1-Heptene
- Formula: C7H14
- Molecular weight: 98.1861
- IUPAC Standard InChIKey: ZGEGCLOFRBLKSE-UHFFFAOYSA-N
- CAS Registry Number: 592-76-7
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: n-Hept-1-ene; 1-n-Heptene; 1-C7H14; α-Heptylene; Heptylene; NSC 74130; heptene-1; hept-1-ene
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Condensed phase thermochemistry data
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -97.70 ± 0.63 | kJ/mol | Eqk | Wiberg, Wasserman, et al., 1984 | Trifluoroacetolysis, hrxn[kcal/mol]=-11.808±0.015; ALS |
ΔfH°liquid | -98.37 ± 0.88 | kJ/mol | Ccb | Good, 1976 | ALS |
ΔfH°liquid | -97.0 ± 1.2 | kJ/mol | Ccb | Rockenfeller and Rossini, 1961 | Reanalyzed by Cox and Pilcher, 1970, Original value = -97.95 kJ/mol; ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -4657.00 ± 0.75 | kJ/mol | Ccb | Good, 1976 | Corresponding ΔfHºliquid = -98.37 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -4658.3 ± 1.2 | kJ/mol | Ccb | Rockenfeller and Rossini, 1961 | Corresponding ΔfHºliquid = -97.03 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -4650.98 ± 0.79 | kJ/mol | Ccb | Coops, Mulder, et al., 1947 | Reanalyzed by Cox and Pilcher, 1970, Original value = -4642. ± 4. kJ/mol; See Coops, Mulder, et al., 1946; Corresponding ΔfHºliquid = -104.4 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 327.65 | J/mol*K | N/A | McCullough, Finke, et al., 1957 | DH |
S°liquid | 328.9 | J/mol*K | N/A | Parks, Todd, et al., 1936 | Extrapolation below 80 K, 58.58 J/mol*K.; DH |
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
211.79 | 298.15 | McCullough, Finke, et al., 1957 | T = 11 to 360 K.; DH |
212.84 | 295.1 | Parks, Todd, et al., 1936 | T = 80 to 295 K. Value is unsmoothed experimental datum.; DH |
Reaction thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: H2 + C7H14 = C7H16
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -125. ± 2. | kJ/mol | AVG | N/A | Average of 6 values; Individual data points |
By formula: C7H16O = C7H14 + H2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 33.4 ± 0.2 | kJ/mol | Cm | Wiberg, Wasserman, et al., 1984 | liquid phase; Heat of hydration |
By formula: C7H16O = C7H14 + H2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 33.2 ± 0.2 | kJ/mol | Cm | Wiberg, Wasserman, et al., 1984 | liquid phase; Heat of hydration |
By formula: C7H16O = C7H14 + H2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 32.8 ± 0.2 | kJ/mol | Cm | Wiberg, Wasserman, et al., 1984 | liquid phase; Heat of hydration |
+ = C7H14Br2
By formula: C7H14 + Br2 = C7H14Br2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -126.5 | kJ/mol | Cm | Lister, 1941 | gas phase; Heat of bromination at 300 K |
By formula: C7H14 = C7H14
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -10.9 ± 0.4 | kJ/mol | Eqk | Kabo, Andreevskii, et al., 1967 | gas phase; Heat of isomerization |
By formula: C7H14 = C7H14
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -10. ± 0.2 | kJ/mol | Eqk | Kabo, Andreevskii, et al., 1967 | gas phase; Heat of isomerization |
By formula: C7H14 = C7H14
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -7.6 ± 1.1 | kJ/mol | Eqk | Kabo, Andreevskii, et al., 1967 | gas phase; Heat of isomerization |
By formula: C7H14 = C7H14
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -7.6 ± 0.1 | kJ/mol | Eqk | Kabo, Andreevskii, et al., 1967 | gas phase; Heat of isomerization |
Gas phase ion energetics data
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
L - Sharon G. Lias
Data compiled as indicated in comments:
LL - Sharon G. Lias and Joel F. Liebman
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 9.34 ± 0.08 | eV | N/A | N/A | L |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
9.38 ± 0.05 | EI | Holmes and Lossing, 1991 | LL |
9.3 ± 0.1 | EI | Haib and Stahl, 1990 | LL |
9.27 ± 0.02 | PE | Ashmore and Burgess, 1978 | LLK |
9.442 ± 0.003 | PE | Masclet, Grosjean, et al., 1973 | LLK |
References
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Wiberg, Wasserman, et al., 1984
Wiberg, K.B.; Wasserman, D.J.; Martin, E.,
Enthalpies of hydration of alkenes. 2. The n-heptenes and n-pentenes,
J. Phys. Chem., 1984, 88, 3684-3688. [all data]
Good, 1976
Good, W.D.,
The enthalpies of formation of five isomeric heptenes,
J. Chem. Thermodyn., 1976, 8, 67-71. [all data]
Rockenfeller and Rossini, 1961
Rockenfeller, J.D.; Rossini, F.D.,
Heats of combustion, isomerization, and formation of selected C7, C8, and C10 monoolefin hydrocarbons,
J. Phys. Chem., 1961, 65, 267-272. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Coops, Mulder, et al., 1947
Coops, J.; Mulder, D.; Dienske, J.W.; Smittenberg, J.,
Researches on heat of combustion IV. Technique for the determination of the heats of combustion of volatile liquids,
Recl. Trav. Chim. Pays-Bas, 1947, 66, 153-160. [all data]
Coops, Mulder, et al., 1946
Coops, J.; Mulder, D.; Dienske, J.W.; Smittenberg, J.,
The heats of combustion of a number of hydrocarbons,
Rec. Trav. Chim. Pays/Bas, 1946, 65, 128. [all data]
McCullough, Finke, et al., 1957
McCullough, J.P.; Finke, H.L.; Gross, M.E.; Messerly, J.F.; Waddington, G.,
Low temperature calorimetric studies of seven 1-olefins: effect of orientational disorder in the solid state,
J. Phys. Chem., 1957, 61, 289-301. [all data]
Parks, Todd, et al., 1936
Parks, G.S.; Todd, S.S.; Shomate, C.H.,
Thermal data on organic compounds. XVII. Some heat capacity, entropy and free energy data for five higher olefins,
J. Am. Chem. Soc., 1936, 58, 2505-2508. [all data]
Lister, 1941
Lister, M.W.,
Heats of organic reactions. X. Heats of bromination of cyclic olefins,
J. Am. Chem. Soc., 1941, 63, 143-149. [all data]
Kabo, Andreevskii, et al., 1967
Kabo, G.Ya.; Andreevskii, D.N.; Savinetskaya, G.A.,
Isomerization equilibrium of n-monochloroheptanes and n-heptenes,
Neftekhimiya, 1967, 7, 364-368. [all data]
Holmes and Lossing, 1991
Holmes, J.L.; Lossing, F.P.,
Ionization energies of homologous organic compounds and correlation with molecular size,
Org. Mass Spectrom., 1991, 26, 537. [all data]
Haib and Stahl, 1990
Haib, J.; Stahl, D.,
The loss of water from ionized heptanols in the gas phase,
Org. Mass Spectrom., 1990, 25, 592. [all data]
Ashmore and Burgess, 1978
Ashmore, F.S.; Burgess, A.R.,
Photoelectron spectra of the unbranched C5-C7 alkenes, aldehydes and ketones,
J. Chem. Soc. Faraday Trans. 2, 1978, 74, 734. [all data]
Masclet, Grosjean, et al., 1973
Masclet, P.; Grosjean, D.; Mouvier, G.,
Alkene ionization potentials. Part I. Quantitative determination of alkyl group structural effects,
J. Electron Spectrosc. Relat. Phenom., 1973, 2, 225. [all data]
Notes
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References
- Symbols used in this document:
Cp,liquid Constant pressure heat capacity of liquid IE (evaluated) Recommended ionization energy S°liquid Entropy of liquid at standard conditions ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔrH° Enthalpy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.