Acetic acid

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-103.5 ± 0.6kcal/molAVGN/AAverage of 8 values; Individual data points
Quantity Value Units Method Reference Comment
gas67.600cal/mol*KN/AWeltner W., 1955Other third-law entropy values at 298.15 K are 284.5 [ Chao J., 1986] and 290.37(4.18) J/mol*K [ Halford J.O., 1941].; GT

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
9.45050.Chao J., 1986p=1 bar. Selected entropies and heat capacities differ from other statistically calculated values [ Weltner W., 1955] by 1.0-1.3 J/mol*K for S(T) and 3.1-5.4 J/mol*K for Cp(T). Please also see Chao J., 1978.; GT
9.661100.
10.22150.
11.55200.
14.19273.15
15.16 ± 0.026298.15
15.23300.
19.04400.
22.45500.
25.378600.
27.875700.
29.995800.
31.785900.
33.2841000.
34.5271100.
35.5541200.
36.4011300.
37.0981400.
37.6741500.

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-115.56 ± 0.086kcal/molCcbSteele, Chirico, et al., 1997ALS
Δfliquid-115.80 ± 0.05kcal/molCcbLebedeva, 1964ALS
Δfliquid-115.7 ± 0.1kcal/molCcbEvans and Skinner, 1959ALS
Δfliquid-116.4kcal/molCmCarson and Skinner, 1949Unpublished result by Rossini; ALS
Quantity Value Units Method Reference Comment
Δcliquid-209.17 ± 0.081kcal/molCcbSteele, Chirico, et al., 1997Corresponding Δfliquid = -115.56 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-208.94 ± 0.05kcal/molCcbLebedeva, 1964Corresponding Δfliquid = -115.79 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-209.0 ± 0.1kcal/molCcbEvans and Skinner, 1959Corresponding Δfliquid = -115.7 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-208.5kcal/molCcbSchjanberg, 1935Corresponding Δfliquid = -116.2 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid37.76cal/mol*KN/AMartin and Andon, 1982DH
liquid46.30cal/mol*KN/AParks and Kelley, 1925Extrapolation below 90 K. 76.82 J/mol*K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
29.42298.15Martin and Andon, 1982T = 13 to 450 K. Data also given by equation.; DH
33.39332.Swietoslawski and Zielenkiewicz, 1958Mean value 22 to 96°C.; DH
28.80298.Radulescu and Jula, 1934DH
28.99297.1Neumann, 1932T = 23.9 to 80.5°C. Value is unsmoothed experimental datum.; DH
38.19298.1Parks, Kelley, et al., 1929Extrapolation below 90 K, 42.68 J/mol*K. Revision of previous data.; DH
29.49294.7Parks and Kelley, 1925T = 87 to 295 K. Value is unsmoothed experimental datum.; DH
32.7287. to 335.Pickering, 1895T = 260 to 335 K.; DH
29.52298.von Reis, 1881T = 292 to 358 K.; DH

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
LL - Sharon G. Lias and Joel F. Liebman

View reactions leading to C2H4O2+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)10.65 ± 0.02eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)187.3kcal/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity179.9kcal/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
10.63PITraeger, McLouglin, et al., 1982LBLHLM
10.66EIHolmes, Fingas, et al., 1981LLK
10.66 ± 0.05EIHolmes and Lossing, 1980LLK
10.66EIHolmes and Lossing, 1980, 2LLK
10.66 ± 0.05PIAkopyan and Villem, 1976LLK
10.664 ± 0.003PIWatanabe, Yokoyama, et al., 1974LLK
10.644 ± 0.002PIKnowles and Nicholson, 1974LLK
10.65PEWatanabe, Yokoyama, et al., 1973LLK
10.69 ± 0.03PEThomas, 1972LLK
10.70PESweigart and Turner, 1972LLK
10.37 ± 0.03PIWatanabe, Nakayama, et al., 1962RDSH
10.38 ± 0.03PIVilesov, 1960RDSH
10.35 ± 0.03PIWatanabe, 1957RDSH
10.9PEVon Niessen, Bieri, et al., 1980Vertical value; LLK
10.84PECarnovale, Gan, et al., 1980Vertical value; LLK
10.63PEBenoit and Harrison, 1977Vertical value; LLK
11.5PERao, 1975Vertical value; LLK
10.87PEKimura, Katsumata, et al., 1975Vertical value; LLK
10.8PEGreen and Hayes, 1975Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C+22.0 ± 0.5H2+HCOOHEIStepanov, Perov, et al., 1988LL
CHO2+12.27 ± 0.05CH3EIHaney and Franklin, 1969RDSH
CHO2+12.9 ± 0.1CH3EIShigorin, Filyugina, et al., 1966RDSH
CH3+14.0 ± 0.15?EIHaney and Franklin, 1969RDSH
CH3O+12.05 ± 0.10CHOEISelim and Helal, 1981LLK
CO+15.3 ± 0.1CH3OHEIShigorin, Filyugina, et al., 1966RDSH
C2H3O+11.54OHPITraeger, McLouglin, et al., 1982LBLHLM
C2H3O+11.75OHEIHaney and Franklin, 1969RDSH
C2H3O+11.4 ± 0.15OHEIShigorin, Filyugina, et al., 1966RDSH
OH+15.1?EIMajer, Patrick, et al., 1961RDSH

De-protonation reactions

MeCO2 anion + Hydrogen cation = Acetic acid

By formula: C2H3O2- + H+ = C2H4O2

Quantity Value Units Method Reference Comment
Δr348.2 ± 1.4kcal/molCIDCAngel and Ervin, 2006gas phase; B
Δr348.1 ± 2.2kcal/molG+TSTaft and Topsom, 1987gas phase; B
Δr348.6 ± 2.1kcal/molG+TSCumming and Kebarle, 1978gas phase; B
Δr348.7 ± 2.2kcal/molG+TSFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale; B
Δr343.20 ± 0.70kcal/molEIAEMuftakhov, Vasil'ev, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr341.1 ± 2.0kcal/molIMRETaft and Topsom, 1987gas phase; B
Δr341.5 ± 2.0kcal/molIMRECumming and Kebarle, 1978gas phase; B
Δr341.7 ± 2.0kcal/molIMREFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale; B

C2H3O2- + Hydrogen cation = Acetic acid

By formula: C2H3O2- + H+ = C2H4O2

Quantity Value Units Method Reference Comment
Δr368.0 ± 3.1kcal/molG+TSGrabowski and Cheng, 1989gas phase; B
Δr367.8 ± 4.6kcal/molEIAEMuftakhov, Vasil'ev, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr361.2 ± 3.0kcal/molIMRBGrabowski and Cheng, 1989gas phase; B

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

CH6N+ + Acetic acid = (CH6N+ • Acetic acid)

By formula: CH6N+ + C2H4O2 = (CH6N+ • C2H4O2)

Bond type: Hydrogen bonds of the type NH+-O between organics

Quantity Value Units Method Reference Comment
Δr22.0kcal/molPHPMSMeot-Ner, 1984gas phase; M
Δr21.4kcal/molPHPMSMeot-Ner, 1984gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr24.3cal/mol*KPHPMSMeot-Ner, 1984gas phase; M
Δr24.cal/mol*KN/AMeot-Ner, 1984gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
10.3459.PHPMSMeot-Ner, 1984gas phase; Entropy change calculated or estimated; M

CO3- + Acetic acid = C3H4O5-

By formula: CO3- + C2H4O2 = C3H4O5-

Quantity Value Units Method Reference Comment
Δr11.30 ± 0.20kcal/molIMREViidanoja, Reiner, et al., 1998gas phase; B

MeCO2 anion + Acetic acid = (MeCO2 anion • Acetic acid)

By formula: C2H3O2- + C2H4O2 = (C2H3O2- • C2H4O2)

Quantity Value Units Method Reference Comment
Δr29.3kcal/molPHPMSMeot-Ner and Sieck, 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr29.6cal/mol*KPHPMSMeot-Ner and Sieck, 1986gas phase; M

(MeCO2 anion • Acetic acid) + Acetic acid = (MeCO2 anion • 2Acetic acid)

By formula: (C2H3O2- • C2H4O2) + C2H4O2 = (C2H3O2- • 2C2H4O2)

Quantity Value Units Method Reference Comment
Δr19.6kcal/molPHPMSMeot-Ner and Sieck, 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr28.6cal/mol*KPHPMSMeot-Ner and Sieck, 1986gas phase; M

(MeCO2 anion • 2Acetic acid) + Acetic acid = (MeCO2 anion • 3Acetic acid)

By formula: (C2H3O2- • 2C2H4O2) + C2H4O2 = (C2H3O2- • 3C2H4O2)

Quantity Value Units Method Reference Comment
Δr16.2kcal/molPHPMSMeot-Ner and Sieck, 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr33.2cal/mol*KPHPMSMeot-Ner and Sieck, 1986gas phase; M

(MeCO2 anion • Acetic acid • Water) + Acetic acid = (MeCO2 anion • 2Acetic acid • Water)

By formula: (C2H3O2- • C2H4O2 • H2O) + C2H4O2 = (C2H3O2- • 2C2H4O2 • H2O)

Quantity Value Units Method Reference Comment
Δr19.69 ± 0.50kcal/molN/AMeot-ner, Elmore, et al., 1999gas phase; B
Δr16.2 ± 1.0kcal/molTDAsMeot-Ner and Sieck, 1986gas phase; B
Quantity Value Units Method Reference Comment
Δr10.81kcal/molTDAsMeot-ner, Elmore, et al., 1999gas phase; B
Δr6.2 ± 1.0kcal/molTDAsMeot-Ner and Sieck, 1986gas phase; B

(MeCO2 anion • 2Acetic acid • Water) + Acetic acid = (MeCO2 anion • 3Acetic acid • Water)

By formula: (C2H3O2- • 2C2H4O2 • H2O) + C2H4O2 = (C2H3O2- • 3C2H4O2 • H2O)

Quantity Value Units Method Reference Comment
Δr12.50 ± 0.60kcal/molN/AMeot-ner, Elmore, et al., 1999gas phase; B
Δr16.2 ± 1.0kcal/molTDAsMeot-Ner and Sieck, 1986gas phase; B
Quantity Value Units Method Reference Comment
Δr5.73kcal/molTDAsMeot-ner, Elmore, et al., 1999gas phase; B
Δr6.2 ± 1.0kcal/molTDAsMeot-Ner and Sieck, 1986gas phase; B

(MeCO2 anion • Water) + Acetic acid = (MeCO2 anion • Acetic acid • Water)

By formula: (C2H3O2- • H2O) + C2H4O2 = (C2H3O2- • C2H4O2 • H2O)

Quantity Value Units Method Reference Comment
Δr29.3 ± 1.0kcal/molTDAsMeot-Ner and Sieck, 1986gas phase; B
Quantity Value Units Method Reference Comment
Δr20.4 ± 1.6kcal/molTDAsMeot-Ner and Sieck, 1986gas phase; B

C2H4NO5- + Water + Acetic acid = C2H6NO6-

By formula: C2H4NO5- + H2O + C2H4O2 = C2H6NO6-

Quantity Value Units Method Reference Comment
Δr4.60 ± 0.20kcal/molIMREViidanoja, Reiner, et al., 2000gas phase; B

C2H5O+ + Acetic acid = (C2H5O+ • Acetic acid)

By formula: C2H5O+ + C2H4O2 = (C2H5O+ • C2H4O2)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr28.1kcal/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr29.5kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr28.3cal/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr27.9cal/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr21.2kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

(C2H5O+ • Acetic acid) + Acetic acid = (C2H5O+ • 2Acetic acid)

By formula: (C2H5O+ • C2H4O2) + C2H4O2 = (C2H5O+ • 2C2H4O2)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr18.5kcal/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr24.5cal/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M

(C2H5O+ • 2Acetic acid) + Acetic acid = (C2H5O+ • 3Acetic acid)

By formula: (C2H5O+ • 2C2H4O2) + C2H4O2 = (C2H5O+ • 3C2H4O2)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr13.1kcal/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr22.4cal/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M

(C2H5O+ • 3Acetic acid) + Acetic acid = (C2H5O+ • 4Acetic acid)

By formula: (C2H5O+ • 3C2H4O2) + C2H4O2 = (C2H5O+ • 4C2H4O2)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr12.kcal/molPHPMSMeot-Ner (Mautner), 1992gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr25.cal/mol*KN/AMeot-Ner (Mautner), 1992gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
6.2245.PHPMSMeot-Ner (Mautner), 1992gas phase; Entropy change calculated or estimated; M

C2H7O+ + Acetic acid = (C2H7O+ • Acetic acid)

By formula: C2H7O+ + C2H4O2 = (C2H7O+ • C2H4O2)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr29.3kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr28.4cal/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr20.8kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

C3H4O5- + Water + Acetic acid = C3H6O6-

By formula: C3H4O5- + H2O + C2H4O2 = C3H6O6-

Quantity Value Units Method Reference Comment
Δr4.60 ± 0.20kcal/molIMREViidanoja, Reiner, et al., 2000gas phase; B

C4H10NO+ + Acetic acid = (C4H10NO+ • Acetic acid)

By formula: C4H10NO+ + C2H4O2 = (C4H10NO+ • C2H4O2)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr18.4kcal/molPHPMSMeot-Ner, 1984, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr24.7cal/mol*KPHPMSMeot-Ner, 1984, 2gas phase; M

C6H5NO2- + Acetic acid = (C6H5NO2- • Acetic acid)

By formula: C6H5NO2- + C2H4O2 = (C6H5NO2- • C2H4O2)

Quantity Value Units Method Reference Comment
Δr22.60 ± 0.10kcal/molTDAsSieck, 1985gas phase; B,M
Quantity Value Units Method Reference Comment
Δr26.8cal/mol*KPHPMSSieck, 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr14.60 ± 0.20kcal/molTDAsSieck, 1985gas phase; B

phenoxide anion + Acetic acid = (phenoxide anion • Acetic acid)

By formula: C6H5O- + C2H4O2 = (C6H5O- • C2H4O2)

Quantity Value Units Method Reference Comment
Δr27.4kcal/molPHPMSMeot-Ner and Sieck, 1986gas phase; calculated from CH3COO-.C6H5OH; M
Quantity Value Units Method Reference Comment
Δr24.0cal/mol*KPHPMSMeot-Ner and Sieck, 1986gas phase; calculated from CH3COO-.C6H5OH; M

thiophenoxide anion + Acetic acid = (thiophenoxide anion • Acetic acid)

By formula: C6H5S- + C2H4O2 = (C6H5S- • C2H4O2)

Quantity Value Units Method Reference Comment
Δr20.3kcal/molPHPMSSieck and Meot-ner, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr26.2cal/mol*KPHPMSSieck and Meot-ner, 1989gas phase; M

thiophenoxide anion + Acetic acid = C8H9O2S-

By formula: C6H5S- + C2H4O2 = C8H9O2S-

Quantity Value Units Method Reference Comment
Δr20.30 ± 0.10kcal/molTDAsSieck and Meot-ner, 1989gas phase; B
Quantity Value Units Method Reference Comment
Δr12.50 ± 0.40kcal/molTDAsSieck and Meot-ner, 1989gas phase; B

C6H12NO3+ + Acetic acid = (C6H12NO3+ • Acetic acid)

By formula: C6H12NO3+ + C2H4O2 = (C6H12NO3+ • C2H4O2)

Bond type: Hydrogen bonds with polydentate bonding in positive ions

Quantity Value Units Method Reference Comment
Δr18.1kcal/molPHPMSMeot-Ner, 1984, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr27.2cal/mol*KPHPMSMeot-Ner, 1984, 2gas phase; M

Chlorine anion + Acetic acid = (Chlorine anion • Acetic acid)

By formula: Cl- + C2H4O2 = (Cl- • C2H4O2)

Quantity Value Units Method Reference Comment
Δr24.40 ± 0.20kcal/molTDAsSieck, 1985gas phase; B,M
Δr21.6 ± 2.0kcal/molTDAsYamdagni and Kebarle, 1971gas phase; B,M
Δr23.9 ± 2.0kcal/molIMRELarson and McMahon, 1984gas phase; B,M
Quantity Value Units Method Reference Comment
Δr19.6cal/mol*KPHPMSSieck, 1985gas phase; M
Δr24.0cal/mol*KN/ALarson and McMahon, 1984, 2gas phase; switching reaction(Cl-)t-C4H9OH, Entropy change calculated or estimated; French, Ikuta, et al., 1982; M
Δr19.3cal/mol*KPHPMSYamdagni and Kebarle, 1971gas phase; M
Quantity Value Units Method Reference Comment
Δr18.60 ± 0.30kcal/molTDAsSieck, 1985gas phase; B
Δr15.8 ± 2.0kcal/molTDAsYamdagni and Kebarle, 1971gas phase; B
Δr16.7 ± 2.0kcal/molIMRELarson and McMahon, 1984gas phase; B,M

Fluorine anion + Acetic acid = (Fluorine anion • Acetic acid)

By formula: F- + C2H4O2 = (F- • C2H4O2)

Quantity Value Units Method Reference Comment
Δr44.1 ± 2.0kcal/molIMRELarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M
Quantity Value Units Method Reference Comment
Δr25.6cal/mol*KN/ALarson and McMahon, 1983gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
Δr36.5 ± 2.0kcal/molIMRELarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M

Iodide + Acetic acid = (Iodide • Acetic acid)

By formula: I- + C2H4O2 = (I- • C2H4O2)

Quantity Value Units Method Reference Comment
Δr16.9 ± 1.0kcal/molTDAsCaldwell and Kebarle, 1984gas phase; B,M
Quantity Value Units Method Reference Comment
Δr21.3cal/mol*KPHPMSCaldwell and Kebarle, 1984gas phase; M
Quantity Value Units Method Reference Comment
Δr10.5 ± 1.0kcal/molTDAsCaldwell and Kebarle, 1984gas phase; B

Lithium ion (1+) + Acetic acid = (Lithium ion (1+) • Acetic acid)

By formula: Li+ + C2H4O2 = (Li+ • C2H4O2)

Quantity Value Units Method Reference Comment
Δr41.5kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 interpolated; M

Nitrogen oxide anion + Acetic acid = C2H4NO4-

By formula: NO2- + C2H4O2 = C2H4NO4-

Quantity Value Units Method Reference Comment
Δr12.20 ± 0.20kcal/molIMREViidanoja, Reiner, et al., 1998gas phase; B

NO3 anion + Acetic acid = C2H4NO5-

By formula: NO3- + C2H4O2 = C2H4NO5-

Quantity Value Units Method Reference Comment
Δr11.80 ± 0.20kcal/molIMREViidanoja, Reiner, et al., 1998gas phase; B

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, Ion clustering data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Weltner W., 1955
Weltner W., Jr., The vibrational spectrum, associative and thermodynamic properties of acetic acid vapor, J. Am. Chem. Soc., 1955, 77, 3941-3950. [all data]

Chao J., 1986
Chao J., Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties, J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]

Halford J.O., 1941
Halford J.O., The entropy of acetic acid, J. Chem. Phys., 1941, 9, 859-863. [all data]

Chao J., 1978
Chao J., Ideal gas thermodynamic properties of methanoic and ethanoic acids, J. Phys. Chem. Ref. Data, 1978, 7, 363-377. [all data]

Steele, Chirico, et al., 1997
Steele, W.V.; Chirico, R.D.; Cowell, A.B.; Knipmeyer, S.E.; Nguyen, A., Thermodynamic properties and ideal-gas enthalpies of formation for 2-aminoisobutyric acid (2-methylalanine), acetic acid, (4-methyl-3-penten-2-one), 4-methylpent-1-ene, 2,2'-bis(phenylthio)propane, and glycidyl phenyl ether (1,2-epoxy-3-phenoxypropane), J. Chem. Eng. Data, 1997, 42, 1052-1066. [all data]

Lebedeva, 1964
Lebedeva, N.D., Heats of combustion of monocarboxylic acids, Russ. J. Phys. Chem. (Engl. Transl.), 1964, 38, 1435-1437. [all data]

Evans and Skinner, 1959
Evans, F.W.; Skinner, H.A., The heat of combustion of acetic acid, Trans. Faraday Soc., 1959, 55, 260-261. [all data]

Carson and Skinner, 1949
Carson, A.S.; Skinner, H.A., 201. Carbon-halogen bond energies in the acetyl halides, J. Chem. Soc., 1949, 936-939. [all data]

Schjanberg, 1935
Schjanberg, E., Die Verbrennungswarmen und die Refraktionsdaten einiger chlorsubstituierter Fettsauren und Ester., Z. Phys. Chem. Abt. A, 1935, 172, 197-233. [all data]

Martin and Andon, 1982
Martin, J.F.; Andon, R.J.L., Thermodynamic properties of organic oxygen compounds. Part LII. Molar heat capacity of ethanoic, propanoic, and butanoic acids, J. Chem. Thermodynam., 1982, 14, 679-688. [all data]

Parks and Kelley, 1925
Parks, G.S.; Kelley, K.K., Thermal data on organic compounds. II. The heat capacities of five organic compounds. The entropies and free energies of some homologous series of aliphatic compounds, J. Am. Chem. Soc., 1925, 47, 2089-2097. [all data]

Swietoslawski and Zielenkiewicz, 1958
Swietoslawski, W.; Zielenkiewicz, A., Mean specific heat of some ternary azeotropes, Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1958, 6, 365-366. [all data]

Radulescu and Jula, 1934
Radulescu, D.; Jula, O., Beiträge zur Bestimmung der Abstufung der Polarität des Aminstickstoffes in den organischen Verbindungen, Z. Phys. Chem., 1934, B26, 390-393. [all data]

Neumann, 1932
Neumann, M.B., Die Untersuchung der Wärmekapazität vom binären System CH3COOH + H2O bei verschiedenen Temperaturen, Z. Phys. Chem., 1932, A158, 258-264. [all data]

Parks, Kelley, et al., 1929
Parks, G.S.; Kelley, K.K.; Huffman, H.M., Thermal data on organic compounds. V. A revision of the entropies and free energies of nineteen organic compounds, J. Am. Chem. Soc., 1929, 51, 1969-1973. [all data]

Pickering, 1895
Pickering, S.U., A comparison of some properties of acetic acid and its chloro- and bromo-derivatives, J. Chem. Soc., 1895, 67, 664-684. [all data]

von Reis, 1881
von Reis, M.A., Die specifische Wärme flüssiger organischer Verbindungen und ihre Beziehung zu deren Moleculargewicht, Ann. Physik [3], 1881, 13, 447-464. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Traeger, McLouglin, et al., 1982
Traeger, J.C.; McLouglin, R.G.; Nicholson, A.J.C., Heat of formation for acetyl cation in the gas phase, J. Am. Chem. Soc., 1982, 104, 5318. [all data]

Holmes, Fingas, et al., 1981
Holmes, J.L.; Fingas, M.; Lossing, F.P., Towards a general scheme for estimating the heats of formation of organic ions in the gas phase. Part I. Odd-electron cations, Can. J. Chem., 1981, 59, 80. [all data]

Holmes and Lossing, 1980
Holmes, J.L.; Lossing, F.P., Thermochemistry and unimolecular reactions of ionized acetic acid and its enol in the gas phase., J. Am. Chem. Soc., 1980, 102, 3732. [all data]

Holmes and Lossing, 1980, 2
Holmes, J.L.; Lossing, F.P., Gas-phase heats of formation of keto and enol ions of carbonyl compounds., J. Am. Chem. Soc., 1980, 102, 1591. [all data]

Akopyan and Villem, 1976
Akopyan, M.E.; Villem, Ya.Ya., Ion-molecule reactions in the photoionization of formic and acetic acid vapors, High Energy Chem., 1976, 10, 24. [all data]

Watanabe, Yokoyama, et al., 1974
Watanabe, I.; Yokoyama, Y.; Ikeda, S., Vibrational structures in the He(I) photoelectron spectra of carboxylic acids, Bull. Chem. Soc. Jpn., 1974, 47, 627. [all data]

Knowles and Nicholson, 1974
Knowles, D.J.; Nicholson, A.J.C., Ionization energies of formic and acetic acid monomers, J. Chem. Phys., 1974, 60, 1180. [all data]

Watanabe, Yokoyama, et al., 1973
Watanabe, I.; Yokoyama, Y.; Ikeda, S., Lone pair ionization potentials of carboxylic acids determined by He(I) photoelectron spectroscopy, Bull. Chem. Soc. Jpn., 1973, 46, 1959. [all data]

Thomas, 1972
Thomas, R.K., Photoelectron spectroscopy of hydrogen-bonded systems: spectra of monomers, dimers and mixed complexes of carboxylic acides, Proc. R. Soc. London A:, 1972, 331, 249. [all data]

Sweigart and Turner, 1972
Sweigart, D.A.; Turner, D.W., Lone pair orbitals and their interactions studied by photoelectron spectroscopy. I. Carboxylic acids and their derivatives, J. Am. Chem. Soc., 1972, 94, 5592. [all data]

Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J., Ionization potentials of some molecules, J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]

Vilesov, 1960
Vilesov, F.I., The photoionization of vapors of compounds whose molecules contain carbonyl groups, Dokl. Phys. Chem., 1960, 132, 521, In original 1332. [all data]

Watanabe, 1957
Watanabe, K., Ionization potentials of some molecules, J. Chem. Phys., 1957, 26, 542. [all data]

Von Niessen, Bieri, et al., 1980
Von Niessen, W.; Bieri, G.; Asbrink, L., 30.4 nm He(II) photoelectron spectra of organic molecules. Part III. Oxo-compounds (C,H,O), J. Electron Spectrosc. Relat. Phenom., 1980, 21, 175. [all data]

Carnovale, Gan, et al., 1980
Carnovale, F.; Gan, T.H.; Peel, J.B., Photoelectron spectroscopic studies of the monomers and dimers of acetic and trifluoracetic acids, J. Electron Spectrosc. Relat. Phenom., 1980, 20, 53. [all data]

Benoit and Harrison, 1977
Benoit, F.M.; Harrison, A.G., Predictive value of proton affinity. Ionization energy correlations involving oxygenated molecules, J. Am. Chem. Soc., 1977, 99, 3980. [all data]

Rao, 1975
Rao, C.N.R., Lone-pair ionization bands of chromophores in the photoelectron spectra of organic molecules, Indian J. Chem., 1975, 13, 950. [all data]

Kimura, Katsumata, et al., 1975
Kimura, K.; Katsumata, S.; Yamazaki, T.; Wakabayashi, H., UV photoelectron spectra and sum rule consideration; out-of-plane orbitals of unsaturated compounds with planar-skeleton structure, J. Electron Spectrosc. Relat. Phenom., 1975, 6, 41. [all data]

Green and Hayes, 1975
Green, J.C.; Hayes, A.J., Ionization energies of an Mo-Mo quadruple bond; a He(I) photoelectron study of some molybdenum-dycarboxylate dimers, Chem. Phys. Lett., 1975, 31, 306. [all data]

Stepanov, Perov, et al., 1988
Stepanov, A.N.; Perov, A.A.; Kabanov, S.P.; Simonov, A.P., Formation of long-lived, highly excited atoms during dissociative excitation of CH3CN, CH3CH2OH, CH3COOH, HCOOH, and C4H4S molecules on electron impact, Russ. J. Phys. Chem., 1988, 22, 81. [all data]

Haney and Franklin, 1969
Haney, M.A.; Franklin, J.L., Excess energies in mass spectra of some oxygen-containing organic compounds, J. Chem. Soc. Faraday Trans., 1969, 65, 1794. [all data]

Shigorin, Filyugina, et al., 1966
Shigorin, D.N.; Filyugina, A.D.; Potapov, V.K., Ionization and dissociation of molecules of acetaldehyde, acetone, and acetic acid on electron impact, Teor. i Eksperim. Khim., 1966, 2, 554, In original 417. [all data]

Selim and Helal, 1981
Selim, E.T.M.; Helal, A.I., Heat of formation of CH2=OH+ fragment ion, Indian J. Pure Appl. Phys., 1981, 19, 977. [all data]

Majer, Patrick, et al., 1961
Majer, J.R.; Patrick, C.R.; Robb, J.C., Appearance potentials of the acetyl radical-ion, J. Chem. Soc. Faraday Trans., 1961, 57, 14. [all data]

Angel and Ervin, 2006
Angel, L.A.; Ervin, K.M., Gas-phase acidities and O-H bond dissociation enthalpies of phenol, 3-methylphenol, 2,4,6-trimethylphenol, and ethanoic acid, J. Phys. Chem. A, 2006, 110, 35, 10392-10403, https://doi.org/10.1021/jp0627426 . [all data]

Taft and Topsom, 1987
Taft, R.W.; Topsom, R.D., The Nature and Analysis of Substituent Effects, Prog. Phys. Org. Chem., 1987, 16, 1. [all data]

Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P., Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A), Can. J. Chem., 1978, 56, 1. [all data]

Fujio, McIver, et al., 1981
Fujio, M.; McIver, R.T., Jr.; Taft, R.W., Effects on the acidities of phenols from specific substituent-solvent interactions. Inherent substituent parameters from gas phase acidities, J. Am. Chem. Soc., 1981, 103, 4017. [all data]

Muftakhov, Vasil'ev, et al., 1999
Muftakhov, M.V.; Vasil'ev, Y.V.; Mazunov, V.A., Determination of electron affinity of carbonyl radicals by means of negative ion mass spectrometry, Rapid Commun. Mass Spectrom., 1999, 13, 12, 1104-1108, https://doi.org/10.1002/(SICI)1097-0231(19990630)13:12<1104::AID-RCM619>3.0.CO;2-C . [all data]

Grabowski and Cheng, 1989
Grabowski, J.J.; Cheng, X., Gas-Phase Formation of the Enolate Monoanion of Acetic Acid by Proton Abstraction, J. Am. Chem. Soc., 1989, 111, 8, 3106, https://doi.org/10.1021/ja00190a078 . [all data]

Meot-Ner, 1984
Meot-Ner, (Mautner)M., The Ionic Hydrogen Bond and Ion Solvation. 1. -NH+ O-, -NH+ N- and -OH+ O- Bonds. Correlations with Proton Affinity. Deviations Due to Structural Effects, J. Am. Chem. Soc., 1984, 106, 5, 1257, https://doi.org/10.1021/ja00317a015 . [all data]

Viidanoja, Reiner, et al., 1998
Viidanoja, J.; Reiner, T.; Arnold, F., Laboratory Investigations of Negative Ion-Molecule Reactions of Formic and Acetic Acid., Int. J. Mass Spectrom., 1998, 181, 1-3, 31, https://doi.org/10.1016/S1387-3806(98)14151-9 . [all data]

Meot-Ner and Sieck, 1986
Meot-Ner, M.; Sieck, L.W., The ionic hydrogen bond and ion solvation. 5. OH...O- bonds. Gas phase solvation and clustering of alkoxide and carboxylate anions, J. Am. Chem. Soc., 1986, 108, 7525. [all data]

Meot-ner, Elmore, et al., 1999
Meot-ner, M.; Elmore, D.E.; Scheiner, S., Ionic Hydrogen Bond Effects on the Acidities, Basicities, Solvation, Solvent Bridging and Self-assembly of Carboxylic Groups, J. Am. Chem. Soc., 1999, 121, 33, 7625, https://doi.org/10.1021/ja982173i . [all data]

Viidanoja, Reiner, et al., 2000
Viidanoja, J.; Reiner, T.; Kiendler, A.; Grimm, F.; Arnold, F., Laboratory investigations of negative ion molecule reactions of propionic, butyric, glyoxylic, pyruvic, and pinonic acids, Int. J. Mass Spectrom., 2000, 194, 1, 53-68, https://doi.org/10.1016/S1387-3806(99)00172-4 . [all data]

Meot-Ner (Mautner), 1992
Meot-Ner (Mautner), M., Intermolecular Forces in Organic Clusters, J. Am. Chem. Soc., 1992, 114, 9, 3312, https://doi.org/10.1021/ja00035a024 . [all data]

Larson and McMahon, 1982
Larson, J.W.; McMahon, T.B., Formation, Thermochemistry, and Relative Stabilities of Proton - Bound dimers of Oxygen n - Donor Bases from Ion Cyclotron Resonance Solvent - Exchange Equilibria Measurements, J. Am. Chem. Soc., 1982, 104, 23, 6255, https://doi.org/10.1021/ja00387a016 . [all data]

Grimsrud and Kebarle, 1973
Grimsrud, E.P.; Kebarle, P., Gas Phase Ion Equilibria Studies of the Solvation of the Hydrogen Ion by Methanol, Dimethyl Ether and Water. Effect of Hydrogen Bonding, J. Am. Chem. Soc., 1973, 95, 24, 7939, https://doi.org/10.1021/ja00805a002 . [all data]

Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D., Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules, J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]

Keesee and Castleman, 1986
Keesee, R.G.; Castleman, A.W., Jr., Thermochemical data on Ggs-phase ion-molecule association and clustering reactions, J. Phys. Chem. Ref. Data, 1986, 15, 1011. [all data]

Meot-Ner, 1984, 2
Meot-Ner, (Mautner), The Ionic Hydrogen Bond. 4. Intramolecular and Multiple Bonds. Proton Affinities, Hydration and Complexes of Amides and Amino Acid Derivatives, J. Am. Chem. Soc., 1984, 106, 2, 278, https://doi.org/10.1021/ja00314a003 . [all data]

Sieck, 1985
Sieck, L.W., Thermochemistry of Solvation of NO2- and C6H5NO2- by Polar Molecules in the Vapor Phase. Comparison with Cl- and Variation with Ligand Structure., J. Phys. Chem., 1985, 89, 25, 5552, https://doi.org/10.1021/j100271a049 . [all data]

Sieck and Meot-ner, 1989
Sieck, L.W.; Meot-ner, M., Ionic Hydrogen Bond and Ion Solvation. 8. RS-..HOR Bond Strengths. Correlation with Acidities., J. Phys. Chem., 1989, 93, 4, 1586, https://doi.org/10.1021/j100341a079 . [all data]

Yamdagni and Kebarle, 1971
Yamdagni, R.; Kebarle, P., Hydrogen bonding energies to negative ions from gas phase measurements of ionic equilibria, J. Am. Chem. Soc., 1971, 93, 7139. [all data]

Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria, J. Am. Chem. Soc., 1984, 106, 517. [all data]

Larson and McMahon, 1984, 2
Larson, J.W.; McMahon, T.B., Gas phase negative ion chemistry of alkylchloroformates, Can. J. Chem., 1984, 62, 675. [all data]

French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P., Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-, Can. J. Chem., 1982, 60, 1907. [all data]

Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B., Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements, J. Am. Chem. Soc., 1983, 105, 2944. [all data]

Wenthold and Squires, 1995
Wenthold, P.G.; Squires, R.R., Bond dissociation energies of F2(-) and HF2(-). A gas-phase experimental and G2 theoretical study, J. Phys. Chem., 1995, 99, 7, 2002, https://doi.org/10.1021/j100007a034 . [all data]

Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P., Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions, J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014 . [all data]

Caldwell and Kebarle, 1984
Caldwell, G.; Kebarle, P., Binding energies and structural effects in halide anion-ROH and -RCOOH complexes from gas phase equilibria measurements, J. Am. Chem. Soc., 1984, 106, 967. [all data]

Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L., Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases, J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050 . [all data]

Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P., Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n, J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, Ion clustering data, References