2-Pentene, (E)-
- Formula: C5H10
- Molecular weight: 70.1329
- IUPAC Standard InChIKey: QMMOXUPEWRXHJS-HWKANZROSA-N
- CAS Registry Number: 646-04-8
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Stereoisomers:
- Other names: trans-2-Pentene; (E)-2-Pentene; trans-β-Amylene; 2-trans-Pentene; 2-(E)-C5H10; 2-Pentene, trans-; Pentene-2, trans-; trans-pent-2-ene
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Phase change data, Henry's Law data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -7.7 ± 0.4 | kcal/mol | AVG | N/A | Average of 7 values; Individual data points |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
26.03 | 298.15 | Thermodynamics Research Center, 1997 | p=1 bar. Recommended values were calculated from data for lower alkenes by a method of increments. These values are in good agreement with experimental data (see also [ Kilpatrick J.E., 1946]).; GT |
26.15 | 300. | ||
32.65 | 400. | ||
38.72 | 500. | ||
44.02 | 600. | ||
48.61 | 700. | ||
52.58 | 800. | ||
56.00 | 900. | ||
58.99 | 1000. | ||
61.57 | 1100. | ||
63.81 | 1200. | ||
65.77 | 1300. | ||
67.45 | 1400. | ||
68.929 | 1500. |
Phase change data
Go To: Top, Gas phase thermochemistry data, Henry's Law data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 309.4 ± 0.5 | K | AVG | N/A | Average of 21 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 132.8 ± 0.6 | K | AVG | N/A | Average of 10 out of 11 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 132.93 | K | N/A | Chao, Hall, et al., 1983 | Uncertainty assigned by TRC = 0.02 K; TRC |
Ttriple | 132.95 | K | N/A | Todd, Oliver, et al., 1947 | Uncertainty assigned by TRC = 0.02 K; TRC |
Ttriple | 132.950 | K | N/A | Huffman, 1945 | Uncertainty assigned by TRC = 0.6 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 6.38 | kcal/mol | N/A | Reid, 1972 | AC |
Enthalpy of vaporization
ΔvapH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
6.88 | 266. | A | Stephenson and Malanowski, 1987 | Based on data from 251. to 341. K.; AC |
6.7 | 289. | EB | Scott and Waddington, 1950 | Based on data from 274. to 341. K.; AC |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (atm)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
274.18 to 341.36 | 4.02518 | 1084.165 | -40.158 | Scott and Waddington, 1950 | Coefficents calculated by NIST from author's data. |
Enthalpy of fusion
ΔfusH (kcal/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
1.996 | 132.93 | Chao, Hall, et al., 1983, 2 | DH |
1.996 | 132.95 | Todd, Oliver, et al., 1947, 2 | DH |
2.00 | 133. | Acree, 1991 | AC |
Entropy of fusion
ΔfusS (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
15.02 | 132.93 | Chao, Hall, et al., 1983, 2 | DH |
15.01 | 132.95 | Todd, Oliver, et al., 1947, 2 | DH |
Henry's Law data
Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference | Comment |
---|---|---|---|---|
0.0043 | Q | N/A | missing citation give several references for the Henry's law constants but don't assign them to specific species. | |
0.0043 | V | N/A |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
L - Sharon G. Lias
Data compiled as indicated in comments:
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
View reactions leading to C5H10+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 9.04 ± 0.01 | eV | N/A | N/A | L |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
9.04 ± 0.02 | PE | Bieri, Burger, et al., 1977 | LLK |
9.036 ± 0.005 | PE | Masclet, Grosjean, et al., 1973 | LLK |
8.92 | EI | Lossing, 1972 | LLK |
9.32 ± 0.03 | EI | Gross and Wilkins, 1971 | LLK |
9.06 | EI | Collin and Lossing, 1959 | RDSH |
9.23 ± 0.01 | PE | Krause, Taylor, et al., 1978 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
C3H6+ | 11.73 ± 0.11 | C2H4 | EI | Gross and Wilkins, 1971 | LLK |
C4H7+ | 10.68 | CH3 | EI | Brand and Baer, 1984 | LBLHLM |
C4H7+ | 10.68 | CH3 | EI | Lossing, 1972 | LLK |
C4H7+ | 11.35 ± 0.03 | CH3 | EI | Gross and Wilkins, 1971 | LLK |
References
Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Thermodynamics Research Center, 1997
Thermodynamics Research Center,
Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]
Kilpatrick J.E., 1946
Kilpatrick J.E.,
Heats, equilibrium constants, and free energies of formation of the monoolefin hydrocarbons,
J. Res. Nat. Bur. Stand, 1946, 36, 559-612. [all data]
Chao, Hall, et al., 1983
Chao, J.; Hall, K.R.; Yao, J.M.,
Thermodynamic Properties of Simple Alkenes,
Thermochim. Acta, 1983, 64, 285. [all data]
Todd, Oliver, et al., 1947
Todd, S.S.; Oliver, G.D.; Huffman, H.M.,
The heat capacities, heats of fusion and entropies of the six pentenes.,
J. Am. Chem. Soc., 1947, 69, 1519. [all data]
Huffman, 1945
Huffman, H.M.,
Personal Commun., U. S. Bur. Mines, Bartlesville, OK, July 25, 1945. [all data]
Reid, 1972
Reid, Robert C.,
Handbook on vapor pressure and heats of vaporization of hydrocarbons and related compounds, R. C. Wilhort and B. J. Zwolinski, Texas A Research Foundation. College Station, Texas(1971). 329 pages.$10.00,
AIChE J., 1972, 18, 6, 1278-1278, https://doi.org/10.1002/aic.690180637
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Scott and Waddington, 1950
Scott, Donald W.; Waddington, Guy,
Vapor Pressure of cis-2-Pentene, trans-2-Pentene and 3-Methyl-1-butene,
J. Am. Chem. Soc., 1950, 72, 9, 4310-4311, https://doi.org/10.1021/ja01165a542
. [all data]
Chao, Hall, et al., 1983, 2
Chao, J.; Hall, K.R.; Yao, J.M.,
Thermodynamic properties of simple alkenes,
Thermochim. Acta, 1983, 64(3), 285-303. [all data]
Todd, Oliver, et al., 1947, 2
Todd, S.S.; Oliver, G.D.; Huffman, H.M.,
The heat capacities, heats of fusion and entropies of the six pentenes,
J. Am. Chem. Soc., 1947, 69, 1519-1525. [all data]
Acree, 1991
Acree, William E.,
Thermodynamic properties of organic compounds: enthalpy of fusion and melting point temperature compilation,
Thermochimica Acta, 1991, 189, 1, 37-56, https://doi.org/10.1016/0040-6031(91)87098-H
. [all data]
Bieri, Burger, et al., 1977
Bieri, G.; Burger, F.; Heilbronner, E.; Maier, J.P.,
Valence ionization enrgies of hydrocarbons,
Helv. Chim. Acta, 1977, 60, 2213. [all data]
Masclet, Grosjean, et al., 1973
Masclet, P.; Grosjean, D.; Mouvier, G.,
Alkene ionization potentials. Part I. Quantitative determination of alkyl group structural effects,
J. Electron Spectrosc. Relat. Phenom., 1973, 2, 225. [all data]
Lossing, 1972
Lossing, F.P.,
Free radicals by mass spectrometry. XLV. Ionization potentials and heats of formation of C3H3, C3H5, and C4H7 radicals and ions,
Can. J. Chem., 1972, 50, 3973. [all data]
Gross and Wilkins, 1971
Gross, M.L.; Wilkins, C.L.,
Computer-assisted ion cyclotron resonance appearance potential measurements for C5H10 isomers,
Anal. Chem., 1971, 43, 1624. [all data]
Collin and Lossing, 1959
Collin, J.; Lossing, F.P.,
Ionization potentials of some olefins, di-olefins and branched paraffins,
J. Am. Chem. Soc., 1959, 81, 2064. [all data]
Krause, Taylor, et al., 1978
Krause, D.A.; Taylor, J.W.; Fenske, R.F.,
An analysis of the effects of alkyl substituents on the ionization potentials of n-alkenes,
J. Am. Chem. Soc., 1978, 100, 718. [all data]
Brand and Baer, 1984
Brand, W.A.; Baer, T.,
Dissociation dynamics of energy-selected C5H10+ ions,
J. Am. Chem. Soc., 1984, 106, 3154. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, References
- Symbols used in this document:
AE Appearance energy Cp,gas Constant pressure heat capacity of gas IE (evaluated) Recommended ionization energy Tboil Boiling point Tfus Fusion (melting) point Ttriple Triple point temperature d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.