Aniline
- Formula: C6H7N
- Molecular weight: 93.1265
- IUPAC Standard InChIKey: PAYRUJLWNCNPSJ-UHFFFAOYSA-N
- CAS Registry Number: 62-53-3
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: Benzenamine; Aminobenzene; Aminophen; Anyvim; Benzene, amino-; Blue Oil; C.I. 76000; Phenylamine; Aniline Oil; Aniline reagent; Anilin; Anilina; Benzidam; C.I. Oxidation base 1; Cyanol; Huile D'aniline; Krystallin; Kyanol; NCI-C03736; Rcra waste number U012; UN 1547; Benzeneamine
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 87.03 ± 0.88 | kJ/mol | Ccb | Hatton, Hildenbrand, et al., 1962 | ALS |
ΔfH°gas | 82.4 | kJ/mol | Ccb | Vriens and Hill, 1952 | ALS |
ΔfH°gas | 83.2 | kJ/mol | N/A | Cole and Gilbert, 1951 | Value computed using ΔfHliquid° value of 30.8 kj/mol from Cole and Gilbert, 1951 and ΔvapH° value of 52.4 kj/mol from Vriens and Hill, 1952.; DRB |
ΔfH°gas | 81. ± 3. | kJ/mol | Ccb | Anderson and Gilbert, 1942 | %hf calculated possible error by author; ALS |
ΔfH°gas | 85.4 | kJ/mol | N/A | Lemoult, 1907 | Value computed using ΔfHliquid° value of 33.0 kj/mol from Lemoult, 1907 and ΔvapH° value of 52.4 kj/mol from Vriens and Hill, 1952.; DRB |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | 31.3 ± 0.84 | kJ/mol | Ccb | Hatton, Hildenbrand, et al., 1962 | ALS |
ΔfH°liquid | 30. | kJ/mol | Ccb | Vriens and Hill, 1952 | ALS |
ΔfH°liquid | 30.8 | kJ/mol | Cm | Cole and Gilbert, 1951 | ALS |
ΔfH°liquid | 33. | kJ/mol | Ccb | Lemoult, 1907 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -3393.1 ± 1.0 | kJ/mol | Ccb | Hatton, Hildenbrand, et al., 1962 | ALS |
ΔcH°liquid | -3392. | kJ/mol | Ccb | Vriens and Hill, 1952 | ALS |
ΔcH°liquid | -3392.3 | kJ/mol | Cm | Cole and Gilbert, 1951 | ALS |
ΔcH°liquid | -3391. ± 13. | kJ/mol | Ccb | Anderson and Gilbert, 1942 | %hf calculated possible error by author; ALS |
ΔcH°liquid | -3411. | kJ/mol | Ccb | Lemoult, 1907 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 191.30 | J/mol*K | N/A | Hatton, Hildenbrand, et al., 1962 | DH |
S°liquid | 191.6 | J/mol*K | N/A | Parks, Huffman, et al., 1933 | Extrapolation below 90 K, 45.27 J/mol*K.; DH |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°solid | -3391. | kJ/mol | Ccb | Willis, 1947 | ALS |
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
194.1 | 298. | Lesbats and Lichanot, 1987 | T = 200 to 300 K.; DH |
191.01 | 298.15 | Nichols and Wads, 1975 | DH |
193.7 | 298. | Deshpande and Bhatagadde, 1971 | T = 298 to 318 K.; DH |
192.05 | 298.15 | Hatton, Hildenbrand, et al., 1962 | T = 15 to 300 K. Cp(liq, cal/mol·K) = 33.71 + 0.0409T (15 to 300 K).; DH |
192.0 | 293. | Crtzen, Jost, et al., 1957 | DH |
197.5 | 323. | Hough, Mason, et al., 1950 | T = 323 to 453 K.; DH |
109.20 | 267.3 | Ziegler and Andrews, 1942 | T = 40.84 K.; DH |
183.7 | 288. | Radulescu and Jula, 1934 | DH |
178.8 | 298.15 | Ferguson and Miller, 1933 | T = 293 to 323 K. Data calculated from equation.; DH |
190.92 | 298.2 | Parks, Huffman, et al., 1933 | T = 94 to 298 K. Value is unsmoothed experimental datum.; DH |
193.38 | 298.2 | Lang, 1928 | T = 5 to 60°C.; DH |
192.5 | 298. | von Reis, 1881 | T = 290 to 465 K.; DH |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
AC - William E. Acree, Jr., James S. Chickos
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 457. ± 2. | K | AVG | N/A | Average of 46 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 267.0 ± 0.3 | K | AVG | N/A | Average of 19 out of 24 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 267.13 | K | N/A | Hatton, Hildenbrand, et al., 1962, 2 | Uncertainty assigned by TRC = 0.02 K; from plot of 1/f vs T; TRC |
Ttriple | 267.300 | K | N/A | Ziegler and Andrews, 1942, 2 | Uncertainty assigned by TRC = 0.2 K; TRC |
Ttriple | 266.9 | K | N/A | Parks, Huffman, et al., 1933, 2 | Uncertainty assigned by TRC = 0.1 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 698.8 ± 0.4 | K | AVG | N/A | Average of 8 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 53.1 ± 0.2 | bar | AVG | N/A | Average of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 3.48 | mol/l | N/A | Lagutkin and Kuropatkin, 1981 | Uncertainty assigned by TRC = 0.05 mol/l; calculated from corr. Zc, and lit. values of Tc and Pc; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Zc | 0.26 | none | N/A | Lagutkin and Kuropatkin, 1981 | Uncertainty assigned by TRC = 0.003 none; Correlation based on literature values of 2nd vireal coeff.; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 54. ± 4. | kJ/mol | AVG | N/A | Average of 7 values; Individual data points |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
51.0 ± 0.2 | 360. | EB | Steele, Chirico, et al., 2002 | Based on data from 350. to 499. K.; AC |
48.0 ± 0.2 | 400. | EB | Steele, Chirico, et al., 2002 | Based on data from 350. to 499. K.; AC |
45.2 ± 0.2 | 440. | EB | Steele, Chirico, et al., 2002 | Based on data from 350. to 499. K.; AC |
42.2 ± 0.4 | 480. | EB | Steele, Chirico, et al., 2002 | Based on data from 350. to 499. K.; AC |
45.8 | 444. | N/A | Lee, Chen, et al., 1992 | Based on data from 421. to 591. K.; AC |
52.2 | 288. | A | Stephenson and Malanowski, 1987 | Based on data from 273. to 338. K.; AC |
53.6 | 319. | A | Stephenson and Malanowski, 1987 | Based on data from 304. to 485. K.; AC |
48.6 | 388. | A | Stephenson and Malanowski, 1987 | Based on data from 373. to 458. K.; AC |
46.3 | 470. | A | Stephenson and Malanowski, 1987 | Based on data from 455. to 523. K.; AC |
42.44 | 457.2 | N/A | Majer and Svoboda, 1985 | |
51.4 | 350. | N/A | Maher and Smith, 1979 | Based on data from 313. to 386. K.; AC |
52.9 | 293. | N/A | Ravdel and Danilov, 1968 | Based on data from 288. to 298. K.; AC |
54.0 | 319. | N/A | Hatton, Hildenbrand, et al., 1962 | Based on data from 304. to 457. K.; AC |
53.0 | 333. | C | Hatton, Hildenbrand, et al., 1962 | AC |
Enthalpy of vaporization
ΔvapH =
A exp(-βTr) (1 − Tr)β
ΔvapH =
Enthalpy of vaporization (at saturation pressure)
(kJ/mol)
Tr = reduced temperature (T / Tc)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A (kJ/mol) | β | Tc (K) | Reference | Comment |
---|---|---|---|---|---|
298. to 333. | 80.66 | 0.3744 | 699. | Majer and Svoboda, 1985 |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
304. to 457. | 4.34541 | 1661.858 | -74.048 | Hatton, Hildenbrand, et al., 1962 | Coefficents calculated by NIST from author's data. |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
10.539 | 267.13 | Hatton, Hildenbrand, et al., 1962 | DH |
10.54 | 267.1 | Ahmed and Eades, 1972 | See also Domalski and Hearing, 1996.; AC |
10.92 | 267.3 | Ziegler and Andrews, 1942 | AC |
10.556 | 266.8 | Parks, Huffman, et al., 1933 | DH |
Entropy of fusion
ΔfusS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
39.57 | 266.8 | Parks, Huffman, et al., 1933 | DH |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: Br- + C6H7N = (Br- • C6H7N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 61.1 ± 7.5 | kJ/mol | IMRE | Paul and Kebarle, 1991 | gas phase; ΔGaff measured at 423 K, ΔSaff taken as that of PhNO2..Br-; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84. | J/mol*K | N/A | Paul and Kebarle, 1991 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 26. ± 4.2 | kJ/mol | IMRE | Paul and Kebarle, 1991 | gas phase; ΔGaff measured at 423 K, ΔSaff taken as that of PhNO2..Br-; B |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
26. | 423. | PHPMS | Paul and Kebarle, 1991 | gas phase; Entropy change calculated or estimated; M |
C6H6N- + =
By formula: C6H6N- + H+ = C6H7N
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1540.5 ± 1.3 | kJ/mol | D-EA | Wren, Vogelhuber, et al., 2012 | gas phase; B |
ΔrH° | 1533. ± 8.8 | kJ/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1510.0 ± 2.8 | kJ/mol | H-TS | Wren, Vogelhuber, et al., 2012 | gas phase; B |
ΔrG° | 1502. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
By formula: C9H13N+ + C6H7N = (C9H13N+ • C6H7N)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 55.6 | kJ/mol | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | (110.) | J/mol*K | N/A | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
25. | 283. | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; Entropy change calculated or estimated; M |
By formula: C7H9N+ + C6H7N = (C7H9N+ • C6H7N)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 69.9 | kJ/mol | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 110. | J/mol*K | N/A | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 38. | kJ/mol | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; Entropy change calculated or estimated; M |
By formula: C8H11N+ + C6H7N = (C8H11N+ • C6H7N)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 59.4 | kJ/mol | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 110. | J/mol*K | N/A | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 27. | kJ/mol | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; Entropy change calculated or estimated; M |
By formula: F- + C6H7N = (F- • C6H7N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 131. ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1983 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 110. | J/mol*K | N/A | Larson and McMahon, 1983 | gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 97.9 ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1983 | gas phase; B,M |
By formula: C6H7N+ + C6H7N = (C6H7N+ • C6H7N)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 73.2 | kJ/mol | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 103. | J/mol*K | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; M |
By formula: C6H7N + C8H4O3 = C14H11NO3
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -53.5 | kJ/mol | Kin | Kalnin'sh, 1988 | liquid phase; solvent: Acetonitrile; ALS |
ΔrH° | -54.4 | kJ/mol | Kin | Pravednikov, Kardash, et al., 1973 | solid phase; solvent: Tetrahydrofuran; ALS |
By formula: C7H9N = 0.5C8H11N + 0.5C6H7N
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -3. | kJ/mol | Eqk | Matvienko, Kachurin, et al., 1982 | liquid phase; Methansulfonic acid; ALS |
ΔrH° | -4. | kJ/mol | Kin | Kachurin, Matvienko, et al., 1979 | liquid phase; ALS |
By formula: K+ + C6H7N = (K+ • C6H7N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 95.4 | kJ/mol | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 99.2 | J/mol*K | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
By formula: C7H5IO + C6H7N = HI + C13H11NO
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -166. ± 2. | kJ/mol | Cac | Kiselev, Khuzyasheva, et al., 1979 | liquid phase; solvent: Benzene; ALS |
By formula: C7H5BrO + C6H7N = HBr + C13H11NO
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -162. ± 0.8 | kJ/mol | Cac | Kiselev, Khuzyasheva, et al., 1979 | liquid phase; solvent: Benzene; ALS |
By formula: C6H7N + C7H5ClO = HCl + C13H11NO
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -149. ± 0.8 | kJ/mol | Cac | Kiselev, Khuzyasheva, et al., 1979 | liquid phase; solvent: Benzene; ALS |
By formula: C8H9NO + H2O = C6H7N + C2H4O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -42.0 ± 0.3 | kJ/mol | Cm | Wadso, 1965 | solid phase; Heat of hydrolysis; ALS |
By formula: C7H4N2O3 + C6H7N = C13H11N3O3
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -83.8 ± 0.3 | kJ/mol | Cm | Kiselev, Malkov, et al., 1989 | liquid phase; solvent: Dioxane; #TDE; ALS |
By formula: C7H11NO + C6H7N = C13H18N2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -98.4 ± 1.1 | kJ/mol | Cm | Kiselev, Malkov, et al., 1989 | liquid phase; solvent: Dioxane; ALS |
By formula: C15H17NO2 = C9H10O2 + C6H7N
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 113. ± 2. | kJ/mol | Cm | Kuznetsova, Rakova, et al., 1975 | solid phase; solvent: DMF; ALS |
By formula: C7H5NO + C6H7N = C13H12N2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -82.5 ± 2.0 | kJ/mol | Cm | Kiselev, Malkov, et al., 1989 | liquid phase; solvent: Dioxane; ALS |
By formula: C13H12N2O = C7H5NO + C6H7N
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 181.7 ± 4.2 | kJ/mol | Eqk | Chimishkyan, Svetlova, et al., 1984 | solid phase; Dissociation; ALS |
By formula: I- + C6H7N = (I- • C6H7N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 54.0 ± 4.2 | kJ/mol | TDAs | Caldwell, Masucci, et al., 1989 | gas phase; B,M |
By formula: C4H5N3O + C6H7N = C8H9NO + C2H3N3
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -72.3 ± 0.3 | kJ/mol | Cm | Wadso, 1962 | solid phase; ALS |
By formula: C3H4N4O + C6H7N = C8H9NO + CH2N4
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -84.6 ± 0.3 | kJ/mol | Cm | Wadso, 1962 | solid phase; ALS |
By formula: C4H6O3 + C6H7N = C8H9NO + C2H4O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -100.9 ± 0.3 | kJ/mol | Cm | Wadso, 1962 | liquid phase; ALS |
By formula: C7H5NO + C6H7N = C13H12N2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -89.1 ± 5.1 | kJ/mol | Cm | Pannone and Macosko, 1987 | liquid phase; ALS |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
View reactions leading to C6H7N+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 7.720 ± 0.002 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 882.5 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 850.6 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Ionization energy determinations
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
C4H4N+ | 12.3 ± 0.1 | ? | PI | Akopyan and Vilesov, 1964 | RDSH |
C5H5+ | 15.2 ± 0.2 | CHN+H | EI | Tajima and Tsuchiya, 1973 | LLK |
C5H5+ | 15.24 | CHN+H | EI | Occolowitz and White, 1968 | RDSH |
C5H6+ | 11.3 ± 0.1 | CHN | TRPI | Lifshitz and Malinovich, 1984 | LBLHLM |
C5H6+ | 11.3 ± 0.2 | CHN | EI | Lifshitz, Gotchiguian, et al., 1983 | LBLHLM |
C5H6+ | 12.77 ± 0.05 | CHN | EI | Zaretskii, Oren, et al., 1976 | LLK |
C5H6+ | 12.13 ± 0.06 | CHN | EI | Bentley, Johnstone, et al., 1973 | LLK |
C5H6+ | 12.0 ± 0.1 | ? | EI | Gross, 1972 | LLK |
C5H6+ | 12.3 ± 0.1 | CHN | PI | Akopyan and Vilesov, 1964 | RDSH |
De-protonation reactions
C6H6N- + =
By formula: C6H6N- + H+ = C6H7N
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1540.5 ± 1.3 | kJ/mol | D-EA | Wren, Vogelhuber, et al., 2012 | gas phase; B |
ΔrH° | 1533. ± 8.8 | kJ/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1510.0 ± 2.8 | kJ/mol | H-TS | Wren, Vogelhuber, et al., 2012 | gas phase; B |
ΔrG° | 1502. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
Ion clustering data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.
Clustering reactions
By formula: Br- + C6H7N = (Br- • C6H7N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 61.1 ± 7.5 | kJ/mol | IMRE | Paul and Kebarle, 1991 | gas phase; ΔGaff measured at 423 K, ΔSaff taken as that of PhNO2..Br-; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84. | J/mol*K | N/A | Paul and Kebarle, 1991 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 26. ± 4.2 | kJ/mol | IMRE | Paul and Kebarle, 1991 | gas phase; ΔGaff measured at 423 K, ΔSaff taken as that of PhNO2..Br-; B |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
26. | 423. | PHPMS | Paul and Kebarle, 1991 | gas phase; Entropy change calculated or estimated; M |
By formula: C6H7N+ + C6H7N = (C6H7N+ • C6H7N)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 73.2 | kJ/mol | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 103. | J/mol*K | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; M |
By formula: C7H9N+ + C6H7N = (C7H9N+ • C6H7N)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 69.9 | kJ/mol | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 110. | J/mol*K | N/A | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 38. | kJ/mol | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; Entropy change calculated or estimated; M |
By formula: C8H11N+ + C6H7N = (C8H11N+ • C6H7N)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 59.4 | kJ/mol | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 110. | J/mol*K | N/A | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 27. | kJ/mol | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; Entropy change calculated or estimated; M |
By formula: C9H13N+ + C6H7N = (C9H13N+ • C6H7N)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 55.6 | kJ/mol | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | (110.) | J/mol*K | N/A | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
25. | 283. | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; Entropy change calculated or estimated; M |
By formula: F- + C6H7N = (F- • C6H7N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 131. ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1983 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 110. | J/mol*K | N/A | Larson and McMahon, 1983 | gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 97.9 ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1983 | gas phase; B,M |
By formula: I- + C6H7N = (I- • C6H7N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 54.0 ± 4.2 | kJ/mol | TDAs | Caldwell, Masucci, et al., 1989 | gas phase; B,M |
By formula: K+ + C6H7N = (K+ • C6H7N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 95.4 | kJ/mol | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 99.2 | J/mol*K | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References, Notes
Data compiled by: Coblentz Society, Inc.
- LIQUID (NEAT); BECKMAN IR-7 (GRATING); DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 4 cm-1 resolution
- SOLUTION (10% IN CCl4 FOR 3800-1300, 10% IN CS2 FOR 1300-650, 10% IN CCl4 FOR 650-250 CM-1) VERSUS SOLVENT; PERKIN-ELMER 521 (GRATING); DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 4 cm-1 resolution
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | NIST Mass Spectrometry Data Center, 1998. |
NIST MS number | 290555 |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Hatton, Hildenbrand, et al., 1962
Hatton, W.E.; Hildenbrand, D.L.; Sinke, G.C.; Stull, D.R.,
Chemical thermodynamic properties of aniline,
J. Chem. Eng. Data, 1962, 7, 229-231. [all data]
Vriens and Hill, 1952
Vriens, G.N.; Hill, A.G.,
Equilibria of several reactions of aromatic amines,
Ind. Eng. Chem., 1952, 44, 2732-27. [all data]
Cole and Gilbert, 1951
Cole, L.G.; Gilbert, E.C.,
The heats of combustion of some nitrogen compounds and the apparent energy of the N-N bond,
J. Am. Chem. Soc., 1951, 73, 5423-5427. [all data]
Anderson and Gilbert, 1942
Anderson, C.M.; Gilbert, E.C.,
The apparent energy of the N-N bond as calculated from heats of combustion,
J. Am. Chem. Soc., 1942, 64, 2369-2372. [all data]
Lemoult, 1907
Lemoult, M.P.,
Recherches theoriques et experimentales sur les chaleurs de combustion et de formation des composes organiques,
Ann. Chim. Phys., 1907, 12, 395-432. [all data]
Parks, Huffman, et al., 1933
Parks, G.S.; Huffman, H.M.; Barmore, M.,
Thermal data on organic compounds. XI. The heat capacities,
entropies and free energies of ten compounds containing oxygen or nitrogen. J. Am. Chem. Soc., 1933, 55, 2733-2740. [all data]
Willis, 1947
Willis, J.B.,
The heats of combustion of some organic bases and their salts. The resonance energies of acridine and phenazine,
Trans. Faraday Soc., 1947, 43, 97-102. [all data]
Lesbats and Lichanot, 1987
Lesbats, C.; Lichanot, A.,
Capacites calorifiques de durcisseurs amines et resines epoxydes,
Thermochim. Acta, 1987, 109, 317-329. [all data]
Nichols and Wads, 1975
Nichols, N.; Wads, I.,
Thermochemistry of solutions of biochemical model compounds. 3. Some benzene derivatives in aqueous solution,
J. Chem. Thermodynam., 1975, 7, 329-336. [all data]
Deshpande and Bhatagadde, 1971
Deshpande, D.D.; Bhatagadde, L.G.,
Heat capacities at constant volume, free volumes, and rotational freedom in some liquids,
Aust. J. Chem., 1971, 24, 1817-1822. [all data]
Crtzen, Jost, et al., 1957
Crtzen, J.L.; Jost, W.; Sieg, L.,
Gleichgewichtsmessungen im System Anilin-N-Methylanilin, N-N-Dimethylanilin, 1,2-Äthandiol,
Z. Elektrochem., 1957, 61, 230-246. [all data]
Hough, Mason, et al., 1950
Hough, E.W.; Mason, D.M.; Sage, B.H.,
Heat capacities of several organic liquids,
J. Am. Chem. Soc., 1950, 72, 5775-5777. [all data]
Ziegler and Andrews, 1942
Ziegler, W.T.; Andrews, D.H.,
The heat capacity of benzene-d6,
J. Am. Chem. Soc., 1942, 64, 2482-2485. [all data]
Radulescu and Jula, 1934
Radulescu, D.; Jula, O.,
Beiträge zur Bestimmung der Abstufung der Polarität des Aminstickstoffes in den organischen Verbindungen,
Z. Phys. Chem., 1934, B26, 390-393. [all data]
Ferguson and Miller, 1933
Ferguson, A.; Miller, J.T.,
A method for the determination of the specific heats of liquids, and a determination of the specific heats of aniline and benzene over the approximate range 20°C to 50°C,
Proc. Phys. Soc. London, 1933, 45, 194-207. [all data]
Lang, 1928
Lang, H.R.,
On the measurement of the variation of the specific heat of aniline with temperature, using the continuous flow electric method,
Proc. Roy. Soc. (London), 1928, A118, 138-156. [all data]
von Reis, 1881
von Reis, M.A.,
Die specifische Wärme flüssiger organischer Verbindungen und ihre Beziehung zu deren Moleculargewicht,
Ann. Physik [3], 1881, 13, 447-464. [all data]
Hatton, Hildenbrand, et al., 1962, 2
Hatton, W.E.; Hildenbrand, D.L.; Sinke, G.C.; Stull, D.R.,
Chemical Thermodynamic Properties of Aniline,
J. Chem. Eng. Data, 1962, 7, 229. [all data]
Ziegler and Andrews, 1942, 2
Ziegler, W.T.; Andrews, D.H.,
The heat capacity of benzene-d6,
J. Am. Chem. Soc., 1942, 64, 2482. [all data]
Parks, Huffman, et al., 1933, 2
Parks, G.S.; Huffman, H.M.; Barmore, M.,
Thermal Data on Organic Compounds. XI. The Heat Capacities, Entropies and Free Energies of Ten Compounds Containing Oxygen or Nitrogen,
J. Am. Chem. Soc., 1933, 55, 7, 2733, https://doi.org/10.1021/ja01334a016
. [all data]
Lagutkin and Kuropatkin, 1981
Lagutkin, O.D.; Kuropatkin, E.I.,
Critical coefficient of compressibility and critical dens. of aniline,
Zh. Fiz. Khim., 1981, 55, 1329. [all data]
Steele, Chirico, et al., 2002
Steele, W.V.; Chirico, R.D.; Knipmeyer, S.E.; Nguyen, A.,
Vapor Pressure, Heat Capacity, and Density along the Saturation Line: Measurements for Benzenamine, Butylbenzene, sec -Butylbenzene, tert -Butylbenzene, 2,2-Dimethylbutanoic Acid, Tridecafluoroheptanoic Acid, 2-Butyl-2-ethyl-1,3-propanediol, 2,2,4-Trimethyl-1,3-pentanediol, and 1-Chloro-2-propanol,
J. Chem. Eng. Data, 2002, 47, 4, 648-666, https://doi.org/10.1021/je010083e
. [all data]
Lee, Chen, et al., 1992
Lee, Chang Ha; Chen, Quen; Mohamed, Rahoma S.; Holder, Gerald D.,
Vapor-liquid equilibria in the system of toluene/aniline, aniline/naphthalene, and naphthalene/quinoline,
J. Chem. Eng. Data, 1992, 37, 2, 179-183, https://doi.org/10.1021/je00006a011
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Maher and Smith, 1979
Maher, Patrick J.; Smith, Buford D.,
A new total pressure vapor-liquid equilibrium apparatus. The ethanol + aniline system at 313.15, 350.81, and 386.67 K,
J. Chem. Eng. Data, 1979, 24, 1, 16-22, https://doi.org/10.1021/je60080a022
. [all data]
Ravdel and Danilov, 1968
Ravdel, A.A.; Danilov, V.V.,
Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1968, 11, 6, 642. [all data]
Ahmed and Eades, 1972
Ahmed, A.M.I.; Eades, R.G.,
Proton relaxation in solid aniline and some methyl derivatives,
J. Chem. Soc., Faraday Trans. 2, 1972, 68, 2017, https://doi.org/10.1039/f29726802017
. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Paul and Kebarle, 1991
Paul, G.J.C.; Kebarle, P.,
Stabilities of Complexes of Br- with Substituted Benzenes (SB) Based on Determinations of the Gas-Phase Equilibria Br- + SB = (BrSB)-,
J. Am. Chem. Soc., 1991, 113, 4, 1148, https://doi.org/10.1021/ja00004a014
. [all data]
Wren, Vogelhuber, et al., 2012
Wren, S.W.; Vogelhuber, K.M.; Ichino, T.; Stanton, J.F.; Lineberger, W.C.,
Photoelectron Spectroscopy of Anilinide and Acidity of Aniline,
J. Phys. Chem. A, 2012, 116, 12, 3118-3123, https://doi.org/10.1021/jp211463r
. [all data]
Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr.,
The gas phase acidity scale from methanol to phenol,
J. Am. Chem. Soc., 1979, 101, 6047. [all data]
Meot-Ner (Mautner) and El-Shall, 1986
Meot-Ner (Mautner), M.; El-Shall, M.S.,
Ionic Charge Transfer Complexes. 1. Cationic Complexes with Delocalized and Partially Localized pi Systems,
J. Am. Chem. Soc., 1986, 108, 15, 4386, https://doi.org/10.1021/ja00275a026
. [all data]
Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B.,
Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements,
J. Am. Chem. Soc., 1983, 105, 2944. [all data]
Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P.,
Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions,
J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014
. [all data]
Kalnin'sh, 1988
Kalnin'sh, K.K.,
Autocatalysis and effects of the solvent in the reaction of phthalic anhydride with aniline derivatives,
Bull. Acad. Sci. USSR, Div. Chem. Sci., 1988, 1768-1773. [all data]
Pravednikov, Kardash, et al., 1973
Pravednikov, A.N.; Kardash, I.Ye.; Glukhoyedov, N.P.; Ardashnikov, A.Ya.,
Some features of the synthesis of heat-resistant heterocyclic polymers,
Polym. Sci. USSR, 1973, 15, 399-410. [all data]
Matvienko, Kachurin, et al., 1982
Matvienko, N.M.; Kachurin, O.I.; Chekhuta, V.G.,
Kinetics and equilibrium of the transalkylation reaction of N-methylarylamines,
Russ. Chem. Rev., 1982, 48, 42-45. [all data]
Kachurin, Matvienko, et al., 1979
Kachurin, O.I.; Matvienko, N.M.; Chekhuta, V.G.,
Disproportionation of N-methylaniline,
Russ. Chem. Rev., 1979, 45, 43-47. [all data]
Davidson and Kebarle, 1976
Davidson, W.R.; Kebarle, P.,
Binding Energies and Stabilities of Potassium Ion Complexes from Studies of Gas Phase Ion Equilibria K+ + M = K+.M,
J. Am. Chem. Soc., 1976, 98, 20, 6133, https://doi.org/10.1021/ja00436a011
. [all data]
Kiselev, Khuzyasheva, et al., 1979
Kiselev, V.D.; Khuzyasheva, d.G.; Konovalov, A.I.,
Thermochemical study of the acylation of para-substituted anilines,
J. Gen. Chem. USSR, 1979, 49, 2273-2276. [all data]
Wadso, 1965
Wadso, I.,
Thermochemical properties of diacetimide, N-butyldiacetimide and N-phenyldiacetimide,
Acta Chem. Scand., 1965, 19, 1079-1087. [all data]
Kiselev, Malkov, et al., 1989
Kiselev, V.D.; Malkov, V.B.; Murzin, D.G.; Shakirov, I.M.; Konovalov, A.I.,
Thermochemical study of the reaction of isocyanate with amines,
Dokl. Phys. Chem. (Engl. Transl.), 1989, 308, 711-713, In original 111. [all data]
Kuznetsova, Rakova, et al., 1975
Kuznetsova, V.P.; Rakova, G.V.; Miroshnichenko, E.A.; Lebedev, Yu.A.; Enikolopyan, N.S.,
Thermochemical study of the interaction of epoxy compounds with primary amines,
Dokl. Phys. Chem. (Engl. Transl.), 1975, 225, 1231-1234. [all data]
Chimishkyan, Svetlova, et al., 1984
Chimishkyan, A.L.; Svetlova, L.P.; Leonova, T.V.; Gluyaev, N.D.,
Thermal decomposition of substituted ureas,
J. Gen. Chem. USSR, 1984, 54, 1317-1320. [all data]
Caldwell, Masucci, et al., 1989
Caldwell, G.W.; Masucci, J.A.; Ikonomou, M.G.,
Negative Ion Chemical Ionization Mass Spectrometry - Binding of Molecules to Bromide and Iodide Anions,
Org. Mass Spectrom., 1989, 24, 1, 8, https://doi.org/10.1002/oms.1210240103
. [all data]
Wadso, 1962
Wadso, I.,
Heats of aminolysis and hydrolysis of some N-acetyl compounds and of acetic anhydride,
Acta Chem. Scand., 1962, 16, 471-478. [all data]
Pannone and Macosko, 1987
Pannone, M.C.; Macosko, C.W.,
Kinetics of isocyanate amine reactions,
J. Appl. Polym. Sci., 1987, 34, 2409-2432. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Meek, Sekreta, et al., 1985
Meek, J.T.; Sekreta, E.; Wilson, W.; Viswanathan, K.S.; Reilly, J.P.,
The laser photoelectron spectrum of gas phase aniline,
J. Chem. Phys., 1985, 82, 1741. [all data]
Hager, Smith, et al., 1985
Hager, J.; Smith, M.; Wallace, S.,
Autoionizing Rydberg structure observed in the vibrationally selective, two-color threshold photoionization spectrum of jet-cooled aniline,
J. Chem. Phys., 1985, 83, 4820. [all data]
Smith, Hager, et al., 1984
Smith, M.A.; Hager, J.W.; Wallace, S.C.,
Two color photoionization spectroscopy of jet cooled aniline: Vibrational frequencies of the aniline X2B1 radical cation,
J. Chem. Phys., 1984, 80, 3097. [all data]
Klasinc, Kovac, et al., 1983
Klasinc, L.; Kovac, B.; Gusten, H.,
Photoelectron spectra of acenes. Electronic structure and substituent effects,
Pure Appl. Chem., 1983, 55, 289. [all data]
Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S.,
Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules
in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]
Zaretskii, Oren, et al., 1976
Zaretskii, Z.V.I.; Oren, D.; Kelner, L.,
Automatic method for the measurement of the electron impact ionization and appearance potentials,
Appl. Spectrosc., 1976, 30, 366. [all data]
Behan, Johnstone, et al., 1976
Behan, J.M.; Johnstone, R.A.W.; Bentley, T.W.,
An evaluation of empirical methods for calculating the ionization potentials of substituted benzenes,
Org. Mass Spectrom., 1976, 11, 207. [all data]
Baldwin, Loudon, et al., 1976
Baldwin, M.A.; Loudon, A.G.; Maccoll, A.; Webb, K.S.,
The nature and fragmentation pathways of the molecular ions of some arylureas, arylthioureas, acetanilides, thioacetanilides and related compounds,
Org. Mass Spectrom., 1976, 11, 1181. [all data]
Debies and Rabalais, 1974
Debies, T.P.; Rabalais, J.W.,
Photoelectron spectra of substituted benzenes. III. Bonding with Group V substituents,
Inorg. Chem., 1974, 13, 308. [all data]
Maier and Turner, 1973
Maier, J.P.; Turner, D.W.,
Steric inhibition of resonance studied by molecular photoelectron spectroscopy Part 3. Anilines, Phenols and Related Compounds,
J. Chem. Soc. Faraday Trans. 2, 1973, 69, 521. [all data]
Gilbert, Leach, et al., 1973
Gilbert, J.R.; Leach, W.P.; Miller, J.R.,
Ionisation appearance potential measurements in arene chromium tricarbonyls,
J. Organomet. Chem., 1973, 49, 219. [all data]
Debies and Rabalais, 1973
Debies, T.P.; Rabalais, J.W.,
Photoelectron spectra of substituted benzenes. II. Seven valence electron substituents,
J. Electron Spectrosc. Relat. Phenom., 1973, 1, 355. [all data]
Cowling and Johnstone, 1973
Cowling, S.A.; Johnstone, R.A.W.,
Photoelectron spectroscopy: The effects of steric inhibition to resonance in anilines,
J. Electron Spectrosc. Relat. Phenom., 1973, 2, 161. [all data]
Cooks, Bertrand, et al., 1973
Cooks, R.G.; Bertrand, M.; Beynon, J.H.; Rennekamp, M.E.; Setser, D.W.,
Energy partitioning data as an ion structure probe. Substituted anisoles,
J. Am. Chem. Soc., 1973, 95, 1732. [all data]
Johnstone and Mellon, 1972
Johnstone, R.A.W.; Mellon, F.A.,
Electron-impact ionization and appearance potentials,
J. Chem. Soc. Faraday Trans. 2, 1972, 68, 1209. [all data]
Gross, 1972
Gross, M.L.,
Ion cyclotron resonance spectrometry. A means of evaluating 'kinetic shifts',
Org. Mass Spectrom., 1972, 6, 827. [all data]
Potapov and Iskakov, 1971
Potapov, V.K.; Iskakov, L.I.,
Electronic structure and photoionization of aromatic amines,
High Energy Chem., 1971, 5, 237, In original 264. [all data]
Johnstone, Mellon, et al., 1971
Johnstone, R.A.W.; Mellon, F.A.; Ward, S.D.,
On-line computer methods used in conjunction with the measurement of ionization appearance potentials,
Adv. Mass Spectrom., 1971, 5, 334. [all data]
Zandberg and Rasulev, 1969
Zandberg, E.Ya.; Rasulev, U.Kh.,
Surface ionization of aniline molecules,
Zh. Tekhn. Fiz. 1968,38,1798 (Engl. Transl.: Soviet Phys. - Tech. Phys., 1969, 13, 1450). [all data]
Eland, 1969
Eland, J.H.D.,
Photoelectron spectra of conjugated hydrocarbons and heteromolecules,
Intern. J. Mass Spectrom. Ion Phys., 1969, 2, 471. [all data]
Akopyan and Vilesov, 1964
Akopyan, M.E.; Vilesov, F.I.,
Excited states of positive ions and dissociative photoionization of aromatic amines,
Dokl. Akad. Nauk SSSR, 1964, 158, 1386, In original 965. [all data]
Terenin, 1961
Terenin, A.,
Charge transfer in organic solids, induced by light,
Proc. Chem. Soc., London, 1961, 321. [all data]
Watanabe and Mottl, 1957
Watanabe, K.; Mottl, J.R.,
Ionization potentials of ammonia and some amines,
J. Chem. Phys., 1957, 26, 1773. [all data]
Vilesov and Terenin, 1957
Vilesov, F.I.; Terenin, A.N.,
The photoionization of the vapors of certain organic compounds,
Dokl. Akad. Nauk SSSR, 1957, 115, 744, In original 539. [all data]
Furin, Sultanov, et al., 1987
Furin, G.G.; Sultanov, A.S.; Furlei, I.I.,
Photoelectronic spectra of fluorine-containing aromatic amines,
Dokl. Phys. Chem., 1987, 530. [all data]
Meeks, Wahlborg, et al., 1981
Meeks, J.; Wahlborg, A.; McGlynn, S.P.,
Photoelectron spectroscopy of carbonyls: Benzoic acid and its derivatives,
J. Electron Spectrosc. Relat. Phenom., 1981, 22, 43. [all data]
Palmer, Moyes, et al., 1979
Palmer, M.H.; Moyes, W.; Spiers, M.; Ridyard, J.N.A.,
The electronic structure of substituted benzenes; a study of aniline, the toluidines, phenylenediamines and fluoroanilines by photoelectron spectroscopy and ab initio calculations,
J. Mol. Struct., 1979, 53, 235. [all data]
Kobayashi, 1978
Kobayashi, T.,
A simple general tendency in photoelectron angular distributions of some monosubstituted benzenes,
Phys. Lett., 1978, 69, 105. [all data]
Kobayashi and Nagakura, 1974
Kobayashi, T.; Nagakura, S.,
Photoelectron spectra of substituted benzenes,
Bull. Chem. Soc. Jpn., 1974, 47, 2563. [all data]
Haink, Adams, et al., 1974
Haink, H.J.; Adams, J.E.; Huber, J.R.,
The electronic structure of aromatic amines: photoelectron spectroscopy of diphenylamine, iminobibenzyl, acridan and carbazole,
Ber. Bunsen-Ges. Phys. Chem., 1974, 78, 436. [all data]
Kobayashi and Nagakura, 1972
Kobayashi, T.; Nagakura, S.,
Photoelectron spectra of anilines,
Chem. Lett., 1972, 1013. [all data]
Tajima and Tsuchiya, 1973
Tajima, S.; Tsuchiya, T.,
Energetics consideration of C5H5+ ions produced from various precursors by electron impact,
Bull. Chem. Soc. Jpn., 1973, 46, 3291. [all data]
Occolowitz and White, 1968
Occolowitz, J.L.; White, G.L.,
Energetic considerations in the assignment of some fragment ion structures,
Australian J. Chem., 1968, 21, 997. [all data]
Lifshitz and Malinovich, 1984
Lifshitz, C.; Malinovich, Y.,
Time resolved photoionization mass spectrometry in the millisecond range,
Int. J. Mass Spectrom. Ion Processes, 1984, 60, 99. [all data]
Lifshitz, Gotchiguian, et al., 1983
Lifshitz, C.; Gotchiguian, P.; Roller, R.,
Time-dependent mass spectra and breakdown graphs. The kinetic shift in aniline,
Chem. Phys. Lett., 1983, 95, 106. [all data]
Bentley, Johnstone, et al., 1973
Bentley, T.W.; Johnstone, R.A.W.; McMaster, B.N.,
Appearance potentials of metastable and normal ions and the kinetic shift,
J. Chem. Soc., Chem. Commun., 1973, 510. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References
- Symbols used in this document:
AE Appearance energy Cp,liquid Constant pressure heat capacity of liquid IE (evaluated) Recommended ionization energy Pc Critical pressure S°liquid Entropy of liquid at standard conditions T Temperature Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature Zc Critical compressability factor ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔcH°solid Enthalpy of combustion of solid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.