, T.; Yamauchi, T.; Katsumata, R.; Kiuchi, K.,
Comparison of volatile components in commercial Itohiki-Natto by solid phase microextraction and gas chromatography,
Nippon Shokuhin Kagaku Kogaku Kaishi, 2003, 50, 6, 278-285, https://doi.org/10.3136/nskkk.50.278
. [all data]
Suhardi, Suzuki, et al., 2002
Suhardi, S.; Suzuki, M.; Yoshida, K.; Muto, T.; Fujita, A.; Watanbe, N.,
Changes in the volatile compounds and in the chemical and physical properties of snake fruit (Salacca edulis Reinw) Cv. Pondoh during maturation,
J. Agric. Food Chem., 2002, 50, 26, 7627-7633, https://doi.org/10.1021/jf020620e
. [all data]
Duque, Bonilla, et al., 2001
Duque, C.; Bonilla, A.; Bautista, E.; Zea, S.,
Exudation of low molecular wight compounds (thiobismethane, methyl isocyanide, amd methyl isothiocyanate) as a possible chemical defense mechanism in the marine sponge Ircinia felix,
Biochem. Systematics Ecol., 2001, 29, 5, 459-467, https://doi.org/10.1016/S0305-1978(00)00081-8
. [all data]
Vinogradov, 2004
Vinogradov, B.A.,
Production, composition, properties and application of essential oils, 2004, retrieved from http://viness.narod.ru. [all data]
Peng, Yang, et al., 1991
Peng, C.T.; Yang, Z.C.; Ding, S.F.,
Prediction of rentention idexes. II. Structure-retention index relationship on polar columns,
J. Chromatogr., 1991, 586, 1, 85-112, https://doi.org/10.1016/0021-9673(91)80028-F
. [all data]
Ramsey and Flanagan, 1982
Ramsey, J.D.; Flanagan, R.J.,
Detection and Identification of Volatile Organic Compounds in Blood by Headspace Gas Chromatography as an Aid to the Diagnosis of Solvent Abuse,
J. Chromatogr., 1982, 240, 2, 423-444, https://doi.org/10.1016/S0021-9673(00)99622-5
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Gas Chromatography, References
- Symbols used in this document:
AE Appearance energy Cp,gas Constant pressure heat capacity of gas Cp,liquid Constant pressure heat capacity of liquid Cp,solid Constant pressure heat capacity of solid IE (evaluated) Recommended ionization energy Pc Critical pressure S°liquid Entropy of liquid at standard conditions S°solid,1 bar Entropy of solid at standard conditions (1 bar) T Temperature Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature Vc Critical volume ΔHtrs Enthalpy of phase transition ΔStrs Entropy of phase transition ΔcH°gas Enthalpy of combustion of gas at standard conditions ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.