3-Hexanone

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-66.50 ± 0.21kcal/molCcbHarrop, Head, et al., 1970ALS
Quantity Value Units Method Reference Comment
gas97.90cal/mol*KN/AAndon R.J.L., 1970GT

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
42.651383.15Hales J.L., 1967GT
44.250403.15
45.870423.15
47.899448.15
49.720473.15
51.580498.15

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-76.51 ± 0.21kcal/molCcbHarrop, Head, et al., 1970ALS
Quantity Value Units Method Reference Comment
Δcliquid-897.68 ± 0.19kcal/molCcbHarrop, Head, et al., 1970Corresponding Δfliquid = -76.515 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid72.97cal/mol*KN/AAndon, Counsell, et al., 1970DH

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
51.84298.15Andon, Counsell, et al., 1970T = 10 to 320 K.; DH
51.70298.15Harrop, Head, et al., 1970DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil396. ± 1.KAVGN/AAverage of 22 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus217.48KN/ACollerson, Counsell, et al., 1965Uncertainty assigned by TRC = 0.02 K; TRC
Tfus217.5KN/ACollerson, Counsell, et al., 1965Uncertainty assigned by TRC = 0.01 K; TRC
Quantity Value Units Method Reference Comment
Ttriple217.72KN/AAndon, Counsell, et al., 1970, 2Crystal phase 1 phase; Uncertainty assigned by TRC = 0.05 K; TRC
Quantity Value Units Method Reference Comment
Tc583.2KN/APulliam, Gude, et al., 1994Uncertainty assigned by TRC = 0.25 K; by the sealed ampule method; TRC
Tc582.8KN/AMajer and Svoboda, 1985 
Tc582.82KN/AAmbrose, Broderick, et al., 1974Uncertainty assigned by TRC = 0.4 K; TRC
Quantity Value Units Method Reference Comment
Pc32.77atmN/AAmbrose, Broderick, et al., 1974Uncertainty assigned by TRC = 0.20 atm; TRC
Quantity Value Units Method Reference Comment
ρc2.65mol/lN/APulliam, Gude, et al., 1994Uncertainty assigned by TRC = 0.03 mol/l; TRC
Quantity Value Units Method Reference Comment
Δvap10.0 ± 0.3kcal/molAVGN/AAverage of 6 values; Individual data points

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
8.451396.7N/AMajer and Svoboda, 1985 
8.72423.AStephenson and Malanowski, 1987Based on data from 408. to 517. K.; AC
8.46526.AStephenson and Malanowski, 1987Based on data from 511. to 583. K.; AC
9.30363.AStephenson and Malanowski, 1987Based on data from 348. to 413. K. See also Ambrose, Ellender, et al., 1975.; AC
10.1307.AStephenson and Malanowski, 1987Based on data from 292. to 406. K. See also Dykyj, 1972.; AC
9.18 ± 0.02354.CHales, Lees, et al., 1967AC
8.84 ± 0.02374.CHales, Lees, et al., 1967AC
8.46 ± 0.02396.CHales, Lees, et al., 1967AC
9.27364.GS,EBCollerson, Counsell, et al., 1965Based on data from 349. to 406. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-βTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kcal/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A (kcal/mol) β Tc (K) Reference Comment
298. to 397.14.830.3088582.8Majer and Svoboda, 1985 

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference
348.76 to 406.514.120021365.798-65.143Collerson, Counsell, et al., 1965, 2

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Reference Comment
3.219217.7Domalski and Hearing, 1996AC

Entropy of fusion

ΔfusS (cal/mol*K) Temperature (K) Reference Comment
1.1145.Domalski and Hearing, 1996CAL
14.79217.7

Enthalpy of phase transition

ΔHtrs (kcal/mol) Temperature (K) Initial Phase Final Phase Reference Comment
0.163145.crystaline, IIcrystaline, IAndon, Counsell, et al., 1970DH
3.2242217.72crystaline, IliquidAndon, Counsell, et al., 1970DH

Entropy of phase transition

ΔStrs (cal/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
1.13145.crystaline, IIcrystaline, IAndon, Counsell, et al., 1970DH
14.81217.72crystaline, IliquidAndon, Counsell, et al., 1970DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias

Data compiled as indicated in comments:
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

Quantity Value Units Method Reference Comment
Proton affinity (review)201.5kcal/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity193.9kcal/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
9.30EIHolmes, Fingas, et al., 1981LLK
9.12 ± 0.02PEAshmore and Burgess, 1978LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C4H7O+10.6 ± 0.3C2H5EIYeo and Williams, 1969RDSH
C4H8O+9.89C2H4EIHolmes and Lossing, 1980LLK
C4H8O+10.2 ± 0.3C2H4EIYeo and Williams, 1969RDSH

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Gas Phase Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

IR spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Owner NIST Standard Reference Data Program
Collection (C) 2018 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin NIST Mass Spectrometry Data Center
State gas
Instrument HP-GC/MS/IRD

This IR spectrum is from the NIST/EPA Gas-Phase Infrared Database .


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, IR Spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin D.HENNEBERG, MAX-PLANCK INSTITUTE, MULHEIM, WEST GERMANY
NIST MS number 61741

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryOV-1333.764.8Hu, Lu, et al., 2006 
CapillaryHP-1110.765.97Héberger, Görgényi, et al., 200250. m/0.32 mm/1.05 μm
CapillaryHP-130.764.11Héberger, Görgényi, et al., 200250. m/0.32 mm/1.05 μm
CapillaryHP-150.764.10Héberger, Görgényi, et al., 200250. m/0.32 mm/1.05 μm
CapillaryHP-170.764.37Héberger, Görgényi, et al., 200250. m/0.32 mm/1.05 μm
CapillaryHP-190.765.00Héberger, Görgényi, et al., 200250. m/0.32 mm/1.05 μm
CapillaryHP-1110.766.Héberger and Görgényi, 199950. m/0.32 mm/1.05 μm, N2
CapillaryHP-150.764.Héberger and Görgényi, 199950. m/0.32 mm/1.05 μm, N2
CapillaryHP-170.764.Héberger and Görgényi, 199950. m/0.32 mm/1.05 μm, N2
CapillaryHP-190.765.Héberger and Görgényi, 199950. m/0.32 mm/1.05 μm, N2
PackedSE-30100.768.Winskowski, 1983Gaschrom Q; Column length: 2. m
PackedApiezon L120.750.Bogoslovsky, Anvaer, et al., 1978Celite 545
PackedApiezon L160.761.Bogoslovsky, Anvaer, et al., 1978Celite 545
PackedApiezon L130.746.Bogoslovsky, Anvaer, et al., 1978 
PackedApiezon L130.746.Wehrli and Kováts, 1959Celite; Column length: 2.25 m
PackedApiezon L190.751.Wehrli and Kováts, 1959Celite; Column length: 2.25 m

Kovats' RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryHP-Innowax110.1084.5Héberger and Görgényi, 199930. m/0.32 mm/0.5 μm
CapillaryHP-Innowax50.1068.0Héberger and Görgényi, 199930. m/0.32 mm/0.5 μm
CapillaryHP-Innowax70.1073.3Héberger and Görgényi, 199930. m/0.32 mm/0.5 μm
CapillaryHP-Innowax90.1078.9Héberger and Görgényi, 199930. m/0.32 mm/0.5 μm
CapillaryPEG-20M80.1050.0Orav, Kuningas, et al., 199450. m/0.2 mm/0.13 μm, He
CapillaryPEG-20M80.1065.0Orav, Kuningas, et al., 199450. m/0.2 mm/0.22 μm, He

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-1757.4Sun and Stremple, 200330. m/0.25 mm/0.25 μm, He, 3. K/min; Tstart: 40. C; Tend: 325. C
CapillaryDB-5783.3Xu, van Stee, et al., 200330. m/0.25 mm/1. μm, He, 2.5 K/min; Tstart: 50. C; Tend: 200. C
CapillaryCP Sil 5 CB756.Pino and Marbot, 200150. m/0.32 mm/0.4 μm, He, 60. C @ 10. min, 3. K/min, 280. C @ 60. min
CapillaryCP Sil 5 CB756.Pino, Marbot, et al., 200150. m/0.32 mm/0.4 μm, He, 60. C @ 10. min, 3. K/min, 280. C @ 60. min
CapillaryDB-5784.Gómez, Ledbetter, et al., 1993He, 4. K/min; Column length: 30. m; Column diameter: 0.25 mm; Tstart: 50. C; Tend: 250. C

Van Den Dool and Kratz RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryVF-5MS785.5Tret'yakov, 200730. m/0.25 mm/0.25 μm, He; Program: Multi-step temperature program; T(initial)=60C; T(final)=270C
CapillaryHP-5791.Boué, Shih, et al., 200350. m/0.2 mm/0.5 μm, He; Program: 40C(3min) => 10C/min => 60C =3C/min => 150C => 20C/min => 250C (5min)
CapillaryCP Sil 8 CB790.Oruna-Concha, Bakker, et al., 200260. m/0.25 mm/0.25 μm, He; Program: 0C => rapidly => 40C(8min) => 4C/min => 250C(10min)
CapillaryCP Sil 8 CB795.Duckham, Dodson, et al., 200160. m/0.25 mm/0.25 μm; Program: 0C => rapidly => 40C(8min) => 4C/min => 250C(10min)
CapillaryBPX-5802.Elmore, Mottram, et al., 199950. m/0.32 mm/0.5 μm, He; Program: 0C(5min) => 40C/min => 40C(2min) => 4C/min => 280C

Van Den Dool and Kratz RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryZB-Wax1023.Ledauphin, Basset, et al., 200630. m/0.25 mm/0.15 μm, He, 35. C @ 5. min, 5. K/min, 220. C @ 10. min
CapillaryCP-Wax 52CB1051.Mahadevan and Farmer, 200660. C @ 5. min, 4. K/min, 220. C @ 30. min; Column length: 50. m; Column diameter: 0.32 mm
CapillarySupelcowax-101053.Chung, Yung, et al., 200260. m/0.25 mm/0.25 μm, He, 35. C @ 5. min, 2. K/min, 195. C @ 90. min
CapillarySupelcowax-101053.Chung, Yung, et al., 200160. m/0.25 mm/0.25 μm, He, 35. C @ 5. min, 2. K/min, 195. C @ 90. min
CapillaryAT-Wax1040.Pino and Marbot, 200160. m/0.32 mm/0.25 μm, He, 65. C @ 10. min, 2. K/min, 250. C @ 60. min
CapillaryAT-Wax1037.Pino, Marbot, et al., 200160. m/0.32 mm/0.25 μm, He, 65. C @ 10. min, 2. K/min, 250. C @ 60. min
CapillarySupelcowax-101053.Chung, 199960. m/0.25 mm/0.25 μm, He, 35. C @ 5. min, 2. K/min, 195. C @ 90. min
CapillaryDB-Wax1046.Chung, Eiserich, et al., 1994He, 60. C @ 4. min, 3. K/min, 220. C @ 30. min; Column length: 60. m; Column diameter: 0.25 mm
CapillarySupelcowax-101053.Chung and Cadwallader, 199360. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 2. K/min, 195. C @ 40. min
CapillarySupelcowax-101053.Matiella and Hsieh, 199060. m/0.25 mm/0.25 μm, 40. C @ 5. min, 2. K/min, 175. C @ 20. min
CapillarySupelcowax-101054.Tanchotikul and Hsieh, 198960. m/0.25 mm/0.25 μm, 40. C @ 5. min, 2. K/min, 175. C @ 20. min
CapillarySupelcowax-101056.Tanchotikul and Hsieh, 198960. m/0.25 mm/0.25 μm, 40. C @ 5. min, 2. K/min, 175. C @ 20. min

Van Den Dool and Kratz RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillarySupelcowax-101052.Bianchi, Careri, et al., 200730. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 4C/min => 60C => 6C/min => 160C => 20C/min => 200C(1min)

Normal alkane RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryOV-160.764.Amboni, Junkes, et al., 2002 
PackedApieson L120.757.Kurdina, Markovich, et al., 1969not specified, not specified

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryOV-101771.Zenkevich, Eliseenkov, et al., 201125. m/0.20 mm/0.25 μm, Nitrogen, 6. K/min; Tstart: 40. C; Tend: 240. C
CapillaryDB-1760.Kumazawa, Itobe, et al., 200830. m/0.25 mm/0.25 μm, He, 5. K/min; Tstart: 30. C; Tend: 210. C
CapillaryHP-5786.Isidorov, Purzynska, et al., 200630. m/0.25 mm/0.25 μm, He, 35. C @ 5. min, 3. K/min; Tend: 200. C
CapillaryMDN-5783.van Loon, Linssen, et al., 200560. m/0.25 mm/0.25 μm, He, 40. C @ 4. min, 4. K/min, 270. C @ 5. min
CapillaryDB-5783.Joffraud, Leroi, et al., 200160. m/0.32 mm/1. μm, He, 40. C @ 5. min, 3. K/min; Tend: 200. C
CapillaryHP-5795.Boylston and Viniyard, 199850. m/0.32 mm/0.52 μm, 35. C @ 15. min, 2. K/min, 250. C @ 45. min
CapillaryDB-1771.Tai and Ho, 199860. m/0.32 mm/1.0 μm, He, 2. K/min; Tstart: 40. C; Tend: 280. C
CapillaryHP-5784.Larsen and Frisvad, 199535. C @ 2. min, 6. K/min; Tend: 200. C
CapillaryCross-Linked Methylsilicone761.Bravo and Hotchkiss, 1993He, 35. C @ 3. min, 4. K/min; Column length: 25. m; Column diameter: 0.32 mm; Tend: 225. C
CapillaryUltra-2768.King, Hamilton, et al., 199350. m/0.32 mm/0.52 μm, He, 40. C @ 3. min, 4. K/min, 250. C @ 30. min
CapillaryDB-5788.Macku and Shibamoto, 1991He, 40. C @ 5. min, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 160. C
CapillaryDB-5788.Macku and Shibamoto, 1991, 2He, 40. C @ 5. min, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 160. C
CapillaryOV-101775.Zenkevich and Ventura, 1991Helium, 50. C @ 0. min, 5. K/min, 240. C @ 0. min; Column length: 54. m; Column diameter: 0.26 mm
CapillaryOV-101767.Anker, Jurs, et al., 19902. K/min; Column length: 50. m; Column diameter: 0.28 mm; Tstart: 80. C; Tend: 200. C

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryTR-5 MS795.Kurashov, Mitrukova, et al., 201415. m/0.25 mm/0.25 μm, Helium; Program: 35 0C (3 min) 2 0C/min -> 60 0C (3 min) 2 0C/min -> 80 0C (3 min) 4 0C/min -> 120 0C (3 min) 5 0C/min -> 150 0C (3 min) 15 0C/min -> 240 0C (10 min)
CapillaryMethyl Silicone746.Chen and Feng, 2007Program: not specified
CapillaryMethyl Silicone765.Feng and Mu, 2007Program: not specified
CapillaryHP-5MS775.Mallia, Escher, et al., 2007Program: not specified
CapillaryDB-1754.Cramer, Mattinson, et al., 200560. m/0.32 mm/0.25 μm, He; Program: 33C(5min) => 2C/min => 50c => 5C/min => 225C
CapillaryHP-1764.Junkes, Amboni, et al., 2004Program: not specified
CapillaryHP-5795.Sotomayor, Martínez, et al., 200430. m/0.25 mm/0.25 μm, He; Program: 60C(4min) => 1C/min => 64C => 2.5C/min => 155C => 5C/min => 250C
CapillarySE-30767.Vinogradov, 2004Program: not specified
CapillarySPB-5782.Begnaud, Pérès, et al., 200360. m/0.32 mm/1. μm; Program: not specified
CapillaryPolydimethyl siloxane764.Junkes, Castanho, et al., 2003Program: not specified
CapillaryHP-5787.Jordán, Goodner, et al., 200230. m/0.25 mm/0.25 μm; Program: not specified
CapillaryCP Sil 8 CB779.Duckham, Dodson, et al., 200160. m/0.25 mm/0.25 μm; Program: not specified
CapillaryMethyl Silicone765.Estrada and Gutierrez, 1999Program: not specified
CapillarySPB-1768.Flanagan, Streete, et al., 199760. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C
CapillarySPB-1768.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C
CapillarySPB-1781.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: not specified
CapillaryOV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc.761.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryOV-1781.Ramsey and Flanagan, 1982Program: not specified

Normal alkane RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax1047.Karlsson, Birgersson, et al., 200930. m/0.25 mm/0.25 μm, Hydrogen, 30. C @ 5. min, 8. K/min, 230. C @ 10. min
CapillaryDB-Wax1058.Kumazawa, Itobe, et al., 200830. m/0.25 mm/0.25 μm, He, 5. K/min; Tstart: 30. C; Tend: 210. C
CapillaryFFAP1060.Nebesny, Budryn, et al., 200730. m/0.32 mm/0.5 μm, N2, 35. C @ 5. min, 4. K/min, 320. C @ 45. min
CapillaryCarbowax 20M1027.Saura, LAencina, et al., 2003Helium, 50. C @ 2. min, 4. K/min; Column length: 50. m; Column diameter: 0.70 mm; Tend: 280. C
CapillaryHP-Wax1053.Sanz, Maeztu, et al., 200260. m/0.25 mm/0.5 μm, He, 40. C @ 6. min, 3. K/min; Tend: 190. C
CapillaryHP-Wax1053.Maeztu, Sanz, et al., 200160. m/0.25 mm/0.5 μm, He, 40. C @ 6. min, 3. K/min; Tend: 190. C
CapillaryHP-Wax1053.Sanz, Ansorena, et al., 200160. m/0.25 mm/0.5 μm, He, 40. C @ 6. min, 3. K/min; Tend: 190. C
CapillaryDB-Wax1057.Iwatsuki, Mizota, et al., 19994. K/min; Column length: 30. m; Column diameter: 0.53 mm; Tstart: 60. C; Tend: 210. C
CapillaryDB-Wax1042.Horiuchi, Umano, et al., 199860. m/0.25 mm/1. μm, He, 3. K/min, 200. C @ 40. min; Tstart: 50. C
CapillaryDB-Wax1050.Umano, Hagi, et al., 1995He, 40. C @ 2. min, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 200. C
CapillaryCarbowax 20M1055.Anker, Jurs, et al., 19902. K/min; Column length: 80. m; Column diameter: 0.2 mm; Tstart: 70. C; Tend: 170. C

Normal alkane RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryInnowax FSC1058.Bardakci, Demirci, et al., 201260. m/0.25 mm/0.25 μm, Helium; Program: 60 0C (10 min) 4 0C/min -> 220 0C 1 0C/min -> 240 0C
CapillarySOLGel-Wax1055.Johanningsmeier and McFeeters, 201130. m/0.25 mm/0.25 μm, Helium; Program: 40 0C (2 min) 5 0C/min -> 140 0C 10 0C/min -> 250 0C (3 min)
CapillarySOLGel-Wax1052.Johanningsmeier and McFeeters, 201130. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillaryHP-Innowax1049.Narain, Galvao, et al., 200730. m/0.25 mm/0.25 μm, Helium; Program: 30 0C (5 min) 5 0C/min -> 100 0C (5 min) 1 0C/min -> 130 0C 10 0C/min -> 195 0C (45 min)
CapillaryHP-Innowax1072.Narain, Galvao, et al., 2007, 230. m/0.25 mm/0.25 μm, He; Program: 30C(5min) => 7C/min => 100C(5min) => 1C/min => 130C => 10C/min => 195C(45min)
CapillaryHP-Innowax1075.Narain, Galvao, et al., 2007, 230. m/0.25 mm/0.25 μm, He; Program: 30C(5min) => 7C/min => 100C(5min) => 1C/min => 130C => 10C/min => 195C(45min)
CapillaryInnowax1068.Junkes, Amboni, et al., 2004Program: not specified
CapillaryCarbowax 20M1055.Vinogradov, 2004Program: not specified
CapillaryCarbowax 20M1052.Saura, LAencina, et al., 2003Helium; Column length: 50. m; Column diameter: 0.70 mm; Program: not specified
CapillaryDB-Wax1042.Caldentey, Daria Fumi, et al., 199830. m/0.25 mm/0.25 μm, He; Program: 25C(8min) => 4C/min => 60C => 6C/min => 160C => 20C/min => 200C
CapillaryDB-Wax1048.Peng, Yang, et al., 1991Program: not specified
CapillaryCarbowax 20M1055.Ramsey and Flanagan, 1982Program: not specified

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Harrop, Head, et al., 1970
Harrop, D.; Head, A.J.; Lewis, G.B., Thermodynamic properties of organic oxygen compounds. 22. Enthalpies of combustion of some aliphatic ketones, J. Chem. Thermodyn., 1970, 2, 203-210. [all data]

Andon R.J.L., 1970
Andon R.J.L., Thermodynamic properties of organic oxygen compounds. Part XXIII. Low-temperature heat capacity and entropy of C6, C7, and C9 ketones, J. Chem. Soc. A, 1970, 833-837. [all data]

Hales J.L., 1967
Hales J.L., Thermodynamic properties of organic oxygen compounds. Part 18. Vapor heat capacities and heats of vaporization of ethyl ketone, ethyl propyl ketone, methyl isopropyl ketone, and methyl phenyl ether, Trans. Faraday Soc., 1967, 63, 1876-1879. [all data]

Andon, Counsell, et al., 1970
Andon, R.J.L.; Counsell, J.F.; Lees, E.B.; Martin, J.F., Thermodynamic properties of organic oxygen compounds. Part XXIII. Low-temperature heat capacity and entropy of C6, C7, and C9 ketones, 1970, J. [all data]

Collerson, Counsell, et al., 1965
Collerson, R.R.; Counsell, J.F.; Handley, R.; Martin, J.F.; Sprake, C.H.S., 677. Thermodynamic properties of organic oxygen compounds. Part XV. Purification and vapour pressures of some ketones and ethers, J. Chem. Soc., 1965, 3697, https://doi.org/10.1039/jr9650003697 . [all data]

Andon, Counsell, et al., 1970, 2
Andon, R.J.L.; Counsell, J.F.; Lees, E.B.; Martin, J.F., Thermodynamic Properties of Organic Oxygen Compounds Part XXIII. Low- temperature Heat Capacity and Entropy of C6, C7, and C9 Ketones, J. Chem. Soc. A, 1970, 1970, 833. [all data]

Pulliam, Gude, et al., 1994
Pulliam, M.K.; Gude, M.T.; Teja, A.S., The Critical Properties of Twelve Isomeric n-Alkanones with Six to Nine Carbon Atoms, Experimental Results for DIPPR 1990-91 Projects on Phase Equilibria and Pure Component Properties, 1994, 1994, DIPPR Data Ser. No. 2, p. 184-87. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Ambrose, Broderick, et al., 1974
Ambrose, D.; Broderick, B.E.; Townsend, R., The Critical Temperatures and Pressures of Thirty Organic Compounds, J. Appl. Chem. Biotechnol., 1974, 24, 359. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Ambrose, Ellender, et al., 1975
Ambrose, D.; Ellender, J.H.; Lees, E.B.; Sprake, C.H.S.; Townsend, R., Thermodynamic properties of organic oxygen compounds XXXVIII. Vapour pressures of some aliphatic ketones, The Journal of Chemical Thermodynamics, 1975, 7, 5, 453-472, https://doi.org/10.1016/0021-9614(75)90275-X . [all data]

Dykyj, 1972
Dykyj, J., Petrochemia, 1972, 12, 1, 13. [all data]

Hales, Lees, et al., 1967
Hales, J.L.; Lees, E.B.; Ruxton, D.J., Thermodynamic properties of organic oxygen compounds. Part 18.-Vapour heat capacities and heats of vaporization of ethyl ketone, ethyl propyl ketone, methyl isopropyl ketone, and methyl phenyl ether, Trans. Faraday Soc., 1967, 63, 1876. [all data]

Collerson, Counsell, et al., 1965, 2
Collerson, R.R.; Counsell, J.F.; Handley, R.; Martin, J.F.; Sprake, C.H.S., Thermodynamic Properties of Organic Oxygen Compounds. Part XV. Purification and Vapour Pressures of Some Ketones and Ethers, J. Chem. Soc., 1965, 3697-3700, https://doi.org/10.1039/jr9650003697 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Holmes, Fingas, et al., 1981
Holmes, J.L.; Fingas, M.; Lossing, F.P., Towards a general scheme for estimating the heats of formation of organic ions in the gas phase. Part I. Odd-electron cations, Can. J. Chem., 1981, 59, 80. [all data]

Ashmore and Burgess, 1978
Ashmore, F.S.; Burgess, A.R., Photoelectron spectra of the unbranched C5-C7 alkenes, aldehydes and ketones, J. Chem. Soc. Faraday Trans. 2, 1978, 74, 734. [all data]

Yeo and Williams, 1969
Yeo, A.N.H.; Williams, D.H., Internal hydrogen rearrangement as a function of ion lifetime in the mass spectra of aliphatic ketones, J. Am. Chem. Soc., 1969, 91, 3582. [all data]

Holmes and Lossing, 1980
Holmes, J.L.; Lossing, F.P., Gas-phase heats of formation of keto and enol ions of carbonyl compounds., J. Am. Chem. Soc., 1980, 102, 1591. [all data]

Hu, Lu, et al., 2006
Hu, X.-F.; Lu, C.-H.; Yin, C.-S., Modeling Gas Chromatographic Retention Indices of Oxygen-containing Compounds by Novel Atom-type Topological Indices, Chinese Journal of Chemical Physics, 2006, 19, 3, 243-247, https://doi.org/10.1360/cjcp2006.19(3).243.5 . [all data]

Héberger, Görgényi, et al., 2002
Héberger, K.; Görgényi, M.; Kowalska, T., Temperature dependence of Kováts indices in gas chromatography revisited, J. Chromatogr. A, 2002, 973, 1-2, 135-142, https://doi.org/10.1016/S0021-9673(02)01198-6 . [all data]

Héberger and Görgényi, 1999
Héberger, K.; Görgényi, M., Principal component analysis of Kováts indices for carbonyl compounds in capillary gas chromatography, J. Chromatogr., 1999, 845, 1-2, 21-31, https://doi.org/10.1016/S0021-9673(99)00323-4 . [all data]

Winskowski, 1983
Winskowski, J., Gaschromatographische Identifizierung von Stoffen anhand von Indexziffem und unterschiedlichen Detektoren, Chromatographia, 1983, 17, 3, 160-165, https://doi.org/10.1007/BF02271041 . [all data]

Bogoslovsky, Anvaer, et al., 1978
Bogoslovsky, Yu.N.; Anvaer, B.I.; Vigdergauz, M.S., Chromatographic constants in gas chromatography (in Russian), Standards Publ. House, Moscow, 1978, 192. [all data]

Wehrli and Kováts, 1959
Wehrli, A.; Kováts, E., Gas-chromatographische Charakterisierung ogranischer Verbindungen. Teil 3: Berechnung der Retentionsindices aliphatischer, alicyclischer und aromatischer Verbindungen, Helv. Chim. Acta, 1959, 7, 7, 2709-2736, https://doi.org/10.1002/hlca.19590420745 . [all data]

Orav, Kuningas, et al., 1994
Orav, A.; Kuningas, K.; Kailas, T.; Koplimets, E.; Rang, S., Effect of adsorption on the retention values in capillary columns coated with OV-225 and PEG 20M, J. Chromatogr. A, 1994, 659, 1, 143-150, https://doi.org/10.1016/0021-9673(94)85016-X . [all data]

Sun and Stremple, 2003
Sun, G.; Stremple, P., Retention index characterization of flavor, fragrance, and many other compounds on DB-1 and DB-XLB, 2003, retrieved from http://www.chem.agilent.com/cag/cabu/pdf/b-0279.pdf. [all data]

Xu, van Stee, et al., 2003
Xu, X.; van Stee, L.L.P.; Williams, J.; Beens, J.; Adahchour, M.; Vreuls, R.J.J.; Brinkman, U.A.Th.; Lelieveld, J., Comprehensive two-dimensional gas chromatography (GC×GC) measurements of volatile organic compounds in the atmosphere, Atmos. Chem. Phys., 2003, 3, 3, 665-682, https://doi.org/10.5194/acp-3-665-2003 . [all data]

Pino and Marbot, 2001
Pino, J.A.; Marbot, R., Volatile flavor constituents of acerola (Malpighia emarginata DC.) fruit, J. Agric. Food Chem., 2001, 49, 12, 5880-5882, https://doi.org/10.1021/jf010270g . [all data]

Pino, Marbot, et al., 2001
Pino, J.A.; Marbot, R.; Vázquez, C., Characterization of volatiles in strawberry guava (Psidium cattleianum Sabine) fruit, J. Agric. Food Chem., 2001, 49, 12, 5883-5887, https://doi.org/10.1021/jf010414r . [all data]

Gómez, Ledbetter, et al., 1993
Gómez, E.; Ledbetter, C.A.; Hartsell, P.L., Volatile compounds in apricot, plum, and their interspecific hybrids, J. Agric. Food Chem., 1993, 41, 10, 1669-1676, https://doi.org/10.1021/jf00034a029 . [all data]

Tret'yakov, 2007
Tret'yakov, K.V., Retention Data. NIST Mass Spectrometry Data Center., NIST Mass Spectrometry Data Center, 2007. [all data]

Boué, Shih, et al., 2003
Boué, S.M.; Shih, B.Y.; Carter-Wientjes, C.H.; Cleveland, T.E., Identification of volatile compounds in soybean at various developmental stages using solid phase microextraction, J. Agric. Food Chem., 2003, 51, 17, 4873-4876, https://doi.org/10.1021/jf030051q . [all data]

Oruna-Concha, Bakker, et al., 2002
Oruna-Concha, M.J.; Bakker, J.; Ames, J.M., Comparison of the volatile components of two cultivars of potato cooked by boiling, conventional baking and microwave baking, J. Sci. Food Agric., 2002, 82, 9, 1080-1087, https://doi.org/10.1002/jsfa.1148 . [all data]

Duckham, Dodson, et al., 2001
Duckham, S.C.; Dodson, A.T.; Bakker, J.; Ames, J.M., Volatile flavour components of baked potato flesh. A comparison of eleven potato cultivars, Nahrung/Food, 2001, 45, 5, 317-323, https://doi.org/10.1002/1521-3803(20011001)45:5<317::AID-FOOD317>3.0.CO;2-4 . [all data]

Elmore, Mottram, et al., 1999
Elmore, J.S.; Mottram, D.S.; Enser, M.; Wood, J.D., Effect of the polyunsaturated fatty acid composition of beef muscle on the profile of aroma volatiles, J. Agric. Food Chem., 1999, 47, 4, 1619-1625, https://doi.org/10.1021/jf980718m . [all data]

Ledauphin, Basset, et al., 2006
Ledauphin, J.; Basset, B.; Cohen, S.; Payot, T.; Barillier, D., Identification of trace volatile compounds in freshly distilled Calvados and Cognac: Carbonyl and sulphur compounds, J. Food Comp. Anal., 2006, 19, 1, 28-40, https://doi.org/10.1016/j.jfca.2005.03.001 . [all data]

Mahadevan and Farmer, 2006
Mahadevan, K.; Farmer, L., Key Odor Impact Compounds in Three Yeast Extract Pastes, J. Agric. Food Chem., 2006, 54, 19, 7242-7250, https://doi.org/10.1021/jf061102x . [all data]

Chung, Yung, et al., 2002
Chung, H.-Y.; Yung, I.K.S.; Ma, W.C.J.; Kim, J.-S., Analysis of volatile components in frozen and dried scallops (Patinopecten yessoensis) by gas chromatography/mass spectrometry, Food Res. Int., 2002, 35, 1, 43-53, https://doi.org/10.1016/S0963-9969(01)00107-7 . [all data]

Chung, Yung, et al., 2001
Chung, H.Y.; Yung, I.K.S.; Kim, J.-S., Comparison of volatile components in dried scallops (Chlamys farreri and Patinopecten yessoensis) prepared by boiling and steaming methods, J. Agric. Food Chem., 2001, 49, 1, 192-202, https://doi.org/10.1021/jf000692a . [all data]

Chung, 1999
Chung, H.Y., Volatile components in crabmeats of Charybdis feriatus, J. Agric. Food Chem., 1999, 47, 6, 2280-2287, https://doi.org/10.1021/jf981027t . [all data]

Chung, Eiserich, et al., 1994
Chung, T.Y.; Eiserich, J.P.; Shibamoto, T., Volatile compounds produced from peanut oil heated with different amounts of cysteine, J. Agric. Food Chem., 1994, 42, 8, 1743-1746, https://doi.org/10.1021/jf00044a032 . [all data]

Chung and Cadwallader, 1993
Chung, H.Y.; Cadwallader, K.R., Volatile components in blue crab (Callinectes sapidus) meat and processing by-product, J. Food Sci., 1993, 58, 6, 1203-1207, https://doi.org/10.1111/j.1365-2621.1993.tb06148.x . [all data]

Matiella and Hsieh, 1990
Matiella, J.E.; Hsieh, T.C.-Y., Analysis of crabmeat volatile compounds, J. Food Sci., 1990, 55, 4, 962-966, https://doi.org/10.1111/j.1365-2621.1990.tb01575.x . [all data]

Tanchotikul and Hsieh, 1989
Tanchotikul, U.; Hsieh, T.C.-Y., Volatile Flavor Components in Crayfish Waste, J. Food Sci., 1989, 54, 6, 1515-1520, https://doi.org/10.1111/j.1365-2621.1989.tb05149.x . [all data]

Bianchi, Careri, et al., 2007
Bianchi, F.; Careri, M.; Mangia, A.; Musci, M., Retention indices in the analysis of food aroma volatile compounds in temperature-programmed gas chromatography: Database creation and evaluation of precision and robustness, J. Sep. Sci., 2007, 39, 4, 563-572, https://doi.org/10.1002/jssc.200600393 . [all data]

Amboni, Junkes, et al., 2002
Amboni, R.D.DeM.C.; Junkes, B. daS.; Yunes, R.A.; Heinzen, V.E.F., Quantitative structure-property relationships study of chromatographic retention indices and normal boiling points for oxo compounds using the semi-empirical topological method, J. Mol. Struct. (Theochem), 2002, 586, 1-3, 71-80, https://doi.org/10.1016/S0166-1280(02)00062-3 . [all data]

Kurdina, Markovich, et al., 1969
Kurdina, Z.G.; Markovich, V.E.; Sakharov, V.M., Gas chromatography of cyclic O-containing compounds in Gas chromatography, Issue # 10, NIITEKhim, Moscow, 1969, 128-133. [all data]

Zenkevich, Eliseenkov, et al., 2011
Zenkevich, I.G.; Eliseenkov, E.V.; Kasatochkin, A.N.; Zhakovskaya, Z.A.; Khoroshko, L.O., Gas chromatographic identification of chlorination products of aliphatic ketones, J. Chromatogr., 2011, 1218, 21, 3291-3299, https://doi.org/10.1016/j.chroma.2010.12.056 . [all data]

Kumazawa, Itobe, et al., 2008
Kumazawa, K.; Itobe, T.; Nishimura, O.; Hamaguchi, T., A new approach to estimate the in-mouth release characteristics of odorants in chewing gum, Food Science and Technology Research, 2008, 14, 3, 269-276, https://doi.org/10.3136/fstr.14.269 . [all data]

Isidorov, Purzynska, et al., 2006
Isidorov, V.; Purzynska, A.; Modzelewska, A.; Serowiecka, M., Distribution coefficients of aliphatic alcohols, carbonyl compounds and esters between air and Carboxen/polydimethylsiloxane fiber coating, Anal. Chim. Acta., 2006, 560, 1-2, 103-109, https://doi.org/10.1016/j.aca.2005.12.043 . [all data]

van Loon, Linssen, et al., 2005
van Loon, W.A.M.; Linssen, J.P.H.; Legger, A.; Posthumus, M.A.; Voragen, A.G.J., Identification and olfactometry of French fries flavour extracted at mouth conditions, Food Chem., 2005, 90, 3, 417-425, https://doi.org/10.1016/j.foodchem.2004.05.005 . [all data]

Joffraud, Leroi, et al., 2001
Joffraud, J.J.; Leroi, F.; Roy, C.; Berdagué, J.L., Characterisation of volatile compounds produced by bacteria isolated from the spoilage flora of cold-smoked salmon, Int. J. Food Microbiol., 2001, 66, 3, 175-184, https://doi.org/10.1016/S0168-1605(00)00532-8 . [all data]

Boylston and Viniyard, 1998
Boylston, T.D.; Viniyard, B.T., Isolation of volatile flavor compounds from peanut butter using purge-and-trap technique in Instrumental Methods in Food and Beverage Analysis, D. Wetzel and G. Charalambous, ed(s)., 1998, 225-243. [all data]

Tai and Ho, 1998
Tai, C.-Y.; Ho, C.-T., Influence of glutathione oxidation and pH on thermal formation of Maillard-type volatile compounds, J. Agric. Food Chem., 1998, 46, 6, 2260-2265, https://doi.org/10.1021/jf971111t . [all data]

Larsen and Frisvad, 1995
Larsen, T.O.; Frisvad, J.C., Characterization of volatile metabolites from 47 Penicillium taxa, Mycol. Res., 1995, 99, 10, 1153-1166, https://doi.org/10.1016/S0953-7562(09)80271-2 . [all data]

Bravo and Hotchkiss, 1993
Bravo, A.; Hotchkiss, J.H., Identification of volatile compounds resulting from the thermal oxidation of polyethylene, J. Appl. Polym. Sci., 1993, 47, 10, 1741-1748, https://doi.org/10.1002/app.1993.070471004 . [all data]

King, Hamilton, et al., 1993
King, M.-F.; Hamilton, B.L.; Matthews, M.A.; Rule, D.C.; Field, R.A., Isolation and identification of volatiles and condensable material in raw beef with supercritical carbon dioxide extraction, J. Agric. Food Chem., 1993, 41, 11, 1974-1981, https://doi.org/10.1021/jf00035a030 . [all data]

Macku and Shibamoto, 1991
Macku, C.; Shibamoto, T., Headspace volatile compounds formed from heated corn oil and corn oil with glycine, J. Agric. Food Chem., 1991, 39, 7, 1265-1269, https://doi.org/10.1021/jf00007a014 . [all data]

Macku and Shibamoto, 1991, 2
Macku, C.; Shibamoto, T., Volatile sulfur-containing compounds generated from the thermal interaction of corn oil and cysteine, J. Agric. Food Chem., 1991, 39, 11, 1987-1989, https://doi.org/10.1021/jf00011a021 . [all data]

Zenkevich and Ventura, 1991
Zenkevich, I.G.; Ventura, K., Gas Chromatographic Identification of Volatile Products of Thermal Degradation of Bitumen, Zh. Prikl. Khim. (Rus.), 1991, 9, 1974-1979. [all data]

Anker, Jurs, et al., 1990
Anker, L.S.; Jurs, P.C.; Edwards, P.A., Quantitative structure-retention relationship studies of odor-active aliphatic compounds with oxygen-containing functional groups, Anal. Chem., 1990, 62, 24, 2676-2684, https://doi.org/10.1021/ac00223a006 . [all data]

Kurashov, Mitrukova, et al., 2014
Kurashov, E.A.; Mitrukova, G.G.; Krylova, Yu.V., Variations in the component composition of essential oil of Ceratophyllum demersum (Ceratophyllaceae) during vegetation (in press), Plant Resources (Rastitel'nye Resursy), 2014, 1, 000-000. [all data]

Chen and Feng, 2007
Chen, Y.; Feng, C., QSPR study on gas chromatography retention index of some organic pollutants, Comput. Appl. Chem. (China), 2007, 24, 10, 1404-1408. [all data]

Feng and Mu, 2007
Feng, H.; Mu, L.-L., Quantitative structure-retention relationships for alkane and its derivatives based on electrotopological state index and molecular shape index, Chem. Ind. Engineering (Chinese), 2007, 24, 2, 161-168. [all data]

Mallia, Escher, et al., 2007
Mallia, S.; Escher, F.; Rehberger, B.; Schlichtherle-Cerny, H., Aroma-active secondary oxidation products of butter, 3rd QLIF Congress, Hohenheim, Germany, March 20-23, 2007, 2007, retrieved from http://orgprints.org/view/projects/intconfqlif2007.html; http://orgprints.org/9734/. [all data]

Cramer, Mattinson, et al., 2005
Cramer, A.-C.J.; Mattinson, D.S.; Fellman, J.K.; Baik, B.-K., Analysis of volatile compounds from various types of barley cultivars, J. Agric. Food Chem., 2005, 53, 19, 7526-7531, https://doi.org/10.1021/jf0506939 . [all data]

Junkes, Amboni, et al., 2004
Junkes, B.S.; Amboni, R.D.M.C.; Yunes, R.A.; Heinzen, V.E.F., Application of the semi-empirical topological index in quantitative structure-chromatographic retention relationship (QSRR) studies of aliphatic ketones and aldehydes on stationary phases of different polarity, J. Braz. Chem. Soc., 2004, 15, 2, 183-189, https://doi.org/10.1590/S0103-50532004000200005 . [all data]

Sotomayor, Martínez, et al., 2004
Sotomayor, J.A.; Martínez, R.M.; García, A.J.; Jordán, M.J., Thymus zygis Subsp. Gracilis: watering level effect on phytomass production and essential oil quality, J. Agric. Food Chem., 2004, 52, 17, 5418-5424, https://doi.org/10.1021/jf0496245 . [all data]

Vinogradov, 2004
Vinogradov, B.A., Production, composition, properties and application of essential oils, 2004, retrieved from http://viness.narod.ru. [all data]

Begnaud, Pérès, et al., 2003
Begnaud, F.; Pérès, C.; Berdagué, J.-L., Characterization of volatile effluents of livestock buildings by solid-phase microextraction, Int. J. Environ. Anal. Chem., 2003, 83, 10, 837-849, https://doi.org/10.1080/03067310310001603349 . [all data]

Junkes, Castanho, et al., 2003
Junkes, B.S.; Castanho, R.D.M.; Amboni, C.; Yunes, R.A.; Heinzen, V.E.F., Semiempirical Topological Index: A Novel Molecular Descriptor for Quantitative Structure-Retention Relationship Studies, Internet Electronic Journal of Molecular Design, 2003, 2, 1, 33-49. [all data]

Jordán, Goodner, et al., 2002
Jordán, M.J.; Goodner, K.L.; Shaw, P.E., Characterization of the aromatic profile in aqueous essence and fruit juice of yellow passion fruit (Passiflora edulis Sims F. Flavicarpa degner) by GC-MS and GC/O, J. Agric. Food Chem., 2002, 50, 6, 1523-1528, https://doi.org/10.1021/jf011077p . [all data]

Estrada and Gutierrez, 1999
Estrada, E.; Gutierrez, Y., Modeling chromatographic parameters by a novel graph theoretical sub-structural approach, J. Chromatogr. A, 1999, 858, 2, 187-199, https://doi.org/10.1016/S0021-9673(99)00808-0 . [all data]

Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D., Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]

Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J., Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning, Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111 . [all data]

Waggott and Davies, 1984
Waggott, A.; Davies, I.W., Identification of organic pollutants using linear temperature programmed retention indices (LTPRIs) - Part II, 1984, retrieved from http://dwi.defra.gov.uk/research/completed-research/reports/dwi0383.pdf. [all data]

Ramsey and Flanagan, 1982
Ramsey, J.D.; Flanagan, R.J., Detection and Identification of Volatile Organic Compounds in Blood by Headspace Gas Chromatography as an Aid to the Diagnosis of Solvent Abuse, J. Chromatogr., 1982, 240, 2, 423-444, https://doi.org/10.1016/S0021-9673(00)99622-5 . [all data]

Karlsson, Birgersson, et al., 2009
Karlsson, M.F.; Birgersson, G.; Prado, A.M.C.; Bosa, F.; Bengtsson, M.; Witzgall, P., Plant Odor Analysis of Potato: Responce of Guatemalan Moth to Above- and Background Potato Volatiles, J. Agric. Food Chem., 2009, 57, 13, 5903-5909, https://doi.org/10.1021/jf803730h . [all data]

Nebesny, Budryn, et al., 2007
Nebesny, E.; Budryn, G.; Kula, J.; Majda, T., The effect of roasting method on headspace composition of robusta coffee bean aroma, Eur. Food Res. Technol., 2007, 225, 1, 9-19, https://doi.org/10.1007/s00217-006-0375-0 . [all data]

Saura, LAencina, et al., 2003
Saura, D.; LAencina, J.; Perez-Lopez, A.J.; Lizama, V.; Carbonell-Barrachina, A.A., Aroma of canned peach halves acidified with clarified lemon juice, J. Food Sci., 2003, 68, 3, 1080-1085, https://doi.org/10.1111/j.1365-2621.2003.tb08292.x . [all data]

Sanz, Maeztu, et al., 2002
Sanz, C.; Maeztu, L.; Zapelena, M.J.; Bello, J.; Cid, C., Profiles of volatile compounds and sensory analysis of three blends of coffee: influence of different proportions of Arabica and Robusta and influence of roasting coffee with sugar, J. Sci. Food Agric., 2002, 82, 8, 840-847, https://doi.org/10.1002/jsfa.1110 . [all data]

Maeztu, Sanz, et al., 2001
Maeztu, L.; Sanz, C.; Andueza, S.; de Peña, M.P.; Bello, J.; Cid, C., Characterization of espresso coffee aroma by static headspace GC-MS and sensory flavor profile, J. Agric. Food Chem., 2001, 49, 11, 5437-5444, https://doi.org/10.1021/jf0107959 . [all data]

Sanz, Ansorena, et al., 2001
Sanz, C.; Ansorena, D.; Bello, J.; Cid, C., Optimizing headspace temperature and time sampling for identification of volatile compounds in ground roasted Arabica coffee, J. Agric. Food Chem., 2001, 49, 3, 1364-1369, https://doi.org/10.1021/jf001100r . [all data]

Iwatsuki, Mizota, et al., 1999
Iwatsuki, K.; Mizota, Y.; Kubota, T.; Nishimura, O.; Masuda, H.; Sotoyama, K.; Tomita, M., Aroma extract dilution analysis. Evluation of aroma of pasteurized and UHT processed milk by aroma extract dilution analysis, Nippon Shokuhin Kagaku Kogaku Kaishi, 1999, 46, 9, 587-597, https://doi.org/10.3136/nskkk.46.587 . [all data]

Horiuchi, Umano, et al., 1998
Horiuchi, M.; Umano, K.; Shibamoto, T., Analysis of volatile compounds formed from fish oil heated with cysteine and trimethylamine oxide, J. Agric. Food Chem., 1998, 46, 12, 5232-5237, https://doi.org/10.1021/jf980482m . [all data]

Umano, Hagi, et al., 1995
Umano, K.; Hagi, Y.; Nakahara, K.; Shyoji, A.; Shibamoto, T., Volatile chemicals formed in the headspace of a heated D-glucose/L-cysteine Maillard model system, J. Agric. Food Chem., 1995, 43, 8, 2212-2218, https://doi.org/10.1021/jf00056a046 . [all data]

Bardakci, Demirci, et al., 2012
Bardakci, H.; Demirci, B.; Yesilada, E.; Kirmizibekmez, H.; Naser, K.H.C., Chemical composition of the essential oil of the subterranean parts of Valeriana alliariifolia, Rec. Nat. Prod., 2012, 6, 1, 89-92. [all data]

Johanningsmeier and McFeeters, 2011
Johanningsmeier, S.D.; McFeeters, R.F., Detection of volatile spoilage metabolites in fermented cucumbers using nontargeted, comprehensive 2-dimensional gas chromatography-time-of-flight mass spectrometry (GCxGCxTOFMS), J. Food Sci., 2011, 76, 1, c168-c177, https://doi.org/10.1111/j.1750-3841.2010.01918.x . [all data]

Narain, Galvao, et al., 2007
Narain, N.; Galvao, M. deS.; Ferreira, D.DaS.; Navarro, D.M.A.F., Flavor biogeneration in Mangaba (Hancornia speciosa Gomes) fruit, BioEng. Campinas, 2007, 1, 1, 25-31. [all data]

Narain, Galvao, et al., 2007, 2
Narain, N.; Galvao, M.S.; Madruga, M.S., Volatile compounds captured through purge and trap technique in caja-umbu (Spondias sp.) fruits during maturation, Food Chem., 2007, 102, 3, 726-731, https://doi.org/10.1016/j.foodchem.2006.06.003 . [all data]

Caldentey, Daria Fumi, et al., 1998
Caldentey, P.; Daria Fumi, M.; Mazzoleni, V.; Careri, M., Volatile compounds produced by microorganisms isolated from cork, Flavour Fragr. J., 1998, 13, 3, 185-188, https://doi.org/10.1002/(SICI)1099-1026(199805/06)13:3<185::AID-FFJ723>3.0.CO;2-W . [all data]

Peng, Yang, et al., 1991
Peng, C.T.; Yang, Z.C.; Ding, S.F., Prediction of rentention idexes. II. Structure-retention index relationship on polar columns, J. Chromatogr., 1991, 586, 1, 85-112, https://doi.org/10.1016/0021-9673(91)80028-F . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References