2-Hexanol

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Donald R. Burgess, Jr.

Quantity Value Units Method Reference Comment
Δfgas-333.5 ± 2.2kJ/molN/AWiberg, Wasserman, et al., 1984Value computed using ΔfHliquid° value of -392±0.88 kj/mol from Wiberg, Wasserman, et al., 1984 and ΔvapH° value of 58.47±2 kj/mol from missing citation.
Δfgas-335.6 ± 2.2kJ/molN/AWiberg and Wasserman, 1981Value computed using ΔfHliquid° value of -394.1±0.88 kj/mol from Wiberg and Wasserman, 1981 and ΔvapH° value of 58.47±2 kj/mol from missing citation.
Δfgas-329.9 ± 2.1kJ/molN/ASachek, Peshchenko, et al., 1974Value computed using ΔfHliquid° value of -388.4±0.75 kj/mol from Sachek, Peshchenko, et al., 1974 and ΔvapH° value of 58.47±2 kj/mol from missing citation.

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-392.0 ± 0.88kJ/molCmWiberg, Wasserman, et al., 1984Heat of hydration, see Wiberg and Wasserman, 1981; ALS
Δfliquid-394.1 ± 0.88kJ/molCmWiberg and Wasserman, 1981ALS
Δfliquid-388.4 ± 0.75kJ/molCcbSachek, Peshchenko, et al., 1974Heat of combustion not reported; ALS

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
256.31298.15Tanaka, Luo, et al., 1988DH
260.34298.15Ortega, 1986DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos

Quantity Value Units Method Reference Comment
Tboil411. ± 3.KAVGN/AAverage of 24 values; Individual data points
Quantity Value Units Method Reference Comment
Tc583. ± 10.KAVGN/AAverage of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Pc33.1 ± 0.2barN/AGude and Teja, 1995 
Pc33.10barN/ARosenthal and Teja, 1990Uncertainty assigned by TRC = 0.20 bar; TRC
Pc33.10barN/ARosenthal and Teja, 1989Uncertainty assigned by TRC = 0.20 bar; TRC
Quantity Value Units Method Reference Comment
Vc0.384l/molN/AGude and Teja, 1995 
Quantity Value Units Method Reference Comment
ρc2.60 ± 0.02mol/lN/AGude and Teja, 1995 
ρc2.60mol/lN/AAnselme and Teja, 1988Uncertainty assigned by TRC = 0.06 mol/l; TRC
Quantity Value Units Method Reference Comment
Δvap58.47kJ/molN/AMajer and Svoboda, 1985 
Δvap57.0 ± 0.2kJ/molGSRoganov, Pisarev, et al., 2005Based on data from 274. to 309. K.; AC
Δvap58.3 ± 0.3kJ/molGSKulikov, Verevkin, et al., 2001Based on data from 274. to 309. K.; AC

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
41.01413.N/AMajer and Svoboda, 1985 
61.8239.N/AN'Guimbi, Berro, et al., 1999Based on data from 224. to 323. K.; AC
48.7375.AStephenson and Malanowski, 1987Based on data from 360. to 415. K.; AC
47.8366.AStephenson and Malanowski, 1987Based on data from 351. to 412. K. See also Brazhnikov, Andreevskii, et al., 1975.; AC
56.8 ± 0.2313.CMajer, Svoboda, et al., 1985AC
55.0 ± 0.2328.CMajer, Svoboda, et al., 1985AC
53.0 ± 0.2343.CMajer, Svoboda, et al., 1985AC
50.7 ± 0.2358.CMajer, Svoboda, et al., 1985AC
49.2 ± 0.2368.CMajer, Svoboda, et al., 1985AC
52.4352.N/ASachek, Markovnik, et al., 1984Based on data from 337. to 413. K.; AC
53.1316.N/AWilhoit and Zwolinski, 1973Based on data from 301. to 415. K.; AC
49.7356.IHovorka, Lankelma, et al., 1938Based on data from 298. to 413. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-αTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) 313. to 368.
A (kJ/mol) 65.48
α -1.4306
β 1.1616
Tc (K) 568.2
ReferenceMajer and Svoboda, 1985

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
298. to 415.5.519322076.433-36.261Hovorka, Lankelma, et al., 1938Coefficents calculated by NIST from author's data.

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C6H13O- + Hydrogen cation = 2-Hexanol

By formula: C6H13O- + H+ = C6H14O

Quantity Value Units Method Reference Comment
Δr1560. ± 8.4kJ/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Quantity Value Units Method Reference Comment
Δr1532. ± 8.8kJ/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B

2-Hexanol = 1-Hexene + Water

By formula: C6H14O = C6H12 + H2O

Quantity Value Units Method Reference Comment
Δr33.8 ± 0.3kJ/molCmWiberg, Wasserman, et al., 1984liquid phase; Heat of hydration, see Wiberg and Wasserman, 1981; ALS

1-Hexene + Water = 2-Hexanol

By formula: C6H12 + H2O = C6H14O

Quantity Value Units Method Reference Comment
Δr-34.5 ± 0.3kJ/molCmWiberg and Wasserman, 1981liquid phase; solvent: Water; Hydration; ALS

Acetic acid, trifluoro-, anhydride + 2-Hexanol = Trifluoroacetic acid + Acetic acid, 2,2,2-trifluoro-, 1-methylpentyl ester

By formula: C4F6O3 + C6H14O = C2HF3O2 + C8H13F3O2

Quantity Value Units Method Reference Comment
Δr-89.33 ± 0.04kJ/molCmWiberg and Wasserman, 1981liquid phase; ALS

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi

Ionization energy determinations

IE (eV) Method Reference Comment
9.80 ± 0.03PEAshmore and Burgess, 1977LLK
10.24PEAshmore and Burgess, 1977Vertical value; LLK

De-protonation reactions

C6H13O- + Hydrogen cation = 2-Hexanol

By formula: C6H13O- + H+ = C6H14O

Quantity Value Units Method Reference Comment
Δr1560. ± 8.4kJ/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Quantity Value Units Method Reference Comment
Δr1532. ± 8.8kJ/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B

Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW-1207
NIST MS number 230747

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillarySE-30100.780.3Tudor, 199740. m/0.35 mm/0.35 μm
CapillaryOV-101150.777.7Cha and Lee, 1994Column length: 20. m; Column diameter: 0.5 mm
CapillaryOV-101180.787.6Cha and Lee, 1994Column length: 20. m; Column diameter: 0.5 mm
CapillaryOV-101150.775.9Cha and Lee, 1994Column length: 20. m; Column diameter: 0.5 mm
CapillaryOV-101180.778.5Cha and Lee, 1994Column length: 20. m; Column diameter: 0.5 mm
CapillaryOV-10180.803.1Boneva, 1987N2; Column length: 100. m; Column diameter: 0.27 mm
CapillaryOV-10190.804.4Boneva, 1987N2; Column length: 100. m; Column diameter: 0.27 mm
PackedApiezon L120.766.Bogoslovsky, Anvaer, et al., 1978Celite 545
PackedApiezon L160.775.Bogoslovsky, Anvaer, et al., 1978Celite 545
PackedSE-30100.787.Pías and Gascó, 1975Ar, Chromosorb W AW DMCS HP (80-100 mesh); Column length: 1. m
PackedSE-30120.786.Pías and Gascó, 1975Ar, Chromosorb W AW DMCS HP (80-100 mesh); Column length: 1. m
PackedSE-30140.783.Pías and Gascó, 1975Ar, Chromosorb W AW DMCS HP (80-100 mesh); Column length: 1. m
PackedSqualane50.766.Mira and Sanchez, 1970Chromosorb G

Kovats' RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryBP-1787.Raina, Srivastava, et al., 200225. m/0.55 mm/0.25 μm, N2, 5. K/min, 220. C @ 15. min; Tstart: 60. C
CapillaryBP-1784.Raina, Srivastava, et al., 200125. m/0.55 mm/0.25 μm, N2, 5. K/min, 220. C @ 15. min; Tstart: 60. C
CapillaryDB-1788.Takeoka, Flath, et al., 199060. m/0.32 mm/0.25 μm, He, 30. C @ 4. min, 2. K/min; Tend: 210. C
CapillaryDB-1789.Takeoka, Flath, et al., 199060. m/0.32 mm/0.25 μm, He, 30. C @ 4. min, 2. K/min; Tend: 210. C
CapillarySE-54804.Rembold, Wallner, et al., 198930. m/0.25 mm/0.25 μm, He, 0. C @ 12. min, 12. K/min; Tend: 250. C
CapillaryOV-101790.Ohnishi and Shibamoto, 19842. K/min; Column length: 50. m; Column diameter: 0.23 mm; Tstart: 80. C; Tend: 200. C
CapillaryOV-101790.Ohnishi and Shibamoto, 19842. K/min; Column length: 50. m; Column diameter: 0.23 mm; Tstart: 80. C; Tend: 200. C

Kovats' RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryCarbowax 20M80.1254.Boneva, 1987N2; Column length: 50. m; Column diameter: 0.23 mm
CapillaryCarbowax 20M90.1254.Boneva, 1987N2; Column length: 50. m; Column diameter: 0.23 mm
PackedPolyethylene Glycol 4000100.1229.Bonastre and Grenier, 1968Chromosorb P; Column length: 6. m
PackedPolyethylene Glycol 4000120.1219.Bonastre and Grenier, 1968Chromosorb P; Column length: 6. m
PackedPolyethylene Glycol 4000140.1207.Bonastre and Grenier, 1968Chromosorb P; Column length: 6. m
PackedPolyethylene Glycol 400080.1240.Bonastre and Grenier, 1968Chromosorb P; Column length: 6. m

Kovats' RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax1226.Tatsuka, Suekane, et al., 199060. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 3. K/min; Tend: 200. C

Kovats' RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryCarbowax 20M1232.Garruti, Franco, et al., 2001H2; Column length: 30. m; Column diameter: 0.25 mm; Program: 50 0C (8 min) 4 K/min -> 110 0C 16 K/min -> 200 0C

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-1781.0Sun and Stremple, 200330. m/0.25 mm/0.25 μm, He, 3. K/min; Tstart: 40. C; Tend: 325. C
CapillaryDB-5800.Moio, Piombino, et al., 200030. m/0.32 mm/1. μm, H2, 3. K/min; Tstart: 40. C; Tend: 210. C
CapillaryMethyl Silicone793.Sumathykutty, Rao, et al., 199950. m/0.25 mm/0.17 μm, N2, 2. K/min; Tstart: 80. C; Tend: 200. C
CapillaryDB-1784.Coen, Engel, et al., 199530. m/0.32 mm/0.25 μm, N2, 3. K/min; Tstart: 150. C; Tend: 280. C
CapillaryDB-5786.Guichard and Souty, 1988H2, 30. C @ 5. min, 1.5 K/min; Column length: 0.32 m; Column diameter: 1. mm; Tend: 180. C
CapillaryDB-5801.Rostad and Pereira, 198630. m/0.26 mm/0.25 μm, He, 50. C @ 4. min, 6. K/min, 300. C @ 20. min

Van Den Dool and Kratz RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryOV-3511195.Bonvehí, 200550. m/0.32 mm/0.2 μm, He, 5. K/min; Tstart: 60. C; Tend: 220. C
CapillaryDB-Wax1232.Malliaa, Fernandez-Garcia, et al., 200560. m/0.32 mm/1. μm, He, 45. C @ 1. min, 5. K/min, 250. C @ 12. min
CapillaryZB-Wax1216.Ledauphin, Saint-Clair, et al., 200430. m/0.25 mm/0.15 μm, He, 35. C @ 5. min, 5. K/min, 220. C @ 10. min
CapillarySupelcowax-101243.Matiella and Hsieh, 199060. m/0.25 mm/0.25 μm, 40. C @ 5. min, 2. K/min, 175. C @ 20. min
CapillarySupelcowax-101222.Tanchotikul and Hsieh, 198960. m/0.25 mm/0.25 μm, 40. C @ 5. min, 2. K/min, 175. C @ 20. min
CapillarySupelcowax-101233.Tanchotikul and Hsieh, 198960. m/0.25 mm/0.25 μm, 40. C @ 5. min, 2. K/min, 175. C @ 20. min

Van Den Dool and Kratz RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillarySupelcowax-101238.Bianchi, Careri, et al., 200730. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 4C/min => 60C => 6C/min => 160C => 20C/min => 200C(1min)
CapillaryDB-Wax1211.Cantergiani, Brevard, et al., 200130. m/0.25 mm/0.25 μm; Program: 20C(30s) => fast => 60C => 4C/min => 220C (20min)
CapillaryInnowax1234.Larráyoz, Addis, et al., 200160. m/0.22 mm/0.25 μm, He; Program: 35C (1min) => 3C/min => 170C => 4C/min => 200C (20min)
CapillaryCarbowax 20M1218.Whitfield, Shea, et al., 1981Column length: 150. m; Column diameter: 0.75 mm; Program: not specified

Normal alkane RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedSE-30100.787.Zhou and Wu, 2007Column length: 1. m
CapillaryDB-5120.801.Verevkin, Krasnykh, et al., 200360. m/0.32 mm/0.25 μm, Nitrogen

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-5 MS803.Lazarevic, Radulovic, et al., 201030. m/0.25 mm/0.25 μm, Helium, 5. K/min; Tstart: 70. C; Tend: 290. C
CapillaryHP-5812.6Leffingwell and Alford, 200560. m/0.32 mm/0.25 μm, He, 30. C @ 2. min, 2. K/min, 260. C @ 28. min
CapillaryRSL-200784.Jirovetz, Buchbauer, et al., 200330. m/0.32 mm/0.25 μm, H2, 40. C @ 5. min, 6. K/min, 280. C @ 5. min
CapillaryRSL-200783.Ngassoum, Jirovetz, et al., 200130. m/0.32 mm/0.25 μm, H2, 40. C @ 5. min, 6. K/min, 280. C @ 5. min
CapillaryHP-5811.Boylston and Viniyard, 199850. m/0.32 mm/0.52 μm, 35. C @ 15. min, 2. K/min, 250. C @ 45. min
CapillaryDB-1777.Shiota, 199330. m/0.25 mm/0.25 μm, He, 50. C @ 3. min, 5. K/min; Tend: 240. C
CapillaryDB-1777.Shiota, 199330. m/0.25 mm/0.25 μm, He, 50. C @ 3. min, 5. K/min; Tend: 240. C
CapillaryOV-101786.Anker, Jurs, et al., 19902. K/min; Column length: 50. m; Column diameter: 0.28 mm; Tstart: 80. C; Tend: 200. C
CapillaryDB-1780.Binder, Benson, et al., 19904. K/min, 230. C @ 10. min; Column length: 60. m; Column diameter: 0.32 mm; Tstart: 50. C
CapillaryOV-101795.del Rosario, de Lumen, et al., 1984He, 0. C @ 1. min, 3. K/min; Column length: 50. m; Column diameter: 0.31 mm; Tend: 225. C
PackedApiezon L809.Dahlmann, Köser, et al., 1979Chromosorb G-AW-DMCS, 10. K/min; Column length: 2. m; Tstart: 25. C

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-5774.da Fonseca, Bizerra, et al., 200930. m/0.25 mm/0.25 μm, Hydrogen; Program: 35 0C 4 0C/min -> 180 0C 17 0C/min -> 280 0C (10 min)
CapillaryMethyl Silicone787.Chen and Feng, 2007Program: not specified
CapillaryMethyl Silicone787.Kou, Zhang, et al., 2006Program: not specified
CapillaryMethyl Silicone787.Fu and Wang, 2004Program: not specified
CapillarySE-30785.Vinogradov, 2004Program: not specified
CapillaryPolydimethyl siloxane782.Junkes, Castanho, et al., 2003Program: not specified
CapillaryHP-5803.Jordán, Margaría, et al., 200230. m/0.25 mm/0.25 μm; Program: 40C (6min) => 2.5C/min => 150C => 90C/min => 250C
CapillaryPolydimethyl siloxanes793.Zenkevich, 1998Program: not specified
CapillarySPB-1784.Flanagan, Streete, et al., 199760. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C
CapillarySPB-1784.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C
CapillarySPB-1786.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: not specified
CapillaryCP Sil 8 CB799.Weller and Wolf, 198940. m/0.25 mm/0.25 μm, He; Program: 30 0C (1 min) 15 0C/min -> 45 0C 3 0C/min -> 120 0C
CapillaryOV-101786.Shibamoto, 1987Program: not specified
CapillaryOV-1786.Ramsey and Flanagan, 1982Program: not specified

Normal alkane RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-FFAP1182.Wanakhachornkrai and Lertsiri, 999925. m/0.32 mm/0.50 μm, Helium, 15. K/min; Tstart: 45. C; Tend: 220. C
CapillaryHP-FFAP1182.Wanakhachornkrai and Lertsiri, 999925. m/0.32 mm/0.50 μm, Helium, 15. K/min; Tstart: 45. C; Tend: 220. C
CapillaryCP-Wax CB1227.Alves, da Penha, et al., 201230. m/0.25 mm/0.25 μm, Helium, 2. K/min, 150. C @ 5. min; Tstart: 50. C
CapillaryDB-Wax1217.Karlsson, Birgersson, et al., 200930. m/0.25 mm/0.25 μm, Hydrogen, 30. C @ 5. min, 8. K/min, 230. C @ 10. min
CapillaryDB-Wax1239.Choi, 200660. m/0.25 mm/0.25 μm, N2, 70. C @ 2. min, 2. K/min, 230. C @ 20. min
CapillaryDB-Wax1210.Fan and Qian, 200630. m/0.32 mm/0.25 μm, He, 40. C @ 2. min, 4. K/min, 230. C @ 15. min
CapillaryDB-Wax Etr1241.Perestrelo, Fernandes, et al., 200630. m/0.25 mm/0.25 μm, He, 40. C @ 1. min, 2. K/min, 220. C @ 10. min
CapillaryCarbowax 20M1236.Saura, LAencina, et al., 2003Helium, 50. C @ 2. min, 4. K/min; Column length: 50. m; Column diameter: 0.70 mm; Tend: 280. C
CapillaryHP-FFAP1182.Wanakhachornkrai and Lertsiri, 200325. m/0.32 mm/0.5 μm, He, 15. K/min; Tstart: 45. C; Tend: 220. C
CapillaryHP-FFAP1182.Wanakhachornkrai and Lertsiri, 200325. m/0.32 mm/0.5 μm, He, 15. K/min; Tstart: 45. C; Tend: 220. C
CapillaryDB-Wax1245.Hayata, Sakamoto, et al., 200260. m/0.25 mm/0.25 μm, He, 40. C @ 10. min, 3. K/min, 220. C @ 10. min
CapillaryTC-Wax1216.Shuichi, Masazumi, et al., 199680. C @ 5. min, 3. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 240. C
CapillaryCarbowax 20M1192.Anker, Jurs, et al., 19902. K/min; Column length: 80. m; Column diameter: 0.2 mm; Tstart: 70. C; Tend: 170. C
CapillaryDB-Wax1216.Binder, Benson, et al., 19904. K/min, 230. C @ 10. min; Column length: 60. m; Column diameter: 0.32 mm; Tstart: 50. C
CapillarySupelcowax-101232.Loughrin, Hamilton-Kemp, et al., 1990He, 60. C @ 1. min, 2. K/min; Column length: 60. m; Column diameter: 0.32 mm; Tend: 220. C
CapillaryCarbowax 20M1220.Seifert and King, 1982He, 50. C @ 10. min, 1. K/min, 170. C @ 60. min; Column length: 150. m; Column diameter: 0.64 mm

Normal alkane RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryInnowax FSC1202.Bardakci, Demirci, et al., 201260. m/0.25 mm/0.25 μm, Helium; Program: 60 0C (10 min) 4 0C/min -> 220 0C 1 0C/min -> 240 0C
CapillarySOLGel-Wax1231.Johanningsmeier and McFeeters, 201130. m/0.25 mm/0.25 μm, Helium; Program: 40 0C (2 min) 5 0C/min -> 140 0C 10 0C/min -> 250 0C (3 min)
CapillarySOLGel-Wax1238.Johanningsmeier and McFeeters, 201130. m/0.25 mm/0.25 μm, Helium; Program: 40 0C (2 min) 5 0C/min -> 140 0C 10 0C/min -> 250 0C (3 min)
CapillarySOLGel-Wax1238.Johanningsmeier and McFeeters, 201130. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillarySupelcowax 101179.Soria, Martinez-Castro, et al., 200850. m/0.25 mm/0.25 μm, Helium; Program: 45 0C (15 min) 3 0C/min -> 75 0C 5 0C/min -> 180 0C (10 min)
CapillarySupelcowax 101179.Soria, Martinez-Castro, et al., 200850. m/0.25 mm/0.25 μm, Helium; Program: 45 0C (15 min) 3 0C/min -> 75 0C 5 0C/min -> 180 0C (10 min)
CapillaryHP-Innowax1219.Narain, Galvao, et al., 200730. m/0.25 mm/0.25 μm, He; Program: 30C(5min) => 7C/min => 100C(5min) => 1C/min => 130C => 10C/min => 195C(45min)
CapillaryHP-Innowax1222.Narain, Galvao, et al., 200730. m/0.25 mm/0.25 μm, He; Program: 30C(5min) => 7C/min => 100C(5min) => 1C/min => 130C => 10C/min => 195C(45min)
CapillaryHP-Innowax1219.Narain, Galvao, et al., 200730. m/0.25 mm/0.25 μm, He; Program: 30C(5min) => 7C/min => 100C(5min) => 1C/min => 130C => 10C/min => 195C(45min)
CapillaryCarbowax 20M1191.Vinogradov, 2004Program: not specified
CapillaryPEG-20M1232.Garruti, Franco, et al., 200330. m/0.25 mm/0.25 μm; Program: 50C(8min) => 4C/min => 110C => 16C/min => 200C
CapillaryDB-Wax1192.Miranda, Nogueira, et al., 200130. m/0.25 mm/0.25 μm, He; Program: 25 0C (0.5 min) 50 K/min -> 50 0C 3.5 K/min -> 150 0C 7.5 K/min -> 240 0C
CapillaryCarbowax 20M1192.Shibamoto, 1987Program: not specified
CapillaryCarbowax 20M1192.Ramsey and Flanagan, 1982Program: not specified

Lee's RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-5128.24Rostad and Pereira, 198630. m/0.26 mm/0.25 μm, He, 50. C @ 4. min, 6. K/min, 300. C @ 20. min

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Wiberg, Wasserman, et al., 1984
Wiberg, K.B.; Wasserman, D.J.; Martin, E., Enthalpies of hydration of alkenes. 2. The n-heptenes and n-pentenes, J. Phys. Chem., 1984, 88, 3684-3688. [all data]

Wiberg and Wasserman, 1981
Wiberg, K.B.; Wasserman, D.J., Enthalpies of hydration of alkenes. 1. The n-hexenes, J. Am. Chem. Soc., 1981, 103, 6563-6566. [all data]

Sachek, Peshchenko, et al., 1974
Sachek, A.I.; Peshchenko, A.D.; Andreevskii, D.N., Heats of formation of secondary pentanols and hexanols, Russ. J. Phys. Chem. (Engl. Transl.), 1974, 48, 617. [all data]

Tanaka, Luo, et al., 1988
Tanaka, R.; Luo, B.; Benson, G.C.; Lu, B.C.-Y., Excess isobaric heat capacities and excess volumes of some hexanol + n-heptane mixtures, Thermochim. Acta, 1988, 127, 15-23. [all data]

Ortega, 1986
Ortega, J., Excess molar heat capacities of the binary mixtures of cyclohexane with isomers of hexanol at 298.15 K, Rev. Latinoam. Ing. Quim. Quim. Apl., 1986, 16, 307-315. [all data]

Gude and Teja, 1995
Gude, M.; Teja, A.S., Vapor-Liquid Critical Properties of Elements and Compounds. 4. Aliphatic Alkanols, J. Chem. Eng. Data, 1995, 40, 1025-1036. [all data]

Rosenthal and Teja, 1990
Rosenthal, D.J.; Teja, A.S., The Critical Pressures and temperatures of Isomeric Alkanols, Ind. Eng. Chem. to be published 1990 1990, 1990. [all data]

Rosenthal and Teja, 1989
Rosenthal, D.J.; Teja, A.S., Critical pressures and temperatures of isomeric alkanols, Ind. Eng. Chem. Res., 1989, 28, 1693. [all data]

Anselme and Teja, 1988
Anselme, M.J.; Teja, A.S., Critical Temperatures and Densities of Isomeric Alkanols with Six to Ten Carbon Atoms, Fluid Phase Equilib., 1988, 40, 127-34. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Roganov, Pisarev, et al., 2005
Roganov, Gennady N.; Pisarev, Pavel N.; Emel'yanenko, Vladimir N.; Verevkin, Sergey P., Measurement and Prediction of Thermochemical Properties. Improved Benson-Type Increments for the Estimation of Enthalpies of Vaporization and Standard Enthalpies of Formation of Aliphatic Alcohols, J. Chem. Eng. Data, 2005, 50, 4, 1114-1124, https://doi.org/10.1021/je049561m . [all data]

Kulikov, Verevkin, et al., 2001
Kulikov, Dmitry; Verevkin, Sergey P.; Heintz, Andreas, Determination of Vapor Pressures and Vaporization Enthalpies of the Aliphatic Branched C 5 and C 6 Alcohols, J. Chem. Eng. Data, 2001, 46, 6, 1593-1600, https://doi.org/10.1021/je010187p . [all data]

N'Guimbi, Berro, et al., 1999
N'Guimbi, J.; Berro, C.; Mokbel, I.; Rauzy, E.; Jose, J., Experimental vapour pressures of 13 secondary and tertiary alcohols---correlation and prediction by a group contribution method, Fluid Phase Equilibria, 1999, 162, 1-2, 143-158, https://doi.org/10.1016/S0378-3812(99)00168-5 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Brazhnikov, Andreevskii, et al., 1975
Brazhnikov, M.M.; Andreevskii, D.N.; Sachek, A.I.; Peshchenko, A.D., Zh. Prikl. Khim. (Leningrad), 1975, 48, 10, 2181. [all data]

Majer, Svoboda, et al., 1985
Majer, V.; Svoboda, V.; Lencka, M., Enthalpies of vaporization and cohesive energies of dimethylpyridines and trimethylpyridines, The Journal of Chemical Thermodynamics, 1985, 17, 4, 365-370, https://doi.org/10.1016/0021-9614(85)90133-8 . [all data]

Sachek, Markovnik, et al., 1984
Sachek, A.I.; Markovnik, V.S.; Peshchenko, A.D.; Shvaro, A.V.; Andreevskii, D.N., Khim. Prom-st. (Moscow), 1984, 337. [all data]

Wilhoit and Zwolinski, 1973
Wilhoit, R.C.; Zwolinski, B.J., Physical and thermodynamic properties of aliphatic alcohols, J. Phys. Chem. Ref. Data Suppl., 1973, 1, 2, 1. [all data]

Hovorka, Lankelma, et al., 1938
Hovorka, Frank; Lankelma, Herman P.; Stanford, Spencer C., Thermodynamic Properties of the Hexyl Alcohols. II. Hexanols-1, -2, -3 and 2-Methylpentanol-1 and -4, J. Am. Chem. Soc., 1938, 60, 4, 820-827, https://doi.org/10.1021/ja01271a018 . [all data]

Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G., The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols, Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W . [all data]

Ashmore and Burgess, 1977
Ashmore, F.S.; Burgess, A.R., Study of Some Medium Size Alcohols and Hydroperoxides by Photoelectron Spectroscopy, J. Chem. Soc. Faraday Trans. 2, 1977, 73, 1247. [all data]

Tudor, 1997
Tudor, E., Temperature dependence of the retention index for perfumery compounds on a SE-30 glass capillary column. I. Linear equations, J. Chromatogr. A, 1997, 779, 1-2, 287-297, https://doi.org/10.1016/S0021-9673(97)00453-6 . [all data]

Cha and Lee, 1994
Cha, K.-W.; Lee, D.-J., Prediction of retention indices of various compounds in gas-liquid chromatography, J. Korean Chem. Soc., 1994, 38, 2, 108-120, retrieved from http://journal.kcsnet.or.kr/publi/dh/dh94n2/108.pdf. [all data]

Boneva, 1987
Boneva, S., Gas Chromatographic Retention Indices for C6 Alkanols on OV-101 and Carbowax 20M Capillary Columns, Chromatographia, 1987, 23, 1, 50-52, https://doi.org/10.1007/BF02310419 . [all data]

Bogoslovsky, Anvaer, et al., 1978
Bogoslovsky, Yu.N.; Anvaer, B.I.; Vigdergauz, M.S., Chromatographic constants in gas chromatography (in Russian), Standards Publ. House, Moscow, 1978, 192. [all data]

Pías and Gascó, 1975
Pías, J.B.; Gascó, L., GC Retention Data of Alcohols and Benzoyl Derivatives of Alcohols, J. Chromatogr. - Chrom. Data, 1975, d14-d16. [all data]

Mira and Sanchez, 1970
Mira, J.M.; Sanchez, L.G., Polarity of the Gas Chromatographic Stationary Phases and Retention Indices of Aliphatic Esters, Ketones and Alcohols, Anal. Chim. Acta., 1970, 50, 2, 315-321, https://doi.org/10.1016/0003-2670(70)80071-X . [all data]

Raina, Srivastava, et al., 2002
Raina, V.K.; Srivastava, S.K.; Jain, N.; Ahmad, A.; Syamasundar, K.V.; Aggarwal, K.K., Essential oil composition of Curcuma longa L. cv. Roma from the plains of northern India, Flavour Fragr. J., 2002, 17, 2, 99-102, https://doi.org/10.1002/ffj.1053 . [all data]

Raina, Srivastava, et al., 2001
Raina, V.K.; Srivastava, S.K.; Aggarwal, K.K.; Ramesh, S.; Kumar, S., Essential oil composition of Cinnamomum zeylanicum Blume leaves from Little Andaman, India, Flavour Fragr. J., 2001, 16, 5, 374-376, https://doi.org/10.1002/ffj.1016 . [all data]

Takeoka, Flath, et al., 1990
Takeoka, G.R.; Flath, R.A.; Mon, T.R.; Teranishi, R.; Guentert, M., Volatile Constituents of Apricot (Prunus armeniaca), J. Agric. Food Chem., 1990, 38, 2, 471-477, https://doi.org/10.1021/jf00092a031 . [all data]

Rembold, Wallner, et al., 1989
Rembold, H.; Wallner, P.; Nitz, S.; Kollmannsberger, H.; Drawert, F., Volatile components of chickpea (Cicer arietinum L.) seed, J. Agric. Food Chem., 1989, 37, 3, 659-662, https://doi.org/10.1021/jf00087a018 . [all data]

Ohnishi and Shibamoto, 1984
Ohnishi, S.; Shibamoto, T., Volatile compounds from heated beef fat and beef fat with glycine, J. Agric. Food Chem., 1984, 32, 5, 987-992, https://doi.org/10.1021/jf00125a008 . [all data]

Bonastre and Grenier, 1968
Bonastre, J.; Grenier, P., Contribution à l'étude de la polarité des phases stationnaires en chromatographie gaz-liquide. III. Calcul des coefficients d'activité relatifs et des indices de rétention de quelques alcools aliphatiques, Bull. Soc. Chim. Fr., 1968, 1, 118-125. [all data]

Tatsuka, Suekane, et al., 1990
Tatsuka, K.; Suekane, S.; Sakai, Y.; Sumitani, H., Volatile constituents of kiwi fruit flowers: simultaneous distillation and extraction versus headspace sampling, J. Agric. Food Chem., 1990, 38, 12, 2176-2180, https://doi.org/10.1021/jf00102a015 . [all data]

Garruti, Franco, et al., 2001
Garruti, D.S.; Franco, M.R.B.; da Silva, M.A.A.A.P.; Janzantti, N.S.; Alves, G.L., Compostos voláteis do sabor de pseudofrutos de cajueiro anão precoce (Anacardium occidentale L.) CCP-76, Boletim de Pesquisa e Desenvolvimento 4, Empresa Brasileira de Pesquisa Agropecuária, Fortaleza, Brazil, 2001, 29, retrieved from http://www.cnpat.embrapa.br/publica/pub/BolPesq/pd4.pdf. [all data]

Sun and Stremple, 2003
Sun, G.; Stremple, P., Retention index characterization of flavor, fragrance, and many other compounds on DB-1 and DB-XLB, 2003, retrieved from http://www.chem.agilent.com/cag/cabu/pdf/b-0279.pdf. [all data]

Moio, Piombino, et al., 2000
Moio, L.; Piombino, P.; Addeo, F., Odour-impact compounds of Gorgonzola cheese, J. Dairy Res., 2000, 67, 2, 273-285, https://doi.org/10.1017/S0022029900004106 . [all data]

Sumathykutty, Rao, et al., 1999
Sumathykutty, M.A.; Rao, J.M.; Padmakumari, K.P.; Narayanan, C.S., Essential oil constituents of some Piper species, Flavour Fragr. J., 1999, 14, 5, 279-282, https://doi.org/10.1002/(SICI)1099-1026(199909/10)14:5<279::AID-FFJ821>3.0.CO;2-0 . [all data]

Coen, Engel, et al., 1995
Coen, M.; Engel, R.; Nahrstedt, A., Chavicol β-D-glucoside, a phenylpropanoid heteroside, benzyl-β-D-glucoside and glycosidically bound volatiles from subspecies of Cedronella canariensis, Phytochemistry, 1995, 40, 1, 149-155, https://doi.org/10.1016/0031-9422(95)00241-X . [all data]

Guichard and Souty, 1988
Guichard, E.; Souty, M., Comparison of the relative quantities of aroma compounds found in fresh apricot (Prunus armeniaca) from six different varieties, Z. Lebensm. Unters. Forsch., 1988, 186, 4, 301-307, https://doi.org/10.1007/BF01027031 . [all data]

Rostad and Pereira, 1986
Rostad, C.E.; Pereira, W.E., Kovats and Lee retention indices determined by gas chromatography/mass spectrometry for organic compounds of environmental interest, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1986, 9, 6, 328-334, https://doi.org/10.1002/jhrc.1240090603 . [all data]

Bonvehí, 2005
Bonvehí, J.S., Investigation of aromatic compounds in roasted cocoa powder, Eur. Food Res. Technol., 2005, 221, 1-2, 19-29, https://doi.org/10.1007/s00217-005-1147-y . [all data]

Malliaa, Fernandez-Garcia, et al., 2005
Malliaa, S.; Fernandez-Garcia, E.; Bosset, J.O., Comparison of purge and trap and solid phase microextraction techniques for studying the volatile aroma compounds of three European PDO hard cheeses, Int. Dairy J., 2005, 15, 6-9, 741-758, https://doi.org/10.1016/j.idairyj.2004.11.007 . [all data]

Ledauphin, Saint-Clair, et al., 2004
Ledauphin, J.; Saint-Clair, J.-F.; Lablanquie, O.; Guichard, H.; Founier, N.; Guichard, E.; Barillier, D., Identification of trace volatile compounds in freshly distilled calvados and cognac using preparative separations coupled with gas chromatography-mass spectrometry, J. Agric. Food Chem., 2004, 52, 16, 5124-5134, https://doi.org/10.1021/jf040052y . [all data]

Matiella and Hsieh, 1990
Matiella, J.E.; Hsieh, T.C.-Y., Analysis of crabmeat volatile compounds, J. Food Sci., 1990, 55, 4, 962-966, https://doi.org/10.1111/j.1365-2621.1990.tb01575.x . [all data]

Tanchotikul and Hsieh, 1989
Tanchotikul, U.; Hsieh, T.C.-Y., Volatile Flavor Components in Crayfish Waste, J. Food Sci., 1989, 54, 6, 1515-1520, https://doi.org/10.1111/j.1365-2621.1989.tb05149.x . [all data]

Bianchi, Careri, et al., 2007
Bianchi, F.; Careri, M.; Mangia, A.; Musci, M., Retention indices in the analysis of food aroma volatile compounds in temperature-programmed gas chromatography: Database creation and evaluation of precision and robustness, J. Sep. Sci., 2007, 39, 4, 563-572, https://doi.org/10.1002/jssc.200600393 . [all data]

Cantergiani, Brevard, et al., 2001
Cantergiani, E.; Brevard, H.; Krebs, Y.; Feria-Morales, A.; Amadò, R.; Yeretzian, C., Characterisation of the aroma of green Mexican coffee and identification of mouldy/earthy defect, Eur. Food Res. Technol., 2001, 212, 6, 648-657, https://doi.org/10.1007/s002170100305 . [all data]

Larráyoz, Addis, et al., 2001
Larráyoz, P.; Addis, M.; Gauch, R.; Bosset, J.O., Comparison of dynamic headspace and simultaneous distillation extraction techniques used for the analysis of the volatile components in three European PDO ewes milk cheeses, Int. Dairy J., 2001, 11, 11-12, 911-926, https://doi.org/10.1016/S0958-6946(01)00144-3 . [all data]

Whitfield, Shea, et al., 1981
Whitfield, F.B.; Shea, S.R.; Gillen, K.J.; Shaw, K.J., Volatile components from the roots of Acacia pulchella R.Br. and their effect on Phytophthora cinnamomi rands, Aust. J. Bot., 1981, 29, 2, 195-208, https://doi.org/10.1071/BT9810195 . [all data]

Zhou and Wu, 2007
Zhou, L.; Wu, Q., Model of artificial neural network for quantitative structure-retention relations of saturated alcohols, J. Southwest Univ. (Nat. Sci. Edn.), 2007, 33, 6, 1369-1372. [all data]

Verevkin, Krasnykh, et al., 2003
Verevkin, Sergey P.; Krasnykh, Eugen L.; Vasiltsova, Tatiana V.; Heintz, Andreas, Determination of Ambient Temperature Vapor Pressures and Vaporization Enthalpies of Branched Ethers, J. Chem. Eng. Data, 2003, 48, 3, 591-599, https://doi.org/10.1021/je0255980 . [all data]

Lazarevic, Radulovic, et al., 2010
Lazarevic, J.; Radulovic, N.; Palic, R.; Zlatkovic, B., Chemical Analusis of volatile constituents of Berula erecta (Hudson) Coville subsp. erecta (Apiaceae) from Serbia, J. Essential Oil. Res., 2010, 22, 3, 153-156, https://doi.org/10.1080/10412905.2010.9700290 . [all data]

Leffingwell and Alford, 2005
Leffingwell, J.C.; Alford, E.D., Volatile constituents of Perique tobacco, Electron. J. Environ. Agric. Food Chem., 2005, 4, 2, 899-915. [all data]

Jirovetz, Buchbauer, et al., 2003
Jirovetz, L.; Buchbauer, G.; Shafi, M.P.; Kaniampady, M.M., Chemotaxonomical analysis of the essential oil aroma compounds of four different Ocimumspecies from southern India, Eur. Food Res. Technol., 2003, 217, 2, 120-124, https://doi.org/10.1007/s00217-003-0708-1 . [all data]

Ngassoum, Jirovetz, et al., 2001
Ngassoum, M.B.; Jirovetz, L.; Buchbauer, G., SPME/GC/MS analysis of headspace aroma compounds of the Cameroonian fruit Tetrapleura tetraptera (Thonn.) Taub., Eur. Food Res. Technol., 2001, 213, 1, 18-21, https://doi.org/10.1007/s002170100330 . [all data]

Boylston and Viniyard, 1998
Boylston, T.D.; Viniyard, B.T., Isolation of volatile flavor compounds from peanut butter using purge-and-trap technique in Instrumental Methods in Food and Beverage Analysis, D. Wetzel and G. Charalambous, ed(s)., 1998, 225-243. [all data]

Shiota, 1993
Shiota, H., New esteric components in the volatiles of banana fruit (Musa sapientum L.), J. Agric. Food Chem., 1993, 41, 11, 2056-2062, https://doi.org/10.1021/jf00035a046 . [all data]

Anker, Jurs, et al., 1990
Anker, L.S.; Jurs, P.C.; Edwards, P.A., Quantitative structure-retention relationship studies of odor-active aliphatic compounds with oxygen-containing functional groups, Anal. Chem., 1990, 62, 24, 2676-2684, https://doi.org/10.1021/ac00223a006 . [all data]

Binder, Benson, et al., 1990
Binder, R.G.; Benson, M.E.; Flath, R.A., Volatile Components of Safflower, J. Agric. Food Chem., 1990, 38, 5, 1245-1248, https://doi.org/10.1021/jf00095a020 . [all data]

del Rosario, de Lumen, et al., 1984
del Rosario, R.; de Lumen, B.O.; Habu, T.; Flath, R.A.; Mon, T.R.; Teranishi, R., Comparison of headspace volatiles from winged beans and soybeans, J. Agric. Food Chem., 1984, 32, 5, 1011-1015, https://doi.org/10.1021/jf00125a015 . [all data]

Dahlmann, Köser, et al., 1979
Dahlmann, G.; Köser, H.J.K.; Oelert, H.H., Multiple korrelation von retentionsindizes, Chromatographia, 1979, 12, 10, 665-671, https://doi.org/10.1007/BF02302943 . [all data]

da Fonseca, Bizerra, et al., 2009
da Fonseca, A.M.; Bizerra, A.M.C.; de Souza, J.S.N.; Monte, F.J.Q.; de Oliveira M.C.F.; de Mattos, M.C.; Cordell, G.A.; Braz-Filho, R.; Lemos, T.L.G., Constituents and antioxidant activity of two varieties of coconut water (Cocos nucifera L.), Braz. J. Pharmacognosy, 2009, 19, 1B, 193-198. [all data]

Chen and Feng, 2007
Chen, Y.; Feng, C., QSPR study on gas chromatography retention index of some organic pollutants, Comput. Appl. Chem. (China), 2007, 24, 10, 1404-1408. [all data]

Kou, Zhang, et al., 2006
Kou, J.; Zhang, S.; Hu, Y.; Qiao, H.; Li, J., Stidy on the relationships between structures and gas chromatographic retention indices of alcohols, Comput. Appl. Chem. (Chinese), 2006, 23, 7, 651-654. [all data]

Fu and Wang, 2004
Fu, S.-P.; Wang, Y.-Q., Estimation and prediction of gas chromatographic retention indices of alcohols by molecular electronegativity-distance vector, J. Chongqing Univ., 2004, 27, 6, 106-109. [all data]

Vinogradov, 2004
Vinogradov, B.A., Production, composition, properties and application of essential oils, 2004, retrieved from http://viness.narod.ru. [all data]

Junkes, Castanho, et al., 2003
Junkes, B.S.; Castanho, R.D.M.; Amboni, C.; Yunes, R.A.; Heinzen, V.E.F., Semiempirical Topological Index: A Novel Molecular Descriptor for Quantitative Structure-Retention Relationship Studies, Internet Electronic Journal of Molecular Design, 2003, 2, 1, 33-49. [all data]

Jordán, Margaría, et al., 2002
Jordán, M.J.; Margaría, C.A.; Shaw, P.E.; Goodner, K.L., Aroma active components in aqueous kiwi fruit essence and kiwi fruit puree by GC-MS and multidimensional GC/GC-O, J. Agric. Food Chem., 2002, 50, 19, 5386-5390, https://doi.org/10.1021/jf020297f . [all data]

Zenkevich, 1998
Zenkevich, I.G., The Principle of Structural Analogy in the Calculation of Gas Chromatographic Retention Indices using Physico-Chemical Constants of Organic Compounds, Zh. Anal. Khim. (Rus.), 1998, 53, 1, 43-49. [all data]

Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D., Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]

Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J., Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning, Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111 . [all data]

Weller and Wolf, 1989
Weller, J.-P.; Wolf, M., Massenspektroskopie und Headspace-GC, Beitr. Gerichtl. Med., 1989, 47, 525-532. [all data]

Shibamoto, 1987
Shibamoto, T., Retention Indices in Essential Oil Analysis in Capillary Gas Chromatography in Essential Oil Analysis, Sandra, P.; Bicchi, C., ed(s)., Hutchig Verlag, Heidelberg, New York, 1987, 259-274. [all data]

Ramsey and Flanagan, 1982
Ramsey, J.D.; Flanagan, R.J., Detection and Identification of Volatile Organic Compounds in Blood by Headspace Gas Chromatography as an Aid to the Diagnosis of Solvent Abuse, J. Chromatogr., 1982, 240, 2, 423-444, https://doi.org/10.1016/S0021-9673(00)99622-5 . [all data]

Wanakhachornkrai and Lertsiri, 9999
Wanakhachornkrai, P.; Lertsiri, S., Comparison of determination method for volatile compounds in Thai soy sauce, Analytical, Nutritional and Clinical Methods, 9999, 1-11. [all data]

Alves, da Penha, et al., 2012
Alves, V.C.C.; da Penha, M.F.A.; Pinto, N. deO.F.; Garruti, D. dosS., Volatile compounds profile of Musa FHIA 02: an option to counter losses by Black Sigatoka, Nat. Prod. J., 2012, 5, 55-60. [all data]

Karlsson, Birgersson, et al., 2009
Karlsson, M.F.; Birgersson, G.; Prado, A.M.C.; Bosa, F.; Bengtsson, M.; Witzgall, P., Plant Odor Analysis of Potato: Responce of Guatemalan Moth to Above- and Background Potato Volatiles, J. Agric. Food Chem., 2009, 57, 13, 5903-5909, https://doi.org/10.1021/jf803730h . [all data]

Choi, 2006
Choi, H.-S., Headspace analyses of fresh leaves and stems of Angelica gigas Nakai, a Korean medicinal herb, Flavour Fragr. J., 2006, 21, 4, 604-608, https://doi.org/10.1002/ffj.1602 . [all data]

Fan and Qian, 2006
Fan, W.; Qian, M.C., Characterization of Aroma Compounds of Chinese Wuliangye and Jiannanchun Liquors by Aroma Extract Dilution Analysis, J. Agric. Food Chem., 2006, 54, 7, 2695-2704, https://doi.org/10.1021/jf052635t . [all data]

Perestrelo, Fernandes, et al., 2006
Perestrelo, R.; Fernandes, A.; Albuquerque, F.F.; Marques, J.C.; Camara, J.S., Analytical characterization of the aroma of Tinta Negra Mole red wine: Identification of the main odorants compounds, Anal. Chim. Acta., 2006, 563, 1-2, 154-164, https://doi.org/10.1016/j.aca.2005.10.023 . [all data]

Saura, LAencina, et al., 2003
Saura, D.; LAencina, J.; Perez-Lopez, A.J.; Lizama, V.; Carbonell-Barrachina, A.A., Aroma of canned peach halves acidified with clarified lemon juice, J. Food Sci., 2003, 68, 3, 1080-1085, https://doi.org/10.1111/j.1365-2621.2003.tb08292.x . [all data]

Wanakhachornkrai and Lertsiri, 2003
Wanakhachornkrai, P.; Lertsiri, S., Analytical, nutritional, and clinical methods. Comparison of determination method for volatile compounds in Thai soy sauce, Food Chem., 2003, 83, 4, 619-629, https://doi.org/10.1016/S0308-8146(03)00256-5 . [all data]

Hayata, Sakamoto, et al., 2002
Hayata, Y.; Sakamoto, T.; Kozuka, H.; Sakamoto, K.; Osajima, Y., Analysis of aromatic volatile compounds in 'Miyabi' melon (Cucumis melo L.) using the Porapak Q column, J. Jpn. Soc. Hortic. Sci., 2002, 71, 4, 517-525, https://doi.org/10.2503/jjshs.71.517 . [all data]

Shuichi, Masazumi, et al., 1996
Shuichi, H.; Masazumi, N.; Hiromu, K.; Kiyoshi, F., Comparison of volatile compounds berween the crude drugs, Onji-tsutsu and Onji-niki, Nippon nogei kagaku kaishi, 1996, 70, 2, 151-160. [all data]

Loughrin, Hamilton-Kemp, et al., 1990
Loughrin, J.H.; Hamilton-Kemp, T.R.; Andersen, R.A.; Hildebrand, D.F., Headspace compounds from flowers of Nicotiana tabacum and related species, J. Agric. Food Chem., 1990, 38, 2, 455-460, https://doi.org/10.1021/jf00092a027 . [all data]

Seifert and King, 1982
Seifert, R.M.; King, A.D., Jr., Identification of some volatile constituents of Aspergillus clavatus, J. Agric. Food Chem., 1982, 30, 4, 786-790, https://doi.org/10.1021/jf00112a044 . [all data]

Bardakci, Demirci, et al., 2012
Bardakci, H.; Demirci, B.; Yesilada, E.; Kirmizibekmez, H.; Naser, K.H.C., Chemical composition of the essential oil of the subterranean parts of Valeriana alliariifolia, Rec. Nat. Prod., 2012, 6, 1, 89-92. [all data]

Johanningsmeier and McFeeters, 2011
Johanningsmeier, S.D.; McFeeters, R.F., Detection of volatile spoilage metabolites in fermented cucumbers using nontargeted, comprehensive 2-dimensional gas chromatography-time-of-flight mass spectrometry (GCxGCxTOFMS), J. Food Sci., 2011, 76, 1, c168-c177, https://doi.org/10.1111/j.1750-3841.2010.01918.x . [all data]

Soria, Martinez-Castro, et al., 2008
Soria, A.C.; Martinez-Castro, I.; Sanz, J., Some aspects of dynamic headspace analysis of volatile components in honey, Foog Res. International, 2008, 41, 8, 838-848, https://doi.org/10.1016/j.foodres.2008.07.010 . [all data]

Narain, Galvao, et al., 2007
Narain, N.; Galvao, M.S.; Madruga, M.S., Volatile compounds captured through purge and trap technique in caja-umbu (Spondias sp.) fruits during maturation, Food Chem., 2007, 102, 3, 726-731, https://doi.org/10.1016/j.foodchem.2006.06.003 . [all data]

Garruti, Franco, et al., 2003
Garruti, D.S.; Franco, M.R.B.; da Silva, M.A.A.P.; Janzantti, N.S.; Alves, G.L., Evaluation of volatile flavour compounds from cashew apple (Anacardium occidentale L) juice by the Osme gas chromatography/olfactometry technique, J. Sci. Food Agric., 2003, 83, 14, 1455-1462, https://doi.org/10.1002/jsfa.1560 . [all data]

Miranda, Nogueira, et al., 2001
Miranda, E.J.F.; Nogueira, R.I.; Pontes, S.M.; Rezende, C.M., Odour-active compounds of banana passa identified by aroma extract dilution analysis, Flavour Fragr. J., 2001, 16, 4, 281-285, https://doi.org/10.1002/ffj.997 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), Gas Chromatography, References