2-Butanol, 3-methyl-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-316.4 ± 1.8kJ/molEqkConnett, 1970ALS
Δfgas-313.1kJ/molN/AChao and Rossini, 1965Value computed using ΔfHliquid° value of -366.6±0.7 kj/mol from Chao and Rossini, 1965 and ΔvapH° value of 53.5 kj/mol from Connett, 1970.; DRB
Quantity Value Units Method Reference Comment
gas388.6 ± 3.8J/mol*KN/AConnett, 1970This value was obtained from equilibrium study.; GT

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-369.9 ± 1.4kJ/molEqkConnett, 1970ALS
Δfliquid-366.6 ± 0.71kJ/molCcbChao and Rossini, 1965ALS
Quantity Value Units Method Reference Comment
Δcliquid-3315.1 ± 0.63kJ/molCcbChao and Rossini, 1965Corresponding Δfliquid = -367.4 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
245.9298.15Atrashenok, Nesterov, et al., 1991T = 218 to 373 K. Cp(liq) = 4.81853 - 3.12708(T/100) + 0.182356(T/100)2 + 0.484126(T/100)3 - 0.0905712(T/100)4 kJ/kg*K.; DH

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard

View reactions leading to C5H12O+ (ion structure unspecified)

Ionization energy determinations

IE (eV) Method Reference Comment
9.75 ± 0.05EIGeorge and Holmes, 1990LL
10.01 ± 0.07EIBowen and Maccoll, 1984LBLHLM

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C2H4O+10.1 ± 0.1C3H8EIGeorge and Holmes, 1990LL
C2H5O+10.1 ± 0.05C3H7EIGeorge and Holmes, 1990LL
C2H5O+10.092-C3H7EIHolmes, Lossing, et al., 1988LL
C4H8O+10.0 ± 0.1CH4EIGeorge and Holmes, 1990LL
C4H9O+9.90 ± 0.05CH3EIGeorge and Holmes, 1990LL

De-protonation reactions

C5H11O- + Hydrogen cation = 2-Butanol, 3-methyl-

By formula: C5H11O- + H+ = C5H12O

Quantity Value Units Method Reference Comment
Δr1559. ± 8.4kJ/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Δr1561. ± 12.kJ/molG+TSBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale; B
Quantity Value Units Method Reference Comment
Δr1532. ± 8.8kJ/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Δr1533. ± 11.kJ/molCIDCBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale; B

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Connett, 1970
Connett, J.E., Chemical equilibria. Part III. Dehydrogenation of pentan-1-ol, pentan-2-ol, and 3-methylbutan-2-ol, J. Chem. Soc. A, 1970, 1284-1286. [all data]

Chao and Rossini, 1965
Chao, J.; Rossini, F.D., Heats of combustion, formation, and isomerization of nineteen alkanols, J. Chem. Eng. Data, 1965, 10, 374-379. [all data]

Atrashenok, Nesterov, et al., 1991
Atrashenok, T.R.; Nesterov, N.A.; Zhuk, I.P.; Peshchenko, A.D., Measured specific heats of hexan-1-ol and 3-methyl-2-butanol over wide temperature ranges, Inzh.-Fiz. Zh., 1991, 61(2), 301-304. [all data]

George and Holmes, 1990
George, M.; Holmes, J.L., Intermediate ion structures in the fragmentation of metastable 3-methylbutan-2-ol radical cations, Org. Mass Spectrom., 1990, 25, 605. [all data]

Bowen and Maccoll, 1984
Bowen, R.D.; Maccoll, A., Low energy, low temperature mass spectra, Org. Mass Spectrom., 1984, 19, 379. [all data]

Holmes, Lossing, et al., 1988
Holmes, J.L.; Lossing, F.P.; Maccoll, A., Heats of formation of alkyl radicals from appearance energies, J. Am. Chem. Soc., 1988, 110, 7339. [all data]

Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G., The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols, Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W . [all data]

Boand, Houriet, et al., 1983
Boand, G.; Houriet, R.; Baumann, T., The gas phase acidity of aliphatic alcohols, J. Am. Chem. Soc., 1983, 105, 2203. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, References