Propane, 1-ethoxy-
- Formula: C5H12O
- Molecular weight: 88.1482
- IUPAC Standard InChIKey: NVJUHMXYKCUMQA-UHFFFAOYSA-N
- CAS Registry Number: 628-32-0
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Ether, ethyl propyl; Ethyl n-propyl ether; Ethyl propyl ether; Propyl ethyl ether; 1-Ethoxypropane; n-C3H7OC2H5; UN 2615
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -272.2 ± 1.2 | kJ/mol | Ccb | Fenwick, Harrop, et al., 1975 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°gas | 388.1 | J/mol*K | N/A | Andon R.J.L., 1975 | GT |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -303.6 ± 1.2 | kJ/mol | Ccb | Fenwick, Harrop, et al., 1975 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -3378.97 | kJ/mol | Ccb | Fenwick, Harrop, et al., 1975 | Corresponding ΔfHºliquid = -303.56 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 295.0 | J/mol*K | N/A | Andon and Martin, 1975 | DH |
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
197.2 | 298.15 | Andon and Martin, 1975 | T = 10 to 350 K.; DH |
197.5 | 298.15 | Fenwick, Harrop, et al., 1975, 2 | DH |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 336.8 | K | N/A | Weast and Grasselli, 1989 | BS |
Tboil | 336.3 | K | N/A | Majer and Svoboda, 1985 | |
Tboil | 336.4 | K | N/A | Spurr and Zeitlin, 1950 | Uncertainty assigned by TRC = 0.5 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 146.45 | K | N/A | Timmermans, 1952 | Uncertainty assigned by TRC = 0.4 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 145.65 | K | N/A | Andon and Martin, 1975, 2 | Uncertainty assigned by TRC = 0.05 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 500.2 | K | N/A | Majer and Svoboda, 1985 | |
Tc | 500.23 | K | N/A | Ambrose, Broderick, et al., 1974 | Uncertainty assigned by TRC = 0.2 K; TRC |
Tc | 500.6 | K | N/A | Berthoud and Brum, 1924 | Uncertainty assigned by TRC = 0.5 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 33.70 | bar | N/A | Ambrose, Broderick, et al., 1974 | Uncertainty assigned by TRC = 0.06 bar; TRC |
Pc | 32.50 | bar | N/A | Berthoud and Brum, 1924 | Uncertainty assigned by TRC = 0.4053 bar; vapor pressure at Tc; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 2.951 | mol/l | N/A | Berthoud and Brum, 1924 | Uncertainty assigned by TRC = 0.02 mol/l; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 31.4 ± 0.1 | kJ/mol | AVG | N/A | Average of 6 values; Individual data points |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
28.94 | 336.3 | N/A | Majer and Svoboda, 1985 | |
33.0 | 279. | A | Stephenson and Malanowski, 1987 | Based on data from 264. to 359. K. See also Ambrose, Ellender, et al., 1976.; AC |
29. | 336. | N/A | Ambrose, Ellender, et al., 1976 | Based on data from 264. to 359. K.; AC |
31.6 | 308. | N/A | Cidlinský and Polák, 1969 | Based on data from 293. to 335. K.; AC |
Enthalpy of vaporization
ΔvapH =
A exp(-βTr) (1 − Tr)β
ΔvapH =
Enthalpy of vaporization (at saturation pressure)
(kJ/mol)
Tr = reduced temperature (T / Tc)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A (kJ/mol) | β | Tc (K) | Reference | Comment |
---|---|---|---|---|---|
298. to 358. | 48.52 | 0.289 | 500.2 | Majer and Svoboda, 1985 |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference |
---|---|---|---|---|
293.53 to 335.66 | 4.12138 | 1194.642 | -46.015 | Cidlinský and Polák, 1969 |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
8.395 | 145.65 | Andon and Martin, 1975 | DH |
8.39 | 145.7 | Domalski and Hearing, 1996 | AC |
Entropy of fusion
ΔfusS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
57.64 | 145.65 | Andon and Martin, 1975 | DH |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
View reactions leading to C5H12O+ (ion structure unspecified)
Ionization energy determinations
IE (eV) | Method | Reference |
---|---|---|
9.5 ± 0.1 | EI | Holmes, Fingas, et al., 1981 |
Gas Chromatography
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Normal alkane RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Polydimethyl siloxanes | 590. | Zenkevich, Chupalov, et al., 1996 | Program: not specified |
Packed | Apiezon L | 566.5 | Keiko, Prokop'ev, et al., 1972 | Program: not specified |
Packed | Squalane | 572.1 | Keiko, Prokop'ev, et al., 1972 | Program: not specified |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Gas Chromatography, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Fenwick, Harrop, et al., 1975
Fenwick, J.O.; Harrop, D.; Head, A.J.,
Thermodynamic properties of organic oxygen compounds. 41. Enthalpies of formation of eight ethers,
J. Chem. Thermodyn., 1975, 7, 943-954. [all data]
Andon R.J.L., 1975
Andon R.J.L.,
Thermodynamic properties of organic oxygen compounds. 40. Heat capacity and entropy of six ethers,
J. Chem. Thermodyn., 1975, 7, 593-606. [all data]
Andon and Martin, 1975
Andon, R.J.L.; Martin, J.F.,
Thermodynamic properties of organic oxygen compounds. 40. Heat capacity and entropy of six ethers,
J. Chem. Thermodynam., 1975, 7, 593-606. [all data]
Fenwick, Harrop, et al., 1975, 2
Fenwick, J.O.; Harrop, D.; Head, A.J.,
Thermodynamic properties of organic oxygen compounds. 41. Enthalpies of formation of eight ethers,
J. Chem. Thermodynam., 1975, 7, 944-954. [all data]
Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Spurr and Zeitlin, 1950
Spurr, R.A.; Zeitlin, H.,
The dipole moments of some aliphatic ethers,
J. Am. Chem. Soc., 1950, 72, 4832. [all data]
Timmermans, 1952
Timmermans, J.,
Freezing points of organic compounds. VVI New determinations.,
Bull. Soc. Chim. Belg., 1952, 61, 393. [all data]
Andon and Martin, 1975, 2
Andon, R.J.L.; Martin, J.F.,
Thermodynamic Properties of Organic Oxygen Compounds 40. Heat Capacity and Entropy of Six Ethers,
J. Chem. Thermodyn., 1975, 7, 593. [all data]
Ambrose, Broderick, et al., 1974
Ambrose, D.; Broderick, B.E.; Townsend, R.,
The Critical Temperatures and Pressures of Thirty Organic Compounds,
J. Appl. Chem. Biotechnol., 1974, 24, 359. [all data]
Berthoud and Brum, 1924
Berthoud, A.; Brum, R.,
Physical Properties of Some Organic Compounds.,
J. Chim. Phys. Phys.-Chim. Biol., 1924, 21, 143-60. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Ambrose, Ellender, et al., 1976
Ambrose, D.; Ellender, J.H.; Sprake, C.H.S.; Townsend, R.,
Thermodynamic properties of organic oxygen compounds XLIII. Vapour pressures of some ethers,
The Journal of Chemical Thermodynamics, 1976, 8, 2, 165-178, https://doi.org/10.1016/0021-9614(76)90090-2
. [all data]
Cidlinský and Polák, 1969
Cidlinský, J.; Polák, J.,
Saturated vapour pressures of some ethers,
Collect. Czech. Chem. Commun., 1969, 34, 4, 1317-1321, https://doi.org/10.1135/cccc19691317
. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Holmes, Fingas, et al., 1981
Holmes, J.L.; Fingas, M.; Lossing, F.P.,
Towards a general scheme for estimating the heats of formation of organic ions in the gas phase. Part I. Odd-electron cations,
Can. J. Chem., 1981, 59, 80. [all data]
Zenkevich, Chupalov, et al., 1996
Zenkevich, I.G.; Chupalov, A.A.; Herzschuh, R.,
Correlation of the Increments of Gas Chromatographic Retention Indices with the Differences of Innermolecular Energies of Reagents and Products of Chemical Reactions,
Zh. Org. Khim. (Rus.), 1996, 32, 11, 1685-1691. [all data]
Keiko, Prokop'ev, et al., 1972
Keiko, V.V.; Prokop'ev, B.V.; Kuz'menko, L.P.; Kalinina, N.A.; Modonov, V.B.,
The use of an additive scheme of calculation of the indices of retention in gas-liquid chromatography communication. 3. Some regularities in the manifestation of the inductive effect,
Izv. Akad. Nauk Kaz. SSR Ser. Khim., 1972, 12, 2629-2633. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Gas Chromatography, References
- Symbols used in this document:
Cp,liquid Constant pressure heat capacity of liquid Pc Critical pressure S°gas Entropy of gas at standard conditions S°liquid Entropy of liquid at standard conditions Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.