2-Butene, 2,3-dimethyl-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-16.80 ± 0.36kcal/molEqkWiberg and Hao, 1991Heat of hydration; ALS
Δfgas-16.35 ± 0.35kcal/molEqkRodgers and Wu, 1971Heat of isomerization; ALS

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
32.340 ± 0.065334.20Scott D.W., 1955GT
33.939 ± 0.067355.25
36.960 ± 0.074393.20
40.069 ± 0.081433.20
43.100 ± 0.086473.20

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
27.710273.15Scott D.W., 1955Recommended results of statistical thermodynamics calculation are in good agreement with experimental data.; GT
29.541298.15
29.680300.
37.481400.
45.041500.
51.781600.
57.670700.
62.780800.
67.249900.
71.1401000.
74.5511100.
77.5101200.
80.0791300.
82.3301400.
84.3091500.

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-24.60 ± 0.35kcal/molEqkWiberg and Hao, 1991Heat of hydration; ALS
Quantity Value Units Method Reference Comment
liquid64.579cal/mol*KN/AScott, Finke, et al., 1955DH
liquid65.11cal/mol*KN/AParks, Todd, et al., 1936Extrapolation below 90 K, 58.45 J/mol*K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
41.750298.15Scott, Finke, et al., 1955T = 10 to 320 K.; DH
42.000295.5Parks, Todd, et al., 1936T = 83 to 296 K. Value is unsmoothed experimental datum.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil346.3 ± 0.4KAVGN/AAverage of 28 out of 30 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus198.8 ± 0.3KAVGN/AAverage of 13 out of 15 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple198.92KN/AScott, Finke, et al., 1955, 2Crystal phase 1 phase; Uncertainty assigned by TRC = 0.01 K; TRC
Ttriple198.900KN/AWaddington, 1951Crystal phase 1 phase; Uncertainty assigned by TRC = 0.05 K; TRC
Ttriple198.920KN/AWaddington, 1951Crystal phase 1 phase; Uncertainty assigned by TRC = 0.02 K; TRC
Ttriple198.5KN/AParks, Todd, et al., 1936, 2Crystal phase 1 phase; Uncertainty assigned by TRC = 0.2 K; TRC
Quantity Value Units Method Reference Comment
Tc524.KN/AMajer and Svoboda, 1985 
Quantity Value Units Method Reference Comment
Δvap7.808kcal/molN/AMajer and Svoboda, 1985 
Δvap7.77kcal/molN/AReid, 1972AC
Δvap7.78kcal/molVCamin and Rossini, 1956ALS
Δvap7.79kcal/molN/ACamin and Rossini, 1956, 2Based on data from 289. to 347. K.; AC

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
7.084346.4N/AMajer and Svoboda, 1985 
7.67328.N/AUusi-Kyyny, Pokki, et al., 2004Based on data from 313. to 346. K.; AC
7.91297.AStephenson and Malanowski, 1987Based on data from 282. to 348. K. See also Bevan, Malkin, et al., 1955.; AC
7.82304.N/AFried, Baghdoyan, et al., 1971Based on data from 289. to 347. K.; AC
7.86 ± 0.02292.CScott, Finke, et al., 1955AC
7.65 ± 0.02308.CScott, Finke, et al., 1955AC
7.39 ± 0.02326.CScott, Finke, et al., 1955AC
7.10 ± 0.02346.CScott, Finke, et al., 1955AC

Enthalpy of vaporization

ΔvapH = A exp(-βTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kcal/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A (kcal/mol) β Tc (K) Reference Comment
292. to 346.11.540.2801524.Majer and Svoboda, 1985 

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
289.48 to 347.003.698971021.564-70.242Baghdoyan, Malik, et al., 1971Coefficents calculated by NIST from author's data.
302.18 to 346.364.090161224.926-46.812Scott, Finke, et al., 1955Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Reference Comment
1.54198.9Domalski and Hearing, 1996AC

Entropy of fusion

ΔfusS (cal/mol*K) Temperature (K) Reference Comment
4.288196.8Domalski and Hearing, 1996CAL
7.741198.9

Enthalpy of phase transition

ΔHtrs (kcal/mol) Temperature (K) Initial Phase Final Phase Reference Comment
0.8439196.82crystaline, IIcrystaline, IScott, Finke, et al., 1955DH
1.542198.92crystaline, IliquidScott, Finke, et al., 1955Enthalpies of transition and fusion calculated from total enthalpy change 196.82 to 198.92 K and assumed Cp of 150 J/mol*K for c,I.; DH
1.094196.6crystaline, IIcrystaline, IParks, Todd, et al., 1936DH
1.305198.5crystaline, IliquidParks, Todd, et al., 1936DH

Entropy of phase transition

ΔStrs (cal/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
4.288196.82crystaline, IIcrystaline, IScott, Finke, et al., 1955DH
7.753198.92crystaline, IliquidScott, Finke, et al., 1955Enthalpies; DH
5.564196.6crystaline, IIcrystaline, IParks, Todd, et al., 1936DH
6.575198.5crystaline, IliquidParks, Todd, et al., 1936DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Hydrogen + 2-Butene, 2,3-dimethyl- = Butane, 2,3-dimethyl-

By formula: H2 + C6H12 = C6H14

Quantity Value Units Method Reference Comment
Δr-25.98 ± 0.11kcal/molChydRogers, Crooks, et al., 1987liquid phase
Δr-26.39 ± 0.10kcal/molChydKistiakowsky, Ruhoff, et al., 1936gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -26.63 ± 0.10 kcal/mol; At 355 K

2-Butene, 2,3-dimethyl- = 1-Butene, 2,3-dimethyl-

By formula: C6H12 = C6H12

Quantity Value Units Method Reference Comment
Δr1.82 ± 0.12kcal/molEqkRadyuk, Kabo, et al., 1972gas phase; At 562 K
Δr1.7 ± 0.2kcal/molEqkRodgers and Wu, 1971gas phase; Heat of isomerization

1-Butene, 2,3-dimethyl- = 2-Butene, 2,3-dimethyl-

By formula: C6H12 = C6H12

Quantity Value Units Method Reference Comment
Δr-1.7 ± 0.2kcal/molEqkRodgers and Wu, 1971gas phase; Heat of isomerization
Δr-1.8kcal/molEqkAbell, 1966gas phase

2-Butene, 2,3-dimethyl- + Hydrogen chloride = Butane, 2-chloro-2,3-dimethyl-

By formula: C6H12 + HCl = C6H13Cl

Quantity Value Units Method Reference Comment
Δr-12.91 ± 0.33kcal/molCmArnett and Pienta, 1980liquid phase; solvent: Methylene chloride; Hydrochlorination

1-Hexene = 2-Butene, 2,3-dimethyl-

By formula: C6H12 = C6H12

Quantity Value Units Method Reference Comment
Δr-7.18 ± 0.27kcal/molCisoBartolo and Rossini, 1960liquid phase; Calculated from ΔHc

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C6H12+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)8.27 ± 0.01eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)194.5kcal/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity187.8kcal/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
8.27 ± 0.02PEBieri, Burger, et al., 1977LLK
8.16EILossing and Traeger, 1975LLK
8.271 ± 0.005PEMasclet, Grosjean, et al., 1973LLK
8.26PEFrost and Sandhu, 1971LLK
8.30PIBralsford, Harris, et al., 1960RDSH
8.30PEKovac, Mohraz, et al., 1980Vertical value; LLK
10.52PEMcAlduff and Houk, 1977Vertical value; LLK
8.46PEMollere, Houk, et al., 1976Vertical value; LLK
8.42PEFuss and Bock, 1974Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C5H9+8.16CH3EILossing and Traeger, 1975, 2LLK
C5H9+10.32CH3EILossing and Traeger, 1975LLK

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Gas Phase Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

IR spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Owner NIST Standard Reference Data Program
Collection (C) 2018 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Sadtler Research Labs Under US-EPA Contract
State gas

This IR spectrum is from the NIST/EPA Gas-Phase Infrared Database .


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW-3539
NIST MS number 230825

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


UV/Visible spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Victor Talrose, Alexander N. Yermakov, Alexy A. Usov, Antonina A. Goncharova, Axlexander N. Leskin, Natalia A. Messineva, Natalia V. Trusova, Margarita V. Efimkina

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

UVVis spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Source Johnson, 1966
Owner INEP CP RAS, NIST OSRD
Collection (C) 2007 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS
Source reference RAS UV No. 19914
Instrument Unicam SP 500
Boiling point 73.2/ 760 mm

Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryMethyl Silicone30.630.4Soják, Addová, et al., 2002He; Column length: 150. m; Column diameter: 0.250 mm
CapillarySqualane30.624.2Soják, Addová, et al., 2002He; Column length: 93. m; Column diameter: 0.250 mm
CapillarySqualane25.624.Hilal, Carreira, et al., 1994 
CapillaryOV-10140.630.Laub and Purnell, 1988 
CapillaryOV-10160.631.Laub and Purnell, 1988 
CapillaryOV-10180.631.Laub and Purnell, 1988 
CapillaryOV-10150.630.6Boneva and Dimov, 1986100. m/0.27 mm/0.9 μm, N2
CapillaryOV-10170.631.1Boneva and Dimov, 1986100. m/0.27 mm/0.9 μm, N2
CapillarySqualane50.625.3Boneva and Dimov, 1986N2; Column length: 100. m; Column diameter: 0.25 mm
CapillarySqualane70.626.Boneva and Dimov, 1986N2; Column length: 100. m; Column diameter: 0.25 mm
PackedSE-3042.630.Rudenko, Mal'tsev, et al., 1985Column length: 3. m
CapillaryDB-140.631.Lubeck and Sutton, 198460. m/0.264 mm/0.25 μm, H2
CapillaryHP-PONA40.631.Lubeck and Sutton, 198450. m/0.21 mm/0.5 μm, H2
CapillarySqualane50.624.8Bajus, Veselý, et al., 1979Column length: 100. m; Column diameter: 0.25 mm
CapillarySqualane70.626.Bajus, Veselý, et al., 1979Column length: 100. m; Column diameter: 0.25 mm
PackedSqualane80.626.Chrétien and Dubois, 1977 
CapillarySqualane50.625.Chretien and Dubois, 1976 
CapillarySqualane50.625.Rijks, van den Berg, et al., 1974 
CapillarySqualane50.625.Rijks, van den Berg, et al., 1974 
CapillarySqualane70.626.Rijks, van den Berg, et al., 1974 
CapillarySqualane70.626.Rijks, van den Berg, et al., 1974 
CapillarySqualane50.625.Rijks and Cramers, 1974N2; Column length: 100. m; Column diameter: 0.25 mm
CapillarySqualane70.626.Rijks and Cramers, 1974N2; Column length: 100. m; Column diameter: 0.25 mm
CapillarySqualane40.614.Matukuma, 1969N2; Column length: 91.4 m; Column diameter: 0.25 mm
PackedSqualane27.625.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane49.626.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane67.627.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane86.627.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
CapillarySqualane70.625.Schomburg, 1967Ar; Column length: 100. m
PackedSqualane26.612.Zulaïca and Guiochon, 1966Column length: 10. m

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryMethyl Silicone632.0Soják, Addová, et al., 2002He, 1. K/min; Column length: 150. m; Column diameter: 0.250 mm; Tstart: 30. C; Tend: 200. C
CapillaryPetrocol DH624.32White, Douglas, et al., 1992100. m/0.25 mm/0.5 μm, He, 1. K/min; Tstart: 30. C; Tend: 220. C
CapillaryPetrocol DH624.38White, Douglas, et al., 1992100. m/0.25 mm/0.5 μm, He, 1. K/min; Tstart: 30. C; Tend: 220. C
CapillaryPetrocol DH624.White, Hackett, et al., 1992100. m/0.25 mm/0.5 μm, He, 1. K/min; Tstart: 30. C; Tend: 220. C

Normal alkane RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillarySqualane40.624.2Sojak, Addova, et al., 2000He; Column length: 93. m; Column diameter: 0.25 mm
CapillaryMethyl Silicone50.625.N/AN2; Column length: 74.6 m; Column diameter: 0.28 mm
CapillarySqualane70.625.Schomburg, 1966 

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-1630.Ramnas, Ostermark, et al., 199450. m/0.32 mm/1.0 μm, He, 2. K/min; Tstart: -20. C

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryMethyl Silicone627.Chen and Feng, 2007Program: not specified
CapillaryPolydimethyl siloxane626.Junkes, Castanho, et al., 2003Program: not specified
CapillaryMethyl Silicone630.Zenkevich and Marinichev, 2001Program: not specified
PackedSE-30649.Robinson and Odell, 1971N2, Chromosorb W; Column length: 6.1 m; Program: 50C910min) => 20C/min => 90(6min) => 10C/min => 150C(hold)
PackedSqualane631.Robinson and Odell, 1971N2, Embacel; Column length: 3.0 m; Program: 25C(5min) => 2C/min => 35 => 4C/min => 95C(hold)

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Wiberg and Hao, 1991
Wiberg, K.B.; Hao, S., Enthalpies of hydration of alkenes. 4. Formation of acyclic tert-alcohols, J. Org. Chem., 1991, 56, 5108-5110. [all data]

Rodgers and Wu, 1971
Rodgers, A.S.; Wu, M.-C.R., Thermochemistry of the gas-phase iodine catalyzed isomerization: 2,3-dimethyl-1-butene = 2,3-dimethyl-2-butene, J. Chem. Thermodyn., 1971, 3, 591-597. [all data]

Scott D.W., 1955
Scott D.W., 2,3-Dimethyl-2-butene: thermodynamic properties in the solid, liquid and vapor states, J. Am. Chem. Soc., 1955, 77, 4993-4998. [all data]

Scott, Finke, et al., 1955
Scott, D.W.; Finke, H.L.; McCullough, J.P.; Gross, M.E.; Messerly, J.F.; Pennington, R.E.; Waddington, G., 2,3-Dimethyl-2-butene: Thermodynamic properties in the solid, liquid and vapor states, J. Am. Chem. Soc., 1955, 77, 4993-4998. [all data]

Parks, Todd, et al., 1936
Parks, G.S.; Todd, S.S.; Shomate, C.H., Thermal data on organic compounds. XVII. Some heat capacity, entropy and free energy data for five higher olefins, J. Am. Chem. Soc., 1936, 58, 2505-2508. [all data]

Scott, Finke, et al., 1955, 2
Scott, D.W.; Finke, H.L.; McCullough, J.P.; Gross, M.E.; Messerly, J.F.; Pennington, R.E.; Waddington, G., 2,3-dimethyl-2-butene: thermodynamic properties in the solid, liquid, and vapor states., J. Am. Chem. Soc., 1955, 77, 4993. [all data]

Waddington, 1951
Waddington, G., Personal Commun., U. S. Bur. Mines, Bartlesville, OK, 1951. [all data]

Parks, Todd, et al., 1936, 2
Parks, G.S.; Todd, S.S.; Shomate, C.H., Thermal data on organic compounds. XVII. Some heat capacity, entropy and free energy data for five higher olefins, J. Am. Chem. Soc., 1936, 58, 2505. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Reid, 1972
Reid, Robert C., Handbook on vapor pressure and heats of vaporization of hydrocarbons and related compounds, R. C. Wilhort and B. J. Zwolinski, Texas A Research Foundation. College Station, Texas(1971). 329 pages.$10.00, AIChE J., 1972, 18, 6, 1278-1278, https://doi.org/10.1002/aic.690180637 . [all data]

Camin and Rossini, 1956
Camin, D.L.; Rossini, F.D., Physical properties of the 17 isomeric hexenes of the API research series, J. Phys. Chem., 1956, 60, 1446. [all data]

Camin and Rossini, 1956, 2
Camin, David L.; Rossini, Frederick D., Physical Properties of the 17 Isomeric Hexenes.of the API Research Series, J. Phys. Chem., 1956, 60, 10, 1446-1451, https://doi.org/10.1021/j150544a029 . [all data]

Uusi-Kyyny, Pokki, et al., 2004
Uusi-Kyyny, Petri; Pokki, Juha-Pekka; Kim, Younghun; Aittamaa, Juhani, Isobaric Vapor Liquid Equilibrium for 2,3-Dimethyl-2-butene + Methanol, + Ethanol, + 2-Propanol, or + 2-Butanol at Atmospheric Pressure, J. Chem. Eng. Data, 2004, 49, 2, 251-255, https://doi.org/10.1021/je034106w . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Bevan, Malkin, et al., 1955
Bevan, T.H.; Malkin, T.; Smith, D.B.; Davey, W.; Gwilt, J.R.; Cooper, W.; Kertes, S.; Roberts, J.J.; Ross, W.C.J.; Wilson, Walter; Cummings, G.A.McD.; McLaughlin, E., Notes, J. Chem. Soc., 1955, 1383, https://doi.org/10.1039/jr9550001383 . [all data]

Fried, Baghdoyan, et al., 1971
Fried, Vojtech.; Baghdoyan, Armen.; Malik, Jana., Vapor pressures and densities of 2,3-dimethyl-2-butene and 3,3-dimethyl-1-butene, J. Chem. Eng. Data, 1971, 16, 1, 96-97, https://doi.org/10.1021/je60048a009 . [all data]

Baghdoyan, Malik, et al., 1971
Baghdoyan, A.; Malik, J.; Fried, V., Vapor Pressures and Densities of 2,3-Dimethyl-2-butene and 3,3-Dimethyl-1-butene, J. Chem. Eng. Data, 1971, 16, 1, 96-97, https://doi.org/10.1021/je60048a009 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Rogers, Crooks, et al., 1987
Rogers, D.W.; Crooks, E.; Dejroongruang, K., Enthalpies of hydrogenation of the hexenes, J. Chem. Thermodyn., 1987, 19, 1209-1215. [all data]

Kistiakowsky, Ruhoff, et al., 1936
Kistiakowsky, G.B.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E., Heats of organic reactions. III. Hydrogenation of some higher olefins, J. Am. Chem. Soc., 1936, 58, 137-145. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Radyuk, Kabo, et al., 1972
Radyuk, Z.A.; Kabo, G.Ya.; Andreevskii, D.N., Equilibrium and thermodynamics of the isomerization of hexene isomers, Neftekhimiya, 1972, 12, 679-686. [all data]

Abell, 1966
Abell, P.I., Bromine atom catalyzed isomerization of terminal olefins, J. Am. Chem. Soc., 1966, 88, 1346-1348. [all data]

Arnett and Pienta, 1980
Arnett, E.M.; Pienta, N.J., Stabilities of carbonium ions in solution. 12. Heats of formation of alkyl chlorides as an entree to heats of solvation of aliphatic carbonium ions, J. Am. Chem. Soc., 1980, 102, 3329-3334. [all data]

Bartolo and Rossini, 1960
Bartolo, H.F.; Rossini, F.D., Heats of isomerization of the seventeen isomeric hexenes, J. Phys. Chem., 1960, 64, 1685-1689. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Bieri, Burger, et al., 1977
Bieri, G.; Burger, F.; Heilbronner, E.; Maier, J.P., Valence ionization enrgies of hydrocarbons, Helv. Chim. Acta, 1977, 60, 2213. [all data]

Lossing and Traeger, 1975
Lossing, F.P.; Traeger, J.C., Stabilization in cyclopentadienyl, cyclopentenyl, and cyclopentyl cations, J. Am. Chem. Soc., 1975, 97, 1579. [all data]

Masclet, Grosjean, et al., 1973
Masclet, P.; Grosjean, D.; Mouvier, G., Alkene ionization potentials. Part I. Quantitative determination of alkyl group structural effects, J. Electron Spectrosc. Relat. Phenom., 1973, 2, 225. [all data]

Frost and Sandhu, 1971
Frost, D.C.; Sandhu, J.S., Ionization potentials of ethylene and some methyl-substituted ethylenes as determined by photoelectron spectroscopy, Indian J. Chem., 1971, 9, 1105. [all data]

Bralsford, Harris, et al., 1960
Bralsford, R.; Harris, P.V.; Price, W.C., The effect of fluorine on the electronic spectra and ionization potentials of molecules, Proc. Roy. Soc. (London), 1960, A258, 459. [all data]

Kovac, Mohraz, et al., 1980
Kovac, B.; Mohraz, M.; Heilbronner, E.; Boekelheide, V.; Hopf, H., Photoelectron spectra of the cyclophanes, J. Am. Chem. Soc., 1980, 102, 4314. [all data]

McAlduff and Houk, 1977
McAlduff, E.J.; Houk, K.N., Photoelectron spectra of substituted oxiranes and thiiranes. Substituent effects on ionization potentials involving σ orbitals, Can. J. Chem., 1977, 55, 318. [all data]

Mollere, Houk, et al., 1976
Mollere, P.D.; Houk, K.N.; Bomse, D.S.; Morton, T.H., Photoelectron spectra of sterically congested alkenes and dienes, J. Am. Chem. Soc., 1976, 98, 4732. [all data]

Fuss and Bock, 1974
Fuss, W.; Bock, H., Photoelectron spectra and molecular properties. XXXVI. (H3C)3B, (H3C)2BF, (H3C)2BN(CH3)2, and (H3C)2CC(CH3)2: The use of ionization potentials in assigning UV spectra, J. Chem. Phys., 1974, 61, 1613. [all data]

Lossing and Traeger, 1975, 2
Lossing, F.P.; Traeger, J.C., Free radicals by mass spectrometry XLVI. Heats of formation of C5H7 and C5H9 radicals and cations., J. Am. Chem. Soc., 1975, 19, 9. [all data]

Johnson, 1966
Johnson, E.A., UV atlas of organic compounds, 1966, 1, A1/3. [all data]

Soják, Addová, et al., 2002
Soják, L.; Addová, G.; Kubinec, R.; Kraus, A.; Hu, G., Gas chromatographic-mass spectrometric characterization of all acyclic C5-C7 alkenes from fluid catalytic cracked gasoline using polydimethylsiloxane and squalane stationary phases, J. Chromatogr. A, 2002, 947, 1, 103-117, https://doi.org/10.1016/S0021-9673(01)01564-3 . [all data]

Hilal, Carreira, et al., 1994
Hilal, S.H.; Carreira, L.A.; Karickhoff, S.W.; Melton, C.M., Estimation of Gas-Liquid Chromatographic Retention Times from Molecular Structure, J. Chromatogr. A, 1994, 662, 2, 269-280, https://doi.org/10.1016/0021-9673(94)80515-6 . [all data]

Laub and Purnell, 1988
Laub, R.J.; Purnell, J.H., Specific retention volumes, retention indices, and family-plot regressions of aliphatic, alicyclic, and aromatic hydrocarbon solutes with OV-101 poly (dimethylsiloxane) stationary phase, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1988, 11, 9, 649-660, https://doi.org/10.1002/jhrc.1240110908 . [all data]

Boneva and Dimov, 1986
Boneva, S.; Dimov, N., Gas Chromatographic Retention Indices for Alkenes on OV-101 and Squalane Capillary Columns, Chromatographia, 1986, 21, 3, 149-151, https://doi.org/10.1007/BF02311743 . [all data]

Rudenko, Mal'tsev, et al., 1985
Rudenko, G.I.; Mal'tsev, V.V.; Studenichnik, V.N.; Ustinov, E.P., Gas chromatographic analysis of volatile substances evolved into atmosphere from polymer materials, Zh. Anal. Khim., 1985, 40, 6, 1119-1127. [all data]

Lubeck and Sutton, 1984
Lubeck, A.J.; Sutton, D.L., Kovats Retention Indices of Selected Olefins on Bonded Phase Fused Silica Capillaries, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1984, 7, 9, 542-544, https://doi.org/10.1002/jhrc.1240070913 . [all data]

Bajus, Veselý, et al., 1979
Bajus, M.; Veselý, V.; Leclercq, P.A.; Rijks, J.A., Steam cracking of hydrocarbons. 1. Pyrolysis of heptane, Ind. Eng. Chem. Prod. Res. Dev., 1979, 18, 1, 30-37, https://doi.org/10.1021/i360069a007 . [all data]

Chrétien and Dubois, 1977
Chrétien, J.R.; Dubois, J.E., Topological analysis of gas-liquid chromatographic behavior of alkenes, Anal. Chem., 1977, 49, 6, 747-756, https://doi.org/10.1021/ac50014a021 . [all data]

Chretien and Dubois, 1976
Chretien, J.R.; Dubois, J.-E., New Perspectives in the Prediction of Kovats Indices, J. Chromatogr., 1976, 126, 171-189, https://doi.org/10.1016/S0021-9673(01)84071-1 . [all data]

Rijks, van den Berg, et al., 1974
Rijks, J.A.; van den Berg, J.H.M.; Diependaal, J.P., Characterization of hydrocarbons in complex mixtures by two-dimensional precision gas chromatography, J. Chromatogr., 1974, 91, 603-612, https://doi.org/10.1016/S0021-9673(01)97941-5 . [all data]

Rijks and Cramers, 1974
Rijks, J.A.; Cramers, C.A., High precision capillary gas chromatography of hydrocarbons, Chromatographia, 1974, 7, 3, 99-106, https://doi.org/10.1007/BF02269819 . [all data]

Matukuma, 1969
Matukuma, A., Retention indices of alkanes through C10 and alkenes through C8 and relation between boiling points and retention data, Gas Chromatogr., Int. Symp. Anal. Instrum. Div Instrum Soc. Amer., 1969, 7, 55-75. [all data]

Hively and Hinton, 1968
Hively, R.A.; Hinton, R.E., Variation of the retention index with temperature on squalane substrates, J. Gas Chromatogr., 1968, 6, 4, 203-217, https://doi.org/10.1093/chromsci/6.4.203 . [all data]

Schomburg, 1967
Schomburg, G., Struktur und Retentionsverhalten von Offenkettigen und Cyclischen Kohlenwasserstoffen und Deren Einfacher Substitutionsprodukte, Anal. Chim. Acta., 1967, 38, 45-64, https://doi.org/10.1016/S0003-2670(01)80560-2 . [all data]

Zulaïca and Guiochon, 1966
Zulaïca, J.; Guiochon, G., Analyse des hauts polymères par chromatographie en phase gazeuse de leurs produits de pyrolyse. II. Application à quelques hydrocarbures macromoléculaires purs, Bull. Soc. Chim. Fr., 1966, 4, 1351-1363. [all data]

White, Douglas, et al., 1992
White, C.M.; Douglas, L.J.; Hackett, J.P.; Anderson, R.R., Characterization of synthetic gasoline from the chloromethane-zeolite reaction, Energy Fuels, 1992, 6, 1, 76-82, https://doi.org/10.1021/ef00031a012 . [all data]

White, Hackett, et al., 1992
White, C.M.; Hackett, J.; Anderson, R.R.; Kail, S.; Spock, P.S., Linear temperature programmed retention indices of gasoline range hydrocarbons and chlorinated hydrocarbons on cross-linked polydimethylsiloxane, J. Hi. Res. Chromatogr., 1992, 15, 2, 105-120, https://doi.org/10.1002/jhrc.1240150211 . [all data]

Sojak, Addova, et al., 2000
Sojak, L.; Addova, G.; Kubinec, R.; Ruman, J.; Hu, G., GC-MS characterization of all acyclic C5-C7 alkenes from FCC gasoline using squalane stationary phase, Petroleum and Coal, 2000, 42, 3-4, 188-194. [all data]

Schomburg, 1966
Schomburg, G., Gaschromatographische Retentionsdaten und Struktur Chemischer Verbindungen. II. Methylverzweigungen und Doppelbindungen in Offenkettigen Kohlenwasserstoffen, J. Chromatogr., 1966, 23, 1-17, https://doi.org/10.1016/S0021-9673(01)98652-2 . [all data]

Ramnas, Ostermark, et al., 1994
Ramnas, O.; Ostermark, U.; Peterson, G., Characterization of sixty alkenes in a cat-cracked gasoline naphtha by gas chromatography, Chromatographia, 1994, 38, 3/4, 222-226, https://doi.org/10.1007/BF02290340 . [all data]

Chen and Feng, 2007
Chen, Y.; Feng, C., QSPR study on gas chromatography retention index of some organic pollutants, Comput. Appl. Chem. (China), 2007, 24, 10, 1404-1408. [all data]

Junkes, Castanho, et al., 2003
Junkes, B.S.; Castanho, R.D.M.; Amboni, C.; Yunes, R.A.; Heinzen, V.E.F., Semiempirical Topological Index: A Novel Molecular Descriptor for Quantitative Structure-Retention Relationship Studies, Internet Electronic Journal of Molecular Design, 2003, 2, 1, 33-49. [all data]

Zenkevich and Marinichev, 2001
Zenkevich, I.G.; Marinichev, A.N., Comparison of Topological and Dynamics Molecular Characteristics for Precalculation of Chromatographic Retention Parameters of Organic Compounds (in Russian), Zh. Struct. Khim., 2001, 42, 5, 893-902. [all data]

Robinson and Odell, 1971
Robinson, P.G.; Odell, A.L., A system of standard retention indices and its uses. The characterisation of stationary phases and the prediction of retention indices, J. Chromatogr., 1971, 57, 1-10, https://doi.org/10.1016/0021-9673(71)80001-8 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References