Cyclohexanol, 1-methyl-
- Formula: C7H14O
- Molecular weight: 114.1855
- IUPAC Standard InChIKey: VTBOTOBFGSVRMA-UHFFFAOYSA-N
- CAS Registry Number: 590-67-0
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: 1-Methylcyclohexanol; 1-Methyl-1-cyclohexanol
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Condensed phase thermochemistry data
Go To: Top, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DH - Eugene S. Domalski and Elizabeth D. Hearing
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°solid | -93.7 ± 0.2 | kcal/mol | Cac | Wiberg, Wasserman, et al., 1985 | Trifluoroacetolysis; ALS |
Constant pressure heat capacity of liquid
Cp,liquid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
66.695 | 298.15 | Caceres-Alonso, Costas, et al., 1988 | DH |
Phase change data
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 428.2 | K | N/A | Weast and Grasselli, 1989 | BS |
Tboil | 438.65 | K | N/A | Walling and Padwa, 1963 | Uncertainty assigned by TRC = 1.5 K; TRC |
Tboil | 427.15 | K | N/A | Zeiss and Tsutsui, 1953 | Uncertainty assigned by TRC = 2. K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 299.1 | K | N/A | Plate, Liberman, et al., 1953 | Uncertainty assigned by TRC = 2. K; TRC |
Tfus | 297.9 | K | N/A | Zeiss and Tsutsui, 1953 | Uncertainty assigned by TRC = 1.5 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 299.40 | K | N/A | Kabo, Kozyro, et al., 1999 | Uncertainty assigned by TRC = 0.15 K; TRC |
Reduced pressure boiling point
Tboil (K) | Pressure (atm) | Reference | Comment |
---|---|---|---|
441.2 | 0.989 | Aldrich Chemical Company Inc., 1990 | BS |
Enthalpy of vaporization
ΔvapH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
11.7 | 355. | A | Stephenson and Malanowski, 1987 | Based on data from 340. to 430. K.; AC |
Enthalpy of sublimation
ΔsubH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
18.1 ± 0.1 | 291. | C | Kabo, Blokhin, et al., 1998 | AC |
Enthalpy of fusion
ΔfusH (kcal/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
3.423 | 299.4 | Kabo, Blokhin, et al., 1998 | AC |
2.598 | 299.2 | Wiberg, Wasserman, et al., 1985 | AC |
Reaction thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: John E. Bartmess
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
C7H13O- + =
By formula: C7H13O- + H+ = C7H14O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 371.9 ± 2.0 | kcal/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 365.3 ± 2.1 | kcal/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
Gas phase ion energetics data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
9.8 ± 0.2 | EI | Fortin, Forest, et al., 1973 | LLK |
De-protonation reactions
C7H13O- + =
By formula: C7H13O- + H+ = C7H14O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 371.9 ± 2.0 | kcal/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 365.3 ± 2.1 | kcal/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
IR Spectrum
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Gas Phase Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
View spectrum image in SVG format.
Download spectrum in JCAMP-DX format.
Owner | NIST Standard Reference Data Program Collection (C) 2018 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | Sadtler Research Labs Under US-EPA Contract |
State | gas |
Mass spectrum (electron ionization)
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | Chuck Anderson, Aldrich Chemical Co. |
NIST MS number | 108528 |
References
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Wiberg, Wasserman, et al., 1985
Wiberg, K.B.; Wasserman, D.J.; Martin, E.J.; Murcko, M.A.,
Enthalpies of hydration of alkenes. 3. Cycloalkenes,
J. Am. Chem. Soc., 1985, 107, 6019-6022. [all data]
Caceres-Alonso, Costas, et al., 1988
Caceres-Alonso, M.; Costas, M.; Andreoli-Ball, L.; Patterson, D.,
Steric effects on the self-association of branched and cyclic alcohols in inert solvents. Apparent heat capacities of secondary and tertiary alcohols in hydrocarbons,
Can. J. Chem., 1988, 66, 989-998. [all data]
Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]
Walling and Padwa, 1963
Walling, C.; Padwa, A.,
Positive Halogen Compounds VI. Effects of Structure and Medium on the β-Scission of Alkoxy Radicals,
J. Am. Chem. Soc., 1963, 85, 1593. [all data]
Zeiss and Tsutsui, 1953
Zeiss, H.H.; Tsutsui, M.,
The Carbon-Oxygen Absorption Band in the Infrared Spectra of Alcohols,
J. Am. Chem. Soc., 1953, 75, 897. [all data]
Plate, Liberman, et al., 1953
Plate, A.F.; Liberman, A.L.; Momma, N.A.,
Preparation of 1,2-Dialkylcycloanes. Synthesis of Stereoisomeric 1-Methyl-2-butylcyclopentanes,
Izv. Akad. Nauk SSSR, 1953, 1953, 689. [all data]
Kabo, Kozyro, et al., 1999
Kabo, G.J. (see Kabo; Kozyro, A.A.; Frenkel, M. (see frenke ml); Blokhin, A.V.,
Solid Phase Transitions of the Cyclohexane Derivatives and the Model of Energy States of Molecules in Plastic Crystals,
Mol. Cryst. Liq. Cryst., 1999, 326, 333-5. [all data]
Aldrich Chemical Company Inc., 1990
Aldrich Chemical Company Inc.,
Catalog Handbook of Fine Chemicals, Aldrich Chemical Company, Inc., Milwaukee WI, 1990, 1. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Kabo, Blokhin, et al., 1998
Kabo, G.J.; Blokhin, A.V.; Kozyro, A.A.; Diky, V.V.; Ivashkevich, L.S.; Krasulin, A.P.; Sevruk, V.M.; Frenkel, Michael,
Thermodynamic properties and phase transitions of 1-methylcyclohexanol and 1-chloro-1-methylcyclohexane,
Thermochimica Acta, 1998, 313, 2, 111-124, https://doi.org/10.1016/S0040-6031(97)00481-4
. [all data]
Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G.,
The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols,
Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W
. [all data]
Fortin, Forest, et al., 1973
Fortin, C.J.; Forest, M.; Vaziri, C.; Gravel, D.; Rousseau, Y.,
Spectrometrie de masse des cyclohexanones gem-diphenylees. I. Localisation de la charge positive,
Can. J. Chem., 1973, 51, 3445. [all data]
Notes
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References
- Symbols used in this document:
Cp,liquid Constant pressure heat capacity of liquid Tboil Boiling point Tfus Fusion (melting) point Ttriple Triple point temperature ΔfH°solid Enthalpy of formation of solid at standard conditions ΔfusH Enthalpy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔsubH Enthalpy of sublimation ΔvapH Enthalpy of vaporization - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.