Benzene, iodo-
- Formula: C6H5I
- Molecular weight: 204.0084
- IUPAC Standard InChIKey: SNHMUERNLJLMHN-UHFFFAOYSA-N
- CAS Registry Number: 591-50-4
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Benzene iodide; Iodobenzene; Phenyl iodide
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 39.4 ± 1.4 | kcal/mol | Ccb | Smith, 1956 | Heat of formation derived by Cox and Pilcher, 1970 |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: C6H7N+ + C6H5I = (C6H7N+ • C6H5I)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13.3 | kcal/mol | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 26. | cal/mol*K | N/A | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
4.8 | 324. | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; Entropy change calculated or estimated; M |
By formula: Cl- + C6H5I = (Cl- • C6H5I)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 7.20 | kcal/mol | TDEq | French, Ikuta, et al., 1982 | gas phase; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
7.2 | 300. | PHPMS | French, Ikuta, et al., 1982 | gas phase; M |
By formula: HI + C6H5I = C6H6 + I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -5.2 ± 1.4 | kcal/mol | Cm | Graham, Nichol, et al., 1955 | gas phase; ALS |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
L - Sharon G. Lias
Data compiled as indicated in comments:
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 8.72 ± 0.04 | eV | N/A | N/A | L |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
8.79 | PE | Fujisawa, Ohno, et al., 1986 | LBLHLM |
8.75 | PE | Klasinc, Kovac, et al., 1983 | LBLHLM |
8.685 | PIPECO | Dannacher, Rosenstock, et al., 1983 | LBLHLM |
8.79 | PE | Kimura, Katsumata, et al., 1981 | LLK |
8.70 | PE | Behan, Johnstone, et al., 1976 | LLK |
9.05 | EI | Baldwin, Loudon, et al., 1976 | LLK |
8.77 ± 0.02 | PIPECO | Baer, Tsai, et al., 1976 | LLK |
8.67 | PE | Boschi and Salahub, 1974 | LLK |
8.73 ± 0.01 | PI | Sergeev, Akopyan, et al., 1970 | RDSH |
8.685 | PI | Momigny, Goffart, et al., 1968 | RDSH |
8.73 ± 0.03 | PI | Watanabe, 1957 | RDSH |
8.801 | PE | Potts, Lyus, et al., 1980 | Vertical value; LLK |
8.67 | PE | Sell and Kupperman, 1978 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
C6H5+ | 11.07 ± 0.07 | I | PI | Malinovich and Lifshitz, 1986 | LBLHLM |
C6H5+ | 10.6 ± 0.1 | I | TRPI | Lifshitz and Malinovich, 1984 | LBLHLM |
C6H5+ | 10.55 ± 0.01 | I | EI | Gefen and Lifshitz, 1984 | LBLHLM |
C6H5+ | 11.2 ± 0.9 | I | PI | Dunbar and Honovich, 1984 | LBLHLM |
C6H5+ | 11.32 ± 0.05 | I | EI | Burgers and Holmes, 1984 | LBLHLM |
C6H5+ | 11.4 ± 0.1 | I | EI | Burgers and Holmes, 1984 | LBLHLM |
C6H5+ | 11.015 | I | PIPECO | Dannacher, Rosenstock, et al., 1983 | LBLHLM |
C6H5+ | 11.4 ± 0.1 | I | EI | Burgers and Holmes, 1982 | LBLHLM |
C6H5+ | 11.27 | I | PIPECO | Baer, Tsai, et al., 1976 | LLK |
C6H5+ | 11.34 | I | EI | Johnstone and Mellon, 1972 | LLK |
C6H5+ | 11.06 ± 0.04 | I | PI | Sergeev, Akopyan, et al., 1970 | RDSH |
C6H5+ | 11.46 | I | EI | Howe and Williams, 1969 | RDSH |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes
Data compiled by: Coblentz Society, Inc.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | Chuck Anderson, Aldrich Chemical Co. |
NIST MS number | 107742 |
UV/Visible spectrum
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Victor Talrose, Eugeny B. Stern, Antonina A. Goncharova, Natalia A. Messineva, Natalia V. Trusova, Margarita V. Efimkina
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
View spectrum image in SVG format.
Download spectrum in JCAMP-DX format.
Source | missing citation |
---|---|
Owner | INEP CP RAS, NIST OSRD Collection (C) 2007 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
Origin | INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS |
Source reference | RAS UV No. 8984 |
Instrument | Unicam SP 500 or Hilger Ultrascan |
Melting point | -31.3 |
Boiling point | 188.4 |
References
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Smith, 1956
Smith, L.,
Corrected heats of combustion of organic iodine compounds,
Acta Chem. Scand., 1956, 10, 884-886. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Meot-Ner (Mautner) and El-Shall, 1986
Meot-Ner (Mautner), M.; El-Shall, M.S.,
Ionic Charge Transfer Complexes. 1. Cationic Complexes with Delocalized and Partially Localized pi Systems,
J. Am. Chem. Soc., 1986, 108, 15, 4386, https://doi.org/10.1021/ja00275a026
. [all data]
French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P.,
Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-,
Can. J. Chem., 1982, 60, 1907. [all data]
Graham, Nichol, et al., 1955
Graham, W.S.; Nichol, R.J.; Ubbelohde, A.R.,
A thermochemical evaluation of bond strengths in some carbon compounds. Part III. Bond strengths based on the reactions: (a) Ph·CH2I + HI=Ph·CH3 + I2 and (b) PhI + HI=PhH + I2,
J. Chem. Soc., 1955, 115-121. [all data]
Fujisawa, Ohno, et al., 1986
Fujisawa, S.; Ohno, K.; Masuda, S.; Harada, Y.,
Penning ionization electron spectroscopy of monohalogenobenzenes: C6H5F, C6H5Cl, C6H5Br, and C6H5I,
J. Am. Chem. Soc., 1986, 108, 6505. [all data]
Klasinc, Kovac, et al., 1983
Klasinc, L.; Kovac, B.; Gusten, H.,
Photoelectron spectra of acenes. Electronic structure and substituent effects,
Pure Appl. Chem., 1983, 55, 289. [all data]
Dannacher, Rosenstock, et al., 1983
Dannacher, J.; Rosenstock, H.M.; Buff, R.; Parr, A.C.; Stockbauer, R.L.; Bombach, R.; Stadelmann, J.-P.,
Benchmark measurement of iodobenzene ion fragmentation rates,
Chem. Phys., 1983, 75, 23. [all data]
Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S.,
Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules
in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]
Behan, Johnstone, et al., 1976
Behan, J.M.; Johnstone, R.A.W.; Bentley, T.W.,
An evaluation of empirical methods for calculating the ionization potentials of substituted benzenes,
Org. Mass Spectrom., 1976, 11, 207. [all data]
Baldwin, Loudon, et al., 1976
Baldwin, M.A.; Loudon, A.G.; Maccoll, A.; Webb, K.S.,
The nature and fragmentation pathways of the molecular ions of some arylureas, arylthioureas, acetanilides, thioacetanilides and related compounds,
Org. Mass Spectrom., 1976, 11, 1181. [all data]
Baer, Tsai, et al., 1976
Baer, T.; Tsai, B.P.; Smith, D.; Murray, P.T.,
Absolute unimolecular decay rates of energy selected metastable halobenzene ions,
J. Chem. Phys., 1976, 64, 2460. [all data]
Boschi and Salahub, 1974
Boschi, R.A.A.; Salahub, D.R.,
The high resolution photoelectron spectra of some iodoalkanes, iodocycloalkanes, iodoalkenes, and fluoroiodohydrocarbons,
Can. J. Chem., 1974, 52, 1217. [all data]
Sergeev, Akopyan, et al., 1970
Sergeev, Yu.L.; Akopyan, M.E.; Vilesov, F.I.; Kleimenov, V.I.,
Photoionization processes in phenyl halides,
Opt. i Spektroskopiya, 1970, 29, 119, In original 63. [all data]
Momigny, Goffart, et al., 1968
Momigny, J.; Goffart, C.; D'Or, L.,
Photoionization studies by total ionization measurements. I. Benzene and its monohalogeno derivatives,
Intern. J. Mass Spectrom. Ion Phys., 1968, 1, 53. [all data]
Watanabe, 1957
Watanabe, K.,
Ionization potentials of some molecules,
J. Chem. Phys., 1957, 26, 542. [all data]
Potts, Lyus, et al., 1980
Potts, A.W.; Lyus, M.L.; Lee, E.P.F.; Fattahallah, G.H.,
High resolution ultraviolet photoelectron spectra of C6H5X and p-C6H4X2 where X = Cl, Br or I,
J. Chem. Soc. Faraday Trans. 2, 1980, 76, 556. [all data]
Sell and Kupperman, 1978
Sell, J.A.; Kupperman, A.,
Angular distributions in the photoelectron spectra of benzene and its monohalogenated derivatives,
Chem. Phys., 1978, 33, 367. [all data]
Malinovich and Lifshitz, 1986
Malinovich, Y.; Lifshitz, C.,
Time-dependent mass spectra and breakdown graphs. 7. Time-resolved photoionization mass spectrometry of iodobenzene. The heat of formation of C6H5+,
J. Phys. Chem., 1986, 90, 2200. [all data]
Lifshitz and Malinovich, 1984
Lifshitz, C.; Malinovich, Y.,
Time resolved photoionization mass spectrometry in the millisecond range,
Int. J. Mass Spectrom. Ion Processes, 1984, 60, 99. [all data]
Gefen and Lifshitz, 1984
Gefen, S.; Lifshitz, C.,
Time-dependent mass spectra and breakdown graphs. V. The kinetic shift in iodobenzene,
Int. J. Mass Spectrom. Ion Processes, 1984, 58, 251. [all data]
Dunbar and Honovich, 1984
Dunbar, R.C.; Honovich, J.P.,
Threshold ion photodissociation. Bromobenzene and iodobenzene ions,
Int. J. Mass Spectrom. Ion Processes, 1984, 58, 25. [all data]
Burgers and Holmes, 1984
Burgers, P.C.; Holmes, J.L.,
Fragmentation rate constants and appearance energies for reactions having a large kinetic shift and the energy partitioning in their metastable decomposition,
Int. J. Mass Spectrom. Ion Processes, 1984, 58, 15. [all data]
Burgers and Holmes, 1982
Burgers, P.C.; Holmes, J.L.,
Metastable ion studies. XIII. The measurement of appearance energies of metastable peaks,
Org. Mass Spectrom., 1982, 17, 123. [all data]
Johnstone and Mellon, 1972
Johnstone, R.A.W.; Mellon, F.A.,
Electron-impact ionization and appearance potentials,
J. Chem. Soc. Faraday Trans. 2, 1972, 68, 1209. [all data]
Howe and Williams, 1969
Howe, I.; Williams, D.H.,
Calculation and qualitative predictions of mass spectra. Mono- and paradisubstituted benzenes,
J. Am. Chem. Soc., 1969, 91, 7137. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References
- Symbols used in this document:
AE Appearance energy IE (evaluated) Recommended ionization energy T Temperature ΔfH°gas Enthalpy of formation of gas at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.