1-Butene, 3-methyl-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-6.09kcal/molN/AGood and Smith, 1979Value computed using ΔfHliquid° value of -51.6±0.62 kj/mol from Good and Smith, 1979 and ΔvapH° value of 26.1 kj/mol from alkenes correlation.; DRB

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
27.5298.15Thermodynamics Research Center, 1997p=1 bar. Recommended values were calculated from data for lower alkenes by a method of increments (see also [ Kilpatrick J.E., 1946]). The results of two statistical thermodynamics calculations [ Radyuk Z.A., 1973, Durig J.R., 1980] are in much more disagreement with experimental entropies (2.6 and 5.1 J/mol*K for S(298.15 K), respectively) than estimated TRC values.; GT
27.5300.
34.2400.
40.2500.
45.4600.
49.7700.
53.5800.
56.9900.
59.81000.
62.11100.
64.31200.
66.21300.
67.91400.
69.31500.

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-12.33 ± 0.15kcal/molCcbGood and Smith, 1979ALS
Quantity Value Units Method Reference Comment
Δcliquid-799.50 ± 0.13kcal/molCcbGood and Smith, 1979Corresponding Δfliquid = -12.33 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid60.59cal/mol*KN/AChao, Hall, et al., 1983DH
liquid60.540cal/mol*KN/ATodd, Oliver, et al., 1947DH

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
37.31298.15Chao, Hall, et al., 1983T = 13 to 298 K.; DH
37.299298.15Todd, Oliver, et al., 1947T = 12 to 300 K.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil293. ± 1.KAVGN/AAverage of 23 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus104.64 ± 0.06KAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple104.71KN/AChao, Hall, et al., 1983, 2Uncertainty assigned by TRC = 0.02 K; TRC
Ttriple104.72KN/ATodd, Oliver, et al., 1947, 2Uncertainty assigned by TRC = 0.02 K; TRC
Ttriple104.710KN/AHuffman, 1946Uncertainty assigned by TRC = 0.05 K; TRC
Quantity Value Units Method Reference Comment
Tc452.7 ± 0.3KN/ATsonopoulos and Ambrose, 1996 
Quantity Value Units Method Reference Comment
Pc34.8 ± 0.3atmN/ATsonopoulos and Ambrose, 1996 
Quantity Value Units Method Reference Comment
Vc0.3049l/molN/ATsonopoulos and Ambrose, 1996 
Quantity Value Units Method Reference Comment
ρc3.28 ± 0.03mol/lN/ATsonopoulos and Ambrose, 1996 
Quantity Value Units Method Reference Comment
Δvap5.71kcal/molN/AReid, 1972AC

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
6.29252.AStephenson and Malanowski, 1987Based on data from 237. to 324. K.; AC
6.07288.EBScott and Waddington, 1950Based on data from 273. to 324. K.; AC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
273.37 to 324.293.945551013.575-36.32Scott and Waddington, 1950Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Reference Comment
1.281104.71Chao, Hall, et al., 1983DH
1.2809104.712Todd, Oliver, et al., 1947DH
1.28104.7Domalski and Hearing, 1996AC

Entropy of fusion

ΔfusS (cal/mol*K) Temperature (K) Reference Comment
12.23104.71Chao, Hall, et al., 1983DH
12.23104.712Todd, Oliver, et al., 1947DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Hydrogen + 1-Butene, 3-methyl- = Butane, 2-methyl-

By formula: H2 + C5H10 = C5H12

Quantity Value Units Method Reference Comment
Δr-30.19 ± 0.06kcal/molChydDolliver, Gresham, et al., 1937gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -30.34 ± 0.06 kcal/mol; At 355 °K

2-Butene, 2-methyl- = 1-Butene, 3-methyl-

By formula: C5H10 = C5H10

Quantity Value Units Method Reference Comment
Δr3.40 ± 0.35kcal/molEqkRadyuk, Kabo, et al., 1973gas phase; Heat of isomerization at 622 K

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
0.0019 QN/A missing citation give several references for the Henry's law constants but don't assign them to specific species.
0.0019 LN/A 
0.0019 VN/A 

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
L - Sharon G. Lias

Data compiled as indicated in comments:
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard

View reactions leading to C5H10+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)9.52 ± 0.01eVN/AN/AL

Ionization energy determinations

IE (eV) Method Reference Comment
9.533 ± 0.003PEMasclet, Grosjean, et al., 1973LLK
9.52EILossing, 1972LLK
9.60 ± 0.03EIGross and Wilkins, 1971LLK
9.52PEDewar and Worley, 1969RDSH
9.51 ± 0.03PIWatanabe, Nakayama, et al., 1962RDSH
9.5 ± 0.1PEBieri, Burger, et al., 1977Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C3H6+10.76 ± 0.05C2H4PIBrand and Baer, 1984LBLHLM
C3H6+11.54 ± 0.10C2H4EIGross and Wilkins, 1971LLK
C4H7+10.74CH3EIBrand and Baer, 1984LBLHLM
C4H7+10.75 ± 0.03CH3PIBrand and Baer, 1984LBLHLM
C4H7+10.74CH3EILossing, 1972LLK
C4H7+11.15 ± 0.12CH3EIGross and Wilkins, 1971LLK

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Gas Phase Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

IR spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Owner NIST Standard Reference Data Program
Collection (C) 2018 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Sadtler Research Labs Under US-EPA Contract
State gas

This IR spectrum is from the NIST/EPA Gas-Phase Infrared Database .


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
NIST MS number 19074

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Good and Smith, 1979
Good, W.D.; Smith, N.K., The enthalpies of combustion of the isomeric pentenes in the liquid state. A warning to combustion calorimetrists about sample drying, J. Chem. Thermodyn., 1979, 11, 111-118. [all data]

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Kilpatrick J.E., 1946
Kilpatrick J.E., Heats, equilibrium constants, and free energies of formation of the monoolefin hydrocarbons, J. Res. Nat. Bur. Stand, 1946, 36, 559-612. [all data]

Radyuk Z.A., 1973
Radyuk Z.A., Equilibrium of isomerization and thermodynamic properties of methylbutenes, Neftekhimiya, 1973, 13, 356-360. [all data]

Durig J.R., 1980
Durig J.R., Torsional spectra of molecules with two internal C3v rotors. 19. Vibrational spectra, torsional potential functions, and conformational and thermodynamic properties of 2-methyl-1-butene, J. Phys. Chem., 1980, 84, 3554-3561. [all data]

Chao, Hall, et al., 1983
Chao, J.; Hall, K.R.; Yao, J.M., Thermodynamic properties of simple alkenes, Thermochim. Acta, 1983, 64(3), 285-303. [all data]

Todd, Oliver, et al., 1947
Todd, S.S.; Oliver, G.D.; Huffman, H.M., The heat capacities, heats of fusion and entropies of the six pentenes, J. Am. Chem. Soc., 1947, 69, 1519-1525. [all data]

Chao, Hall, et al., 1983, 2
Chao, J.; Hall, K.R.; Yao, J.M., Thermodynamic Properties of Simple Alkenes, Thermochim. Acta, 1983, 64, 285. [all data]

Todd, Oliver, et al., 1947, 2
Todd, S.S.; Oliver, G.D.; Huffman, H.M., The heat capacities, heats of fusion and entropies of the six pentenes., J. Am. Chem. Soc., 1947, 69, 1519. [all data]

Huffman, 1946
Huffman, H.M., Personal Commun., U. S. Bur. Mines, Bartlesville, OK, 1946. [all data]

Tsonopoulos and Ambrose, 1996
Tsonopoulos, C.; Ambrose, D., Vapor-Liquid Critical Properties of Elements and Compounds. 6. Unsaturated Aliphatic Hydrocarbons, J. Chem. Eng. Data, 1996, 41, 645-656. [all data]

Reid, 1972
Reid, Robert C., Handbook on vapor pressure and heats of vaporization of hydrocarbons and related compounds, R. C. Wilhort and B. J. Zwolinski, Texas A Research Foundation. College Station, Texas(1971). 329 pages.$10.00, AIChE J., 1972, 18, 6, 1278-1278, https://doi.org/10.1002/aic.690180637 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Scott and Waddington, 1950
Scott, Donald W.; Waddington, Guy, Vapor Pressure of cis-2-Pentene, trans-2-Pentene and 3-Methyl-1-butene, J. Am. Chem. Soc., 1950, 72, 9, 4310-4311, https://doi.org/10.1021/ja01165a542 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Dolliver, Gresham, et al., 1937
Dolliver, M.a.; Gresham, T.L.; Kistiakowsky, G.B.; Vaughan, W.E., Heats of organic reactions. V. Heats of hydrogenation of various hydrocarbons, J. Am. Chem. Soc., 1937, 59, 831-841. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Radyuk, Kabo, et al., 1973
Radyuk, Z.A.; Kabo, G.Ya.; Andreevskii, D.N., Isomerization equilibrium and thermodynamic properties of methylbutenes, Neftekhimiya, 1973, 13, 356-360. [all data]

Masclet, Grosjean, et al., 1973
Masclet, P.; Grosjean, D.; Mouvier, G., Alkene ionization potentials. Part I. Quantitative determination of alkyl group structural effects, J. Electron Spectrosc. Relat. Phenom., 1973, 2, 225. [all data]

Lossing, 1972
Lossing, F.P., Free radicals by mass spectrometry. XLV. Ionization potentials and heats of formation of C3H3, C3H5, and C4H7 radicals and ions, Can. J. Chem., 1972, 50, 3973. [all data]

Gross and Wilkins, 1971
Gross, M.L.; Wilkins, C.L., Computer-assisted ion cyclotron resonance appearance potential measurements for C5H10 isomers, Anal. Chem., 1971, 43, 1624. [all data]

Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D., Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation, J. Chem. Phys., 1969, 50, 654. [all data]

Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J., Ionization potentials of some molecules, J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]

Bieri, Burger, et al., 1977
Bieri, G.; Burger, F.; Heilbronner, E.; Maier, J.P., Valence ionization enrgies of hydrocarbons, Helv. Chim. Acta, 1977, 60, 2213. [all data]

Brand and Baer, 1984
Brand, W.A.; Baer, T., Dissociation dynamics of energy-selected C5H10+ ions, J. Am. Chem. Soc., 1984, 106, 3154. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References