2-Methyl-1-butene

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-35.1 ± 0.84kJ/molEqkWiberg and Hao, 1991Heat of hydration; ALS
Δfgas-34.8kJ/molN/AGood and Smith, 1979Value computed using ΔfHliquid° value of -60.96±0.84 kj/mol from Good and Smith, 1979 and ΔvapH° value of 26.19 kj/mol from missing citation.; DRB

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
102.97273.15McCullough J.P., 1959Results of more recent statistical calculation [ Durig J.R., 1980] are different from recommended and experimental values up to 3 J/mol*K for S(T) and Cp(T).; GT
109.96298.15
110.50300.
138.91400.
164.85500.
187.11600.
206.10700.
222.38800.
236.48900.
248.661000.
259.241100.
268.401200.
276.351300.
283.301400.
289.321500.

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
116.15 ± 0.35320.66Scott D.W., 1949GT
128.37 ± 0.39362.51
140.62 ± 0.42407.11
153.13 ± 0.46453.41
165.35 ± 0.50502.21

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Hydrogen + 2-Methyl-1-butene = Butane, 2-methyl-

By formula: H2 + C5H10 = C5H12

Quantity Value Units Method Reference Comment
Δr-126.95kJ/molChydDolliver, Gresham, et al., 1937gas phase; At 355 °K
Δr-118.2 ± 0.42kJ/molChydKistiakowsky, Ruhoff, et al., 1936gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -119.2 ± 1.5 kJ/mol; At 355 K

2-Methyl-1-butene + Methyl Alcohol = Butane, 2-methoxy-2-methyl-

By formula: C5H10 + CH4O = C6H14O

Quantity Value Units Method Reference Comment
Δr-35.8kJ/molEqkSerda, Izquierdo, et al., 1995liquid phase
Δr-20.4 ± 0.8kJ/molEqkHwang and Wu, 1994liquid phase
Δr-33.6 ± 5.1kJ/molEqkRihko, Linnekoski, et al., 1994liquid phase; solvent: Alcohol/alkane mixture

2-Methyl-1-butene = 2-Butene, 2-methyl-

By formula: C5H10 = C5H10

Quantity Value Units Method Reference Comment
Δr-6.7 ± 3.0kJ/molEqkRihko, Linnekoski, et al., 1994liquid phase; solvent: Methanol/H+
Δr-8.0 ± 1.4kJ/molEqkRihko, Linnekoski, et al., 1994liquid phase; solvent: Ethanol/H+

2-Methyl-1-butene + Hydrogen chloride = Butane, 2-chloro-2-methyl-

By formula: C5H10 + HCl = C5H11Cl

Quantity Value Units Method Reference Comment
Δr-63.7 ± 1.4kJ/molCmArnett and Pienta, 1980liquid phase; solvent: Methylene chloride; Hydrochlorination

2-Methyl-1-butene + Ethanol = Butane, 2-ethoxy-2-methyl-

By formula: C5H10 + C2H6O = C7H16O

Quantity Value Units Method Reference Comment
Δr-35.2 ± 5.8kJ/molEqkRihko, Linnekoski, et al., 1994liquid phase; solvent: Alcohol/alkane mixture

2-Methyl-1-butene + Trifluoroacetic acid = Acetic acid, trifluoro-, 2,2-dimethylpropyl ester

By formula: C5H10 + C2HF3O2 = C7H11F3O2

Quantity Value Units Method Reference Comment
Δr-45.7 ± 0.2kJ/molCmWiberg and Hao, 1991liquid phase; Trifuoroacetolysis

2-Butene, 2-methyl- = 2-Methyl-1-butene

By formula: C5H10 = C5H10

Quantity Value Units Method Reference Comment
Δr8.08 ± 0.50kJ/molEqkRadyuk, Kabo, et al., 1973gas phase; Heat of isomerization at 562 K

2-Methyl-1-butene + Methyl Alcohol = Butane, 1-methoxy-2-methyl-

By formula: C5H10 + CH4O = C6H14O

Quantity Value Units Method Reference Comment
Δr-35.8 ± 1.3kJ/molEqkSerda, Izquierdo, et al., 1995liquid phase

Butane, 2-methoxy-2-methyl- = 2-Methyl-1-butene + Methyl Alcohol

By formula: C6H14O = C5H10 + CH4O

Quantity Value Units Method Reference Comment
Δr67.96 ± 0.39kJ/molEqkRozhnov, Safronov, et al., 1991liquid phase

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
L - Sharon G. Lias

Data compiled as indicated in comments:
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C5H10+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)9.12 ± 0.01eVN/AN/AL

Ionization energy determinations

IE (eV) Method Reference Comment
9.10PITraeger, 1986LBLHLM
9.148 ± 0.003PEMasclet, Grosjean, et al., 1973LLK
9.12EILossing, 1972LLK
9.35 ± 0.08EIGross and Wilkins, 1971LLK
9.12 ± 0.02PIDemeo and El-Sayed, 1970RDSH
9.12 ± 0.02PIWatanabe, Nakayama, et al., 1962RDSH
9.2 ± 0.1PEBieri, Burger, et al., 1977Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C3H6+11.66 ± 0.06C2H4EIGross and Wilkins, 1971LLK
C4H7+10.66CH3PITraeger, 1986LBLHLM
C4H7+10.85CH3EIBrand and Baer, 1984LBLHLM
C4H7+10.85CH3EILossing, 1972LLK
C4H7+11.34 ± 0.07CH3EIGross and Wilkins, 1971LLK

Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW-1330
NIST MS number 229038

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


UV/Visible spectrum

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Victor Talrose, Eugeny B. Stern, Antonina A. Goncharova, Natalia A. Messineva, Natalia V. Trusova, Margarita V. Efimkina

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

UVVis spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Source Loeffler, Eberlin, et al., 1958
Owner INEP CP RAS, NIST OSRD
Collection (C) 2007 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS
Source reference RAS UV No. 1285
Instrument Fluorite prism vacuum spectrograph
Melting point -137.5
Boiling point 31.2

References

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Wiberg and Hao, 1991
Wiberg, K.B.; Hao, S., Enthalpies of hydration of alkenes. 4. Formation of acyclic tert-alcohols, J. Org. Chem., 1991, 56, 5108-5110. [all data]

Good and Smith, 1979
Good, W.D.; Smith, N.K., The enthalpies of combustion of the isomeric pentenes in the liquid state. A warning to combustion calorimetrists about sample drying, J. Chem. Thermodyn., 1979, 11, 111-118. [all data]

McCullough J.P., 1959
McCullough J.P., Thermodynamic properties, vibrational assignment and rotational conformations of 2-methyl-1-butene, J. Am. Chem. Soc., 1959, 81, 1331-1334. [all data]

Durig J.R., 1980
Durig J.R., Torsional spectra of molecules with two internal C3v rotors. 19. Vibrational spectra, torsional potential functions, and conformational and thermodynamic properties of 2-methyl-1-butene, J. Phys. Chem., 1980, 84, 3554-3561. [all data]

Scott D.W., 1949
Scott D.W., Thermodynamic properties of three isomeric pentenes, J. Am. Chem. Soc., 1949, 71, 2767-2773. [all data]

Dolliver, Gresham, et al., 1937
Dolliver, M.a.; Gresham, T.L.; Kistiakowsky, G.B.; Vaughan, W.E., Heats of organic reactions. V. Heats of hydrogenation of various hydrocarbons, J. Am. Chem. Soc., 1937, 59, 831-841. [all data]

Kistiakowsky, Ruhoff, et al., 1936
Kistiakowsky, G.B.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E., Heats of organic reactions. III. Hydrogenation of some higher olefins, J. Am. Chem. Soc., 1936, 58, 137-145. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Serda, Izquierdo, et al., 1995
Serda, J.A.; Izquierdo, J.F.; Tejero, J.; Cunill, F.; Iborra, M., Equilibrium and thermodynamics for 2-methyl-2-methoxybutane liquid-phase decomposition, Thermochim. Acta, 1995, 259, 111-120. [all data]

Hwang and Wu, 1994
Hwang, W.-S.; Wu, J.-C., Kinetics and thermodynamics of synthesis of tertiary-amyl methyl ether catalyzed by ion-exchange resin, J. Chin. Chem. Soc. (Taipei), 1994, 41, 181-186. [all data]

Rihko, Linnekoski, et al., 1994
Rihko, L.K.; Linnekoski, J.A.; Krause, A.O., Reaction equilibria in the synthesis of 2-methoxy-2-methylbutane and 2-ethyoxy-2-methylbutane in the liquid phase, J. Chem. Eng. Data, 1994, 39, 700-704. [all data]

Arnett and Pienta, 1980
Arnett, E.M.; Pienta, N.J., Stabilities of carbonium ions in solution. 12. Heats of formation of alkyl chlorides as an entree to heats of solvation of aliphatic carbonium ions, J. Am. Chem. Soc., 1980, 102, 3329-3334. [all data]

Radyuk, Kabo, et al., 1973
Radyuk, Z.A.; Kabo, G.Ya.; Andreevskii, D.N., Isomerization equilibrium and thermodynamic properties of methylbutenes, Neftekhimiya, 1973, 13, 356-360. [all data]

Rozhnov, Safronov, et al., 1991
Rozhnov, A.M.; Safronov, V.V.; Verevkin, S.P.; Sharonov, K.G.; Alenin, V.I., Enthalpy of combustion and enthalpy of vaporization of 2-ethyl-2-methoxypropane and thermodynamics of its gas-phase synthesis from (methanol + a 2-methylbutene), J. Chem. Thermodyn., 1991, 23, 629-635. [all data]

Traeger, 1986
Traeger, J.C., Heat of formation for the 1-methylallyl cation by photoionization mass spectrometry, J. Phys. Chem., 1986, 90, 4114. [all data]

Masclet, Grosjean, et al., 1973
Masclet, P.; Grosjean, D.; Mouvier, G., Alkene ionization potentials. Part I. Quantitative determination of alkyl group structural effects, J. Electron Spectrosc. Relat. Phenom., 1973, 2, 225. [all data]

Lossing, 1972
Lossing, F.P., Free radicals by mass spectrometry. XLV. Ionization potentials and heats of formation of C3H3, C3H5, and C4H7 radicals and ions, Can. J. Chem., 1972, 50, 3973. [all data]

Gross and Wilkins, 1971
Gross, M.L.; Wilkins, C.L., Computer-assisted ion cyclotron resonance appearance potential measurements for C5H10 isomers, Anal. Chem., 1971, 43, 1624. [all data]

Demeo and El-Sayed, 1970
Demeo, D.A.; El-Sayed, M.A., Ionization potential and structure of olefins, J. Chem. Phys., 1970, 52, 2622. [all data]

Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J., Ionization potentials of some molecules, J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]

Bieri, Burger, et al., 1977
Bieri, G.; Burger, F.; Heilbronner, E.; Maier, J.P., Valence ionization enrgies of hydrocarbons, Helv. Chim. Acta, 1977, 60, 2213. [all data]

Brand and Baer, 1984
Brand, W.A.; Baer, T., Dissociation dynamics of energy-selected C5H10+ ions, J. Am. Chem. Soc., 1984, 106, 3154. [all data]

Loeffler, Eberlin, et al., 1958
Loeffler, B.B.; Eberlin, E.; Pickett, L.W., Far ultraviolet absorption spectra of small ring hydrocarbons, J. Chem. Phys., 1958, 28, 2, 345-347. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, References