Carbon Tetrachloride

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Δfgas-100. ± 20.kJ/molAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
gas,1 bar309.65J/mol*KReviewChase, 1998Data last reviewed in December, 1968

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 6000.
A 103.1134
B 4.188644
C -1.126475
D 0.095677
E -1.919624
F -133.3357
G 422.4334
H -95.98096
ReferenceChase, 1998
Comment Data last reviewed in December, 1968

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-128.1 ± 2.5kJ/molReviewManion, 2002adopted combustion calorimetry data of Hu and Sinke, 1969 with increased uncertainty to reflect other data; DRB
Δfliquid-128.4kJ/molCcrHu and Sinke, 1969, 2ALS
Quantity Value Units Method Reference Comment
Δcliquid-359.9kJ/molCcrHu and Sinke, 1969, 2ALS
Δcliquid-365.7 ± 8.4kJ/molCcbSmith, Bjellerup, et al., 1953Reanalyzed by Cox and Pilcher, 1970, Original value = -370. ± 10. kJ/mol; ALS
Quantity Value Units Method Reference Comment
liquid214.39J/mol*KN/AHicks, Hooley, et al., 1944DH
liquid205.4J/mol*KN/ALatimer, 1922DH
liquid219.2J/mol*KN/AStull, 1937Extrapolation below 91 K; 74.31 J/mol*K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
131.3298.15Shehatta, 1993DH
133.35298.15Lainez, Rodrigo, et al., 1989DH
133.0298.15Petrov, Peshekhodov, et al., 1989T = 258.15, 278.15, 298.15, 318.15 K.; DH
132.9298.15Nkinamubanzi, Charlet, et al., 1985DH
131.34298.15Tanaka, 1982T = 293.15, 298.15, 303.15 K. Data at three temperatures.; DH
129.8293.15Atalla, El-Sharkawy, et al., 1981DH
131.6298.15Grolier, Hamedi, et al., 1979DH
131.40298.15Vesely, Zabransky, et al., 1979DH
131.36298.15Wilhelm, Faradjzadeh, et al., 1979DH
131.57298.15Grolier, Wilhelm, et al., 1978DH
131.40298.15Vesely, Svoboda, et al., 1977T = 298 to 318 K.; DH
131.36298.15Fortier, Benson, et al., 1976DH
131.401298.15Fortier and Benson, 1976DH
131.9298.15Grolier, Benson, et al., 1975DH
131.66293.15Wilhelm, Zettler, et al., 1974T = 273 to 323 K.; DH
130.8298.15Subrahmanyam and Rajagopal, 1973T = 298 to 323 K.; DH
131.8256.10Arentsen and Van Miltenburg, 1972T = 243 to 256 K. Value is unsmoothed experimental datum.; DH
131.0298.Deshpande and Bhatagadde, 1971T = 298 to 318 K.; DH
131.5293.Rastorguev and Ganiev, 1967T = 293 to 333 K.; DH
130.9300.Harrison and Moelwyn-Hughes, 1957T = 243 to 303 K.; DH
130.5303.3Harrison and Moelwyn-Hughes, 1957T = 254 to 303 K. Unsmoothed experimental datum.; DH
132.59298.Staveley, Tupman, et al., 1955T = 295 to 339 K.; DH
128.8298.Kurbatov, 1948T = -20 to 72°C. Mean Cp, four temperatures.; DH
131.67298.15Hicks, Hooley, et al., 1944T = 15 to 300 K.; DH
132.2298.1Zhdanov, 1941T = 5 to 46°C.; DH
133.1301.2Phillip, 1939DH
132.63298.1Stull, 1937T = 90 to 320 K.; DH
133.1298.Vold, 1937DH
133.0298.Vold, 1937Cp given as 0.2066 cal/g*K.; DH
126.4288.3Kolosovskii and Udovenko, 1934DH
126.4288.3de Kolossowsky and Udowenko, 1933DH
130.5298.1Richards and Wallace, 1932T = 293 to 323 K.; DH
128.0293.2Williams and Daniels, 1925T = 20 to 50°C.; DH
128.9303.Willams and Daniels, 1924T = 303 to 330 K. Equation only.; DH
133.9290.Latimer, 1922T = 39.1 to 290 K.; DH

Constant pressure heat capacity of solid

Cp,solid (J/mol*K) Temperature (K) Reference Comment
44.2246.Atake and Chihara, 1971T = 3 to 46 K.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil349.8 ± 0.3KAVGN/AAverage of 82 out of 89 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus250.3 ± 0.3KAVGN/AAverage of 31 out of 37 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple249. ± 3.KAVGN/AAverage of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Tc556.36KN/AAltunin, Geller, et al., 1987Uncertainty assigned by TRC = 0.2 K; TRC
Tc556.4KN/AMajer and Svoboda, 1985 
Tc556.3KN/ACampbell and Chatterjee, 1969Uncertainty assigned by TRC = 0.2 K; TRC
Tc558.35KN/ALivingston, Morgan, et al., 1908Uncertainty assigned by TRC = 5. K; calculation based on extrap. of density and surface tension; TRC
Quantity Value Units Method Reference Comment
Pc44.93barN/AAltunin, Geller, et al., 1987Uncertainty assigned by TRC = 0.50 bar; TRC
Pc45.576barN/ACampbell and Chatterjee, 1969Uncertainty assigned by TRC = 0.1013 bar; TRC
Quantity Value Units Method Reference Comment
ρc3.62mol/lN/ACampbell and Chatterjee, 1969Uncertainty assigned by TRC = 0.02 mol/l; TRC
ρc3.625mol/lN/AKordes, 1954Uncertainty assigned by TRC = 0.02 mol/l; TRC
ρc3.625mol/lN/ALewis, 1953Uncertainty assigned by TRC = 0.03 mol/l; TRC
Quantity Value Units Method Reference Comment
Δvap32. ± 2.kJ/molAVGN/AAverage of 7 values; Individual data points

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
29.82349.9N/AMajer and Svoboda, 1985 
30.4364.AStephenson and Malanowski, 1987Based on data from 349. to 416. K.; AC
29.2427.AStephenson and Malanowski, 1987Based on data from 412. to 497. K.; AC
30.6509.AStephenson and Malanowski, 1987Based on data from 494. to 555. K.; AC
33.7277.A,EBStephenson and Malanowski, 1987Based on data from 262. to 349. K. See also Boublík and Aim, 1972.; AC
32.3308.N/AHildenbrand and McDonald, 1959Based on data from 293. to 351. K.; AC
31.7325.N/ABarker, Brown, et al., 1953Based on data from 313. to 338. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-βTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A (kJ/mol) β Tc (K) Reference Comment
298. to 358.45.850.2656556.4Majer and Svoboda, 1985 

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
293.03 to 350.864.022911221.781-45.739Hildenbrand and McDonald, 1959, 2Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

ΔsubH (kJ/mol) Temperature (K) Method Reference Comment
37.9227. to 248.N/AGoto, Fujinawa, et al., 1996AC
43.3226.BBondi, 1963AC
38.8217.N/AJones, 1960Based on data from 209. to 225. K. See also Goto, Fujinawa, et al., 1996.; AC

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
2.69249.Domalski and Hearing, 1996AC

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
20.49224.6Domalski and Hearing, 1996CAL
10.82249.
20.3225.4
10.1250.3
20.5225.7
10.2250.5

Enthalpy of phase transition

ΔHtrs (kJ/mol) Temperature (K) Initial Phase Final Phase Reference Comment
4.631225.7crystaline, IIcrystaline, IMorrison and Richards, 1976DH
2.562250.53crystaline, IliquidMorrison and Richards, 1976DH
1.848245.70crystaline, IIliquidArentsen and Van Miltenburg, 1972DH
2.588250.28crystaline, IliquidArentsen and Van Miltenburg, 1972Stable phase.; DH
4.581225.35crystaline, IIcrystaline, IChang and Westrum, 1970DH
2.515250.3crystaline, IliquidChang and Westrum, 1970DH
4.582225.35crystaline, IIcrystaline, IHicks, Hooley, et al., 1944DH
2.515250.3crystaline, IliquidHicks, Hooley, et al., 1944DH
4.600224.6crystaline, IIcrystaline, ILatimer, 1922DH
2.694249.crystaline, IliquidLatimer, 1922DH
4.602225.63crystaline, IIcrystaline, IStull, 1937DH
2.431250.37crystaline, IliquidStull, 1937DH

Entropy of phase transition

ΔStrs (J/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
20.52225.7crystaline, IIcrystaline, IMorrison and Richards, 1976DH
10.226250.53crystaline, IliquidMorrison and Richards, 1976DH
7.52245.70crystaline, IIliquidArentsen and Van Miltenburg, 1972DH
10.22250.28crystaline, IliquidArentsen and Van Miltenburg, 1972Stable; DH
20.33225.35crystaline, IIcrystaline, IChang and Westrum, 1970DH
10.04250.3crystaline, IliquidChang and Westrum, 1970DH
20.33225.35crystaline, IIcrystaline, IHicks, Hooley, et al., 1944DH
10.05250.3crystaline, IliquidHicks, Hooley, et al., 1944DH
20.5224.6crystaline, IIcrystaline, ILatimer, 1922DH
10.8249.crystaline, IliquidLatimer, 1922DH
26.40225.63crystaline, IIcrystaline, IStull, 1937DH
9.71250.37crystaline, IliquidStull, 1937DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
MS - José A. Martinho Simões
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Chlorine anion + Carbon Tetrachloride = (Chlorine anion • Carbon Tetrachloride)

By formula: Cl- + CCl4 = (Cl- • CCl4)

Quantity Value Units Method Reference Comment
Δr56.1 ± 8.4kJ/molTDAsHiraoka, Mizuno, et al., 2001gas phase; B
Δr59.4 ± 2.9kJ/molTDAsDougherty, Dalton, et al., 1974gas phase; B,M
Quantity Value Units Method Reference Comment
Δr116.J/mol*KHPMSDougherty, Dalton, et al., 1974gas phase; M
Quantity Value Units Method Reference Comment
Δr21.1kJ/molTDAsHiraoka, Mizuno, et al., 2001gas phase; B
Δr24.7 ± 3.8kJ/molTDAsDougherty, Dalton, et al., 1974gas phase; B

C8H6MoO3 (solution) + Carbon Tetrachloride (solution) = Molybdenum, tricarbonylchloro(η5-2,4-cyclopentadien-1-yl)- (solution) + Trichloromethane (solution)

By formula: C8H6MoO3 (solution) + CCl4 (solution) = C8H5ClMoO3 (solution) + CHCl3 (solution)

Quantity Value Units Method Reference Comment
Δr-133.1 ± 3.8kJ/molRSCNolan, López de la Vega, et al., 1986solvent: Tetrahydrofuran; The enthalpy of solution of Mo(Cp)(CO)3(H)(cr) was measured as 8.8 ± 0.4 kJ/mol Nolan, López de la Vega, et al., 1986, 2. Reaction temperature: 323 K; MS

Carbon dioxide + Carbon Tetrachloride = 2Phosgene

By formula: CO2 + CCl4 = 2CCl2O

Quantity Value Units Method Reference Comment
Δr70. ± 2.kJ/molEqkLord and Pritchard, 1969gas phase; Two values for Hf; ALS
Δr70. ± 2.kJ/molEqkLord and Pritchard, 1969gas phase; Two values for Hf; ALS

CCl5- + 2Carbon Tetrachloride = C2Cl9-

By formula: CCl5- + 2CCl4 = C2Cl9-

Quantity Value Units Method Reference Comment
Δr38.9kJ/molN/AHiraoka, Mizuno, et al., 2001gas phase; B
Quantity Value Units Method Reference Comment
Δr12.7kJ/molTDAsHiraoka, Mizuno, et al., 2001gas phase; B

Trichloromethane + Chlorine = Carbon Tetrachloride + Hydrogen chloride

By formula: CHCl3 + Cl2 = CCl4 + HCl

Quantity Value Units Method Reference Comment
Δr-93.30kJ/molCmKirkbride, 1956liquid phase; Heat of chlorination; ALS

Carbon Tetrachloride + Bromine = bromine chloride + Methane, bromotrichloro-

By formula: CCl4 + Br2 = BrCl + CBrCl3

Quantity Value Units Method Reference Comment
Δr37. ± 1.kJ/molEqkMendenhall, Golden, et al., 1973gas phase; ALS

C10H12Mo (cr) + 2Carbon Tetrachloride (l) = C10H10Cl2Mo (cr) + 2Trichloromethane (l)

By formula: C10H12Mo (cr) + 2CCl4 (l) = C10H10Cl2Mo (cr) + 2CHCl3 (l)

Quantity Value Units Method Reference Comment
Δr-321.3 ± 4.4kJ/molRSCCalado, Dias, et al., 1979MS

C10H12W (cr) + 2Carbon Tetrachloride (l) = C10H10Cl2W (cr) + 2Trichloromethane (l)

By formula: C10H12W (cr) + 2CCl4 (l) = C10H10Cl2W (cr) + 2CHCl3 (l)

Quantity Value Units Method Reference Comment
Δr-301.1 ± 3.4kJ/molRSCCalado, Dias, et al., 1979MS

2Phosgene = Carbon dioxide + Carbon Tetrachloride

By formula: 2CCl2O = CO2 + CCl4

Quantity Value Units Method Reference Comment
Δr-70. ± 2.kJ/molEqkLord and Pritchard, 1969gas phase; ALS

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
0.0344200.LN/A 
0.0384100.MN/A 
0.0343600.MN/A 
0.0323400.XN/A 
0.036 MN/A 
0.0383600.XN/A 
0.0304200.MN/A 
0.0314200.XN/A 
0.034 QN/A missing citation give several references for the Henry's law constants but don't assign them to specific species.
0.0285600.XN/A 
0.0354100.MN/A 
0.0334000.XN/A 
0.0334400.MGossett, 1987 
0.0334300.XN/A 
0.0423200.MN/A 
0.0331100.XN/A 
0.0364400.XLeighton and Calo, 1981 
0.051 LN/A 
0.0334700.XN/A 
0.034 VN/A 
0.047 CN/A 
0.035 VN/A 
0.045 MPearson and McConnell, 1975The same data was also published in missing citation. Value at T = 293. K.
0.038 CN/A 
0.0394900.MN/A 

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
L - Sharon G. Lias

Data compiled as indicated in comments:
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
LL - Sharon G. Lias and Joel F. Liebman
B - John E. Bartmess

Quantity Value Units Method Reference Comment
IE (evaluated)11.47 ± 0.01eVN/AN/AL

Electron affinity determinations

EA (eV) Method Reference Comment
0.80 ± 0.34IMRBStaneke, Groothuis, et al., 1995EA > EA(CH2S-.), and Cl-A(CCl3.) < Cl-A(CCl4); B
2.00 ± 0.20NBIELacmann, Maneira, et al., 1983B
2.00 ± 0.20NBIEDispert and Lacmann, 1978B
2.12 ± 0.10SIGaines, Kay, et al., 1966The Magnetron method, lacking mass analysis, is not considered reliable.; B

Ionization energy determinations

IE (eV) Method Reference Comment
11.5 ± 0.1EIKime, Driscoll, et al., 1987LBLHLM
11.3PEVon Niessen, Asbrink, et al., 1982LBLHLM
11.47 ± 0.08PEBassett and Lloyd, 1971LLK
11.47PEDewar and Worley, 1969RDSH
11.47 ± 0.01PIWatanabe, 1957RDSH
11.0 ± 1.0EIBaker and Tate, 1938RDSH
11.69PEKimura, Katsumata, et al., 1981Vertical value; LLK
11.69PEDixon, Murrell, et al., 1971Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C+24. ± 1.4ClPIBurton, Chan, et al., 1994LL
C+23.5 ± 0.24ClEIBaker and Tate, 1938RDSH
CCl+17. ± 1.3ClPIBurton, Chan, et al., 1994LL
CCl+19.35 ± 0.05Cl2+Cl?EIReed and Snedden, 1958RDSH
CCl+19.4 ± 0.1Cl2+Cl?EIBlanchard and LeGoff, 1957RDSH
CCl+17.1 ± 0.23ClEIBaker and Tate, 1938RDSH
CCl2+14. ± 1.Cl2PIBurton, Chan, et al., 1994LL
CCl2+16. ± 1.2ClPIBurton, Chan, et al., 1994LL
CCl2+15.4?EIShapiro and Lossing, 1968RDSH
CCl2+16.0 ± 0.22ClEIBaker and Tate, 1938RDSH
CCl3+11. ± 1.ClPIBurton, Chan, et al., 1994LL
CCl3+11.28 ± 0.03ClPIWerner, Tsai, et al., 1974LLK
CCl3+11.37ClEILossing, 1972LLK
CCl3+11.65 ± 0.10ClEIFox and Curran, 1961RDSH
CCl3+11.90 ± 0.07ClEIReed and Snedden, 1958RDSH
CCl3+11.7 ± 0.1ClEIFarmer, Henderson, et al., 1956RDSH
CCl3+12.2 ± 0.2ClEIBaker and Tate, 1938RDSH
Cl+24. ± 1.C+Cl+Cl2PIBurton, Chan, et al., 1994LL
Cl+19. ± 1.CCl+Cl2PIBurton, Chan, et al., 1994LL
Cl+16.1 ± 0.2CCl3EIFox and Curran, 1961RDSH
Cl+19.1 ± 0.2?EIBaker and Tate, 1938RDSH
Cl2+23. ± 1.C+2ClPIBurton, Chan, et al., 1994LL
Cl2+16.4 ± 0.5?EIBaker and Tate, 1938RDSH
Cl2+23.0 ± 1.0C+2ClEIBaker and Tate, 1938RDSH

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Data compiled by: Pamela M. Chu, Franklin R. Guenther, George C. Rhoderick, and Walter J. Lafferty


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin NIST Mass Spectrometry Data Center, 1998.
NIST MS number 291258

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Vibrational and/or electronic energy levels

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Takehiko Shimanouchi

Symmetry:   Td     Symmetry Number σ = 12


 Sym.   No   Approximate   Selected Freq.  Infrared   Raman   Comments 
 Species   type of mode   Value   Rating   Value  Phase  Value  Phase

a1 1 Sym str 459  C  ia 458.7 p liq.
e 2 Deg deform 217  C  ia 217.0 dp liq.
f2 3 Deg str 776  E 789 VS gas 790.4 dp liq. FR14)
f2 3 Deg str 776  E 768 VS gas 761.7 dp liq. FR14)
f2 4 Deg deform 314  C 309.9 W liq. 313.5 dp liq.

Source: Shimanouchi, 1972

Notes

VSVery strong
WWeak
iaInactive
pPolarized
dpDepolarized
FRFermi resonance with an overtone or a combination tone indicated in the parentheses.
C3~6 cm-1 uncertainty
E15~30 cm-1 uncertainty

Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedC78, Branched paraffin130.680.5Dallos, Sisak, et al., 2000He; Column length: 3.3 m
CapillaryDB-160.660.Dewulf, Van Langenhove, et al., 199730. m/0.53 mm/5.0 μm, He
PackedC78, Branched paraffin130.680.7Reddy, Dutoit, et al., 1992Chromosorb G HP; Column length: 3.3 m
PackedApolane130.680.Dutoit, 1991Column length: 3.7 m
PackedOV-1100.667.Castello and Gerbino, 1988He, Chromosorb W DMCS; Column length: 3. m
PackedOV-1125.673.Castello and Gerbino, 1988He, Chromosorb W DMCS; Column length: 3. m
PackedOV-175.662.Castello and Gerbino, 1988He, Chromosorb W DMCS; Column length: 3. m
PackedSqualane80.648.Pacáková, Vojtechová, et al., 1988N2, Chezasorb AW-HMDS; Column length: 1.2 m
PackedSE-30150.680.Tiess, 1984Ar, Gas Chrom Q (80-100 mesh); Column length: 3. m
PackedSE-30100.672.Winskowski, 1983Gaschrom Q; Column length: 2. m
PackedPorapack Q200.628.Goebel, 1982N2
PackedApolane70.663.1Riedo, Fritz, et al., 1976He, Chromosorb; Column length: 2.4 m
PackedSqualane50.647.Vernon, 1971N2
PackedApiezon L100.679.Brown, Chapman, et al., 1968N2, DCMS-treated Chromosorb W; Column length: 2.3 m
PackedDC-200100.669.Rohrschneider, 1966Column length: 4. m
PackedSqualane100.656.Rohrschneider, 1966Column length: 5. m
PackedApiezon L100.682.Rohrschneider, 1966Column length: 5. m
PackedApiezon L130.691.von Kováts, 1958Celite (40:60 Gewichtsverhaltnis)
PackedApiezon L70.671.von Kováts, 1958Celite (40:60 Gewichtsverhaltnis)

Kovats' RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryCBP-1657.Shimadzu, 200325. m/0.2 mm/0.25 μm, He, 50. C @ 5. min, 4. K/min; Tend: 200. C

Kovats' RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedSP-1000100.900.66Castello and Gerbino, 1988He, Chromosorb W DMCS; Column length: 3. m
PackedSP-1000125.902.2Castello and Gerbino, 1988He, Chromosorb W DMCS; Column length: 3. m
PackedSP-100075.886.54Castello and Gerbino, 1988He, Chromosorb W DMCS; Column length: 3. m
PackedCarbowax 20M75.888.Goebel, 1982N2, Kieselgur (60-100 mesh); Column length: 2. m
PackedCarbowax 20M100.895.Rohrschneider, 1966Column length: 2. m

Kovats' RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryCBP-20868.Shimadzu, 200325. m/0.2 mm/0.25 μm, He, 50. C @ 5. min, 4. K/min; Tend: 200. C

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-1645.7Helmig, Pollock, et al., 199630. m/0.25 mm/1. μm, 6. K/min; Tstart: -50. C; Tend: 180. C
CapillaryDB-5661.Helmig, Pollock, et al., 199660. m/0.33 mm/0.25 μm, 6. K/min; Tstart: -50. C; Tend: 180. C
CapillarySE-54663.Weber, 198625. m/0.31 mm/0.17 μm, H2, 2. K/min; Tstart: 35. C
CapillaryOV-1652.Schreyen, Dirinck, et al., 19761. K/min; Column length: 183. m; Column diameter: 0.762 mm; Tstart: 0. C; Tend: 230. C

Van Den Dool and Kratz RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillarySupelcowax-10879.Bianchi, Careri, et al., 200730. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 4C/min => 60C => 6C/min => 160C => 20C/min => 200C(1min)

Normal alkane RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryDB-160.661.Shimadzu, 2003, 260. m/0.32 mm/1. μm, He
PackedSynachrom150.611.Dufka, Malinsky, et al., 1971Helium, Synachrom (60-80 mesh); Column length: 1.5 m
PackedSynachrom150.618.Dufka, Malinsky, et al., 1971Helium, Synachrom (60-80 mesh); Column length: 1.5 m
PackedSqualane100.651.Vernon, 1971N2
PackedDC-400150.675.Anderson, 1968Helium, Gas-Pak (60-80 mesh); Column length: 3.0 m

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
PackedSE-30659.MHA, 9999Nitrogen, Chromosorb G AW DMCS (80-100 mesh); Column length: 2. m; Tstart: 100. C; Tend: 300. C
CapillaryHP-5656.Isidorov and Jdanova, 20023. K/min; Column length: 30. m; Column diameter: 0.25 mm; Tstart: 50. C; Tend: 200. C
CapillaryBP-1663.Health Safety Executive, 200050. m/0.22 mm/0.75 μm, He, 5. K/min; Tstart: 50. C; Tend: 200. C
CapillarySE-54661.Huang, Liang, et al., 199636. m/0.25 mm/0.25 μm, 5. K/min; Tstart: 35. C; Tend: 240. C
CapillaryDB-1654.Ciccioli, Cecinato, et al., 199260. m/0.32 mm/1.2 μm, He, 30. C @ 10. min, 3. K/min; Tend: 240. C
CapillaryOV-101645.Misharina, Golovnya, et al., 199150. m/0.32 mm/0.5 μm, He, 4. K/min; Tstart: 50. C; Tend: 250. C
CapillaryDB-1645.Habu, Flath, et al., 19853. K/min; Column length: 50. m; Column diameter: 0.32 mm; Tstart: 0. C; Tend: 250. C

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryMethyl Silicone658.Zenkevich, 2001Program: not specified
CapillarySPB-1661.Flanagan, Streete, et al., 199760. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C
CapillaryDB-5664.Sorimachi, Tanabe, et al., 1995He; Column length: 30. m; Program: not specified
CapillaryMethyl Silicone658.Zenkevich, Korolenko, et al., 1995Program: not specified
CapillaryDB-1645.Ciccioli, Cecinato, et al., 199460. m/0.32 mm/0.25 μm; Program: not specified
CapillaryDB-1645.Ciccioli, Brancaleoni, et al., 199360. m/0.32 mm/0.25 μm; Program: 3 min at 5 C; 5 - 50 C at 3 deg/min; 50 - 220 C at 5 deg/min
CapillarySPB-1661.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C
CapillarySPB-1659.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: not specified
CapillaryCP Sil 8 CB664.Weller and Wolf, 198940. m/0.25 mm/0.25 μm, He; Program: 30 0C (1 min) 15 0C/min -> 45 0C 3 0C/min -> 120 0C
CapillaryOV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc.646.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryOV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc.658.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryOV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc.672.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryOV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc.673.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryOV-1659.Ramsey and Flanagan, 1982Program: not specified
CapillarySE-30649.Heydanek and McGorrin, 1981He; Column length: 50. m; Column diameter: 0.5 mm; Program: -10C (8min) => 12C/min => 26C => 3C/min => 170C (30min)

Normal alkane RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryDB-Wax60.908.Shimadzu, 2003, 250. m/0.32 mm/1. μm, He

Normal alkane RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax900.Shimadzu, 201230. m/0.32 mm/0.50 μm, Helium, 4. K/min; Tstart: 40. C; Tend: 260. C
CapillaryDB-Wax900.Shimadzu Corporation, 200330. m/0.32 mm/0.5 μm, He, 4. K/min; Tstart: 40. C; Tend: 260. C

Normal alkane RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillarySupelcowax 10864.Soria, Martinez-Castro, et al., 200850. m/0.25 mm/0.25 μm, Helium; Program: 45 0C (15 min) 3 0C/min -> 75 0C 5 0C/min -> 180 0C (10 min)
CapillaryPolyethylene Glycol886.Zenkevich, Korolenko, et al., 1995Program: not specified
CapillaryCarbowax 400, Carbowax 20M, Carbowax 1540, Carbowax 4000, Superox 06, PEG 20M, etc.888.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryCarbowax 20M886.Ramsey and Flanagan, 1982Program: not specified
CapillaryPolyethylene Glycol872.MacLeod and Pieris, 1981Program: not specified

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Manion, 2002
Manion, J.A., Evaluated Enthalpies of Formation of the Stable Closed Shell C1 and C2 Chlorinated Hydrocarbons, J. Phys. Chem. Ref. Data, 2002, 31, 1, 123-172, https://doi.org/10.1063/1.1420703 . [all data]

Hu and Sinke, 1969
Hu, A.T.; Sinke, G.C., Combustion calorimetry of some chlorinated organic compounds, J. Chem. Thermodyn., 1969, 1, 6, 507, https://doi.org/10.1016/0021-9614(69)90010-X . [all data]

Hu and Sinke, 1969, 2
Hu, A.T.; Sinke, G.C., Combustion calorimetry of some chlorinated organic compounds, J. Chem. Thermodyn., 1969, 1, 507-513. [all data]

Smith, Bjellerup, et al., 1953
Smith, L.; Bjellerup, L.; Krook, S.; Westermark, H., Heats of combustion of organic chloro compounds determined by the "quartz wool" method, Acta Chem. Scand., 1953, 7, 65. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Hicks, Hooley, et al., 1944
Hicks, J.F.G.; Hooley, J.G.; Stephenson, C.C., The heat capacity of carbon tetrachloride from 15 to 300K. The heats of transition and of fusion. The entropy from thermal measurments compared with the entropy from molecular data, J. Am. Chem. Soc., 1944, 66, 1064-1067. [all data]

Latimer, 1922
Latimer, W.M., The distribution of thermal energy in the tetrachlorides of carbon, silicon, titantium and tin, J. Am. Chem. Soc., 1922, 44, 90-97. [all data]

Stull, 1937
Stull, D.R., A semi-micro calorimeter for measuring heat capacities at low temperatures, J. Am. Chem. Soc., 1937, 59, 2726-2733. [all data]

Shehatta, 1993
Shehatta, I., Heat capacity at constant pressure of some halogen compounds, Thermochim. Acta, 1993, 213, 1-10. [all data]

Lainez, Rodrigo, et al., 1989
Lainez, A.; Rodrigo, M.M.; Wilhelm, E.; Grolier, J.-P.E., Excess volumes and excess heaat capacitiies of some mixtures with trans,trans,cis-1,5,9-cyclododecatriene at 298.15K, J. Chem. Eng. Data, 1989, 34, 332-335. [all data]

Petrov, Peshekhodov, et al., 1989
Petrov, A.N.; Peshekhodov, P.B.; Al'per, G.A., Heat capacity of non-aqueous solutions of non-electrolyts with N,N-dimethylformamide as a base, Sbornik Nauch. Trud., Termodin. Rast. neelect., Ivanovo, Inst. nevod. rast., 1989, Akad. [all data]

Nkinamubanzi, Charlet, et al., 1985
Nkinamubanzi, P.; Charlet, G.; Delmas, G., Excess enthalpies, excess heat capacities and excess volumes of tetraalkoxysilanes with cyclohexane and carbon tetrachloride, Fluid Phase Equilibria, 1985, 20, 57-73. [all data]

Tanaka, 1982
Tanaka, R., Determination of excess heat capacities of (benzene + tetrachloromethane and + cyclohexane) between 293.15 and 303.15 K by use of a Picker flow calorimeter, J. Chem. Thermodynam., 1982, 14, 259-268. [all data]

Atalla, El-Sharkawy, et al., 1981
Atalla, S.R.; El-Sharkawy, A.A.; Gasser, F.A., Measurement of thermal properties of liquids with an AC heated-wire technique, Inter. J. Thermophys., 1981, 2(2), 155-162. [all data]

Grolier, Hamedi, et al., 1979
Grolier, J-P.E.; Hamedi, M.H.; Wilhelm, E.; Kehiaian, H.V., Excess heat capacities of binary mixtures of carbon tetrachloride with n-alkanes at 298.15 K, Thermochim. Acta, 1979, 31, 79-84. [all data]

Vesely, Zabransky, et al., 1979
Vesely, F.; Zabransky, M.; Svoboda, V.; Pick, J., The use of mixing calorimeter for measuring heat capacities of liquids, Coll. Czech. Chem. Commun., 1979, 44, 3529-3532. [all data]

Wilhelm, Faradjzadeh, et al., 1979
Wilhelm, E.; Faradjzadeh, A.; Grolier, J.-P.E., Molar excess heat capacities and excess volumes of 1,2-dichloroethane + cyclooctane, + mesitylene, and + tetrachloromethane, J. Chem. Thermodynam., 1979, 11, 979-984. [all data]

Grolier, Wilhelm, et al., 1978
Grolier, J.-P.E.; Wilhelm, E.; Hamedi, M.H., Molar heat capacities and isothermal compressibility of binary liquid mixtures: carbon tetrachloride + benzene, carbon tetrachloride + cyclohexane and benzene + cyclohexane, Ber. Bunsenges. Phys. Chem., 1978, 82, 1282-1290. [all data]

Vesely, Svoboda, et al., 1977
Vesely, F.; Svoboda, V.; Pick, J., Heat capacities of some organic liquids determined with the mixing calorimeter, 1st Czech. Conf. Calorimetry (Lect. Short Commun.), 1977, C9-1-C9-4. [all data]

Fortier, Benson, et al., 1976
Fortier, J.-L.; Benson, G.C.; Picker, P., Heat capacities of some organic liquids determined with the Picker flow calorimeter, J. Chem. Thermodynam., 1976, 8, 289-299. [all data]

Fortier and Benson, 1976
Fortier, J.-L.; Benson, G.C., Excess heat capacities of binary liquid mixtures determined with a Picker flow calorimeter, J. Chem. Thermodynam., 1976, 8, 411-423. [all data]

Grolier, Benson, et al., 1975
Grolier, J-P.E.; Benson, G.C.; Picker, P., Simultaneous measurements of heat capacities and densities of organic liquid mixtures-systems containing ketones, J. Chem. Eng. Data, 1975, 20, 243-246. [all data]

Wilhelm, Zettler, et al., 1974
Wilhelm, E.; Zettler, M.; Sackmann, H., Molar heat capacities for the binary systems cyclohexane, carbon tetrachloride, silicon tetrachloride and tin tetrachloride Ber. Bunsenges. Phys. Chem., 1974, 78, 795-804. [all data]

Subrahmanyam and Rajagopal, 1973
Subrahmanyam, S.V.; Rajagopal, E., Excess thermodynamic functions of the systems isooctane + carbon tetrachloride and isooctane + cyclohexane, Z. Phys. Chem. [NF], 1973, 85, 256-268. [all data]

Arentsen and Van Miltenburg, 1972
Arentsen, J.G.; Van Miltenburg, J.C., Carbon tetrachloride. Determination of the enthalpy of transition from metastable face-centered cubic carbon tetrachloride to the stable rhombohedral modification, J. Chem. Thermodynam., 1972, 4, 789-791. [all data]

Deshpande and Bhatagadde, 1971
Deshpande, D.D.; Bhatagadde, L.G., Heat capacities at constant volume, free volumes, and rotational freedom in some liquids, Aust. J. Chem., 1971, 24, 1817-1822. [all data]

Rastorguev and Ganiev, 1967
Rastorguev, Yu.L.; Ganiev, Yu.A., Study of the heat capacity of selected solvents, Izv. Vyssh. Uchebn. Zaved. Neft Gaz. 10, 1967, No.1, 79-82. [all data]

Harrison and Moelwyn-Hughes, 1957
Harrison, D.; Moelwyn-Hughes, E.A., The heat capacities of certain liquids, Proc. Roy. Soc. (London), 1957, A239, 230-246. [all data]

Staveley, Tupman, et al., 1955
Staveley, L.A.K.; Tupman, W.I.; Hart, K.R., Some thermodynamice properties of the systems benzene + ethylene dichloride, benzene + carbon tetrachloride, acetone + chloroform, and acetone + carbon disulphide, Trans. Faraday Soc., 1955, 51, 323-342. [all data]

Kurbatov, 1948
Kurbatov, V.Ya., Heat capacity of liquids. 2. Heat capacity and the temperature dependence of heat capacity from halogen derivatives of acylic hydrocarbons, Zh. Obshch. Kim., 1948, 18, 372-389. [all data]

Zhdanov, 1941
Zhdanov, A.K., Specific heats of some liquids and azeotropic mixtures, Zhur. Obshch. Khim., 1941, 11, 471-482. [all data]

Phillip, 1939
Phillip, N.M., Adiabatic and isothermal compressibilities of liquids, Proc. Indian Acad. Sci., 1939, A9, 109-120. [all data]

Vold, 1937
Vold, R.D., A calorimetric test of the solubility equation for regular solutions, J. Am. Chem. Soc., 1937, 59, 1515-1521. [all data]

Kolosovskii and Udovenko, 1934
Kolosovskii, N.A.; Udovenko, W.W., Specific heat of liquids. II., Zhur. Obshchei Khim., 1934, 4, 1027-1033. [all data]

de Kolossowsky and Udowenko, 1933
de Kolossowsky, N.A.; Udowenko, W.W., Mesure des chaleurs specifique moleculaires de quelques liquides, Compt. rend., 1933, 197, 519-520. [all data]

Richards and Wallace, 1932
Richards, W.T.; Wallace, J.H., Jr., The specific heats of five organic liquids from their adiabatic temperature-pressure coefficients, J. Am. Chem. Soc., 1932, 54, 2705-2713. [all data]

Williams and Daniels, 1925
Williams, J.W.; Daniels, F., The specific heats of binary mixtures, J. Am. Chem. Soc., 1925, 47, 1490-1503. [all data]

Willams and Daniels, 1924
Willams, J.W.; Daniels, F., The specific heats of certain organic liquids at elevated temperatures, J. Am. Chem. Soc., 1924, 46, 903-917. [all data]

Atake and Chihara, 1971
Atake, T.; Chihara, H., Heat capacity of solid carbon tetrachloride from 3 to 50 K, J. Chem. Thermodynam., 1971, 3, 51-60. [all data]

Altunin, Geller, et al., 1987
Altunin, V.V.; Geller, V.Z.; Kremenvskaya, E.A.; Perel'shtein, I.I.; Petrov, E.K., Thermophysical Properties of Freons, Methane Ser. Part 2, Vol. 9, NSRDS-USSR, Selover, T. B., Ed., Hemisphere, New York, 1987. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Campbell and Chatterjee, 1969
Campbell, A.N.; Chatterjee, R.M., The critical constants and orthobaric densities of acetone, chloroform benzene, and carbon tetrachloride, Can. J. Chem., 1969, 47, 3893-8. [all data]

Livingston, Morgan, et al., 1908
Livingston, J.; Morgan, R.; Higgins, E., The Weight of Falling Drops and Tate's Laws. Determination of Molecular Weights and Critical Temp. of Liquids Using Drop Weights: II., Z. Phys. Chem., Stoechiom. Verwandtschaftsl., 1908, 64, 170. [all data]

Kordes, 1954
Kordes, E., The heterogeneous vapor-liquid equilibrium. II. Calculation of the density of liquids and vapors as well as the necessary degrees of filling of the autoclave in the work with liquids at high temp, Z. Elektrochem., 1954, 58, 76-80. [all data]

Lewis, 1953
Lewis, D.T., The Determination of the Critical Constants of Liquid Explosives, J. Appl. Chem., 1953, 3, 154. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Boublík and Aim, 1972
Boublík, T.; Aim, K., Heats of vaporization of simple non-spherical molecule compounds, Collect. Czech. Chem. Commun., 1972, 37, 11, 3513-3521, https://doi.org/10.1135/cccc19723513 . [all data]

Hildenbrand and McDonald, 1959
Hildenbrand, D.L.; McDonald, R.A., The Heat of Vaporization and Vapor Pressure of Carbon Tetrachloride; The Entropy from Calorimetric Data., J. Phys. Chem., 1959, 63, 9, 1521-1522, https://doi.org/10.1021/j150579a053 . [all data]

Barker, Brown, et al., 1953
Barker, J.A.; Brown, I.; Smith, F., Thermodynamic properties of alcohol solutions. The system ethanol + carbon tetrachloride, Discuss. Faraday Soc., 1953, 15, 142, https://doi.org/10.1039/df9531500142 . [all data]

Hildenbrand and McDonald, 1959, 2
Hildenbrand, D.L.; McDonald, R.A., The Heat of Vaporization and Vapor Pressure of Carbon Tetrachloride; the Entropy from Calorimetric Data, J. Phys. Chem., 1959, 63, 9, 1521-1523, https://doi.org/10.1021/j150579a053 . [all data]

Goto, Fujinawa, et al., 1996
Goto, Hirotoshi; Fujinawa, Tasuku; Asahi, Hidemasa; Inabe, Tamotsu; Ogata, Hironori; Miyajima, Seiichi; Maruyama, Yusei, Crystal Structures and Physical Properties of 1,6-Diaminopyrene-p-chloranil (DAP-CHL) Charge-Transfer Complex. Two Polymorphs and Their Unusual Electrical Properties., Bull. Chem. Soc. Jpn., 1996, 69, 1, 85-93, https://doi.org/10.1246/bcsj.69.85 . [all data]

Bondi, 1963
Bondi, A., Heat of Siblimation of Molecular Crystals: A Catalog of Molecular Structure Increments., J. Chem. Eng. Data, 1963, 8, 3, 371-381, https://doi.org/10.1021/je60018a027 . [all data]

Jones, 1960
Jones, A.H., Sublimation Pressure Data for Organic Compounds., J. Chem. Eng. Data, 1960, 5, 2, 196-200, https://doi.org/10.1021/je60006a019 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Morrison and Richards, 1976
Morrison, J.A.; Richards, E.J., Thermodynamic study of phase transitions in carbon tetrachloride, J. Chem. Thermodynam., 1976, 8, 1033-1038. [all data]

Chang and Westrum, 1970
Chang, E.T.; Westrum, E.F., Heat capacities and thermodynamic properties of globular molecules. XV. The binary system tetramethylmethane-tetrachloromethane, J. Phys. Chem., 1970, 74, 2528-2538. [all data]

Hiraoka, Mizuno, et al., 2001
Hiraoka, K.; Mizuno, T.; Iino, T.; Eguchi, D.; Yamabe, S., Characteristic changes of bond energies for gas-phase cluster ions of halide ions with methane and chloromethanes, J. Phys. Chem. A, 2001, 105, 20, 4887-4893, https://doi.org/10.1021/jp010143n . [all data]

Dougherty, Dalton, et al., 1974
Dougherty, R.C.; Dalton, J.; Roberts, J.D., SN2 reactions in the gas phase: Structure of the transition state, Org. Mass Spectrom., 1974, 8, 77. [all data]

Nolan, López de la Vega, et al., 1986
Nolan, S.P.; López de la Vega, R.; Hoff, C.D., J. Organometal. Chem., 1986, 315, 187. [all data]

Nolan, López de la Vega, et al., 1986, 2
Nolan, S.P.; López de la Vega, R.; Hoff, C.D., Organometallics, 1986, 5, 2529. [all data]

Lord and Pritchard, 1969
Lord, A.; Pritchard, H.O., Thermodynamics of the reaction between carbon dioxide and carbon tetrachloride, J. Chem. Thermodyn., 1969, 1, 495-498. [all data]

Kirkbride, 1956
Kirkbride, F.W., The heats of chlorination of some hydrocarbons and their chloro-derivatives, J. Appl. Chem., 1956, 6, 11-21. [all data]

Mendenhall, Golden, et al., 1973
Mendenhall, G.D.; Golden, D.M.; Benson, S.W., Thermochemistry of the bromination of carbon tetrachloride and the heat of formation of carbon tetrachloride, J. Phys. Chem., 1973, 77, 2707-2709. [all data]

Calado, Dias, et al., 1979
Calado, J.C.G.; Dias, A.R.; Martinho Simões, J.A.; Ribeiro da Silva, M.A.V., J. Organometal. Chem., 1979, 174, 77. [all data]

Gossett, 1987
Gossett, J.M., Measurement of Henry's Law Constants for C1 and C2 Chlorinated Hydrocarbons, Environ. Sci. Technol., 1987, 21, 202-208. [all data]

Leighton and Calo, 1981
Leighton, D.T.; Calo, J.M., Distribution Coefficients of Chlorinated Hydrocarbons in Dilute Air-Water Systems for Groundwater Contamination Applications, J. Chem. Eng. Data, 1981, 26, 382-385. [all data]

Pearson and McConnell, 1975
Pearson, C.R.; McConnell, G., Chlorinated C1 and C2 Hydrocarbons in the Marine Environment, Proc. R. Soc. London, B, 1975, 189, 305-332. [all data]

Staneke, Groothuis, et al., 1995
Staneke, P.O.; Groothuis, G.; Ingemann, S.; Nibbering, N.M.M., Formation, stability and structure of radical anions of chloroform, tetrachloromethane and fluorotrichloromethane in the gas phase, Int. J. Mass Spectrom. Ion Proc., 1995, 142, 1-2, 83, https://doi.org/10.1016/0168-1176(94)04127-S . [all data]

Lacmann, Maneira, et al., 1983
Lacmann, K.; Maneira, M.J.P.; Moutinho, A.M.C.; Weigman, U., Total and Double Differential Cross Sections of Ion- Pair Formations in Collisions of K Atoms with SnCl4 and CCl4, J. Chem. Phys., 1983, 78, 1767. [all data]

Dispert and Lacmann, 1978
Dispert, H.; Lacmann, K., Negative ion formation in collisions between potassium and fluoro- and chloromethanes: Electron affinities and bond dissociation energies, Int. J. Mass Spectrom. Ion Phys., 1978, 28, 49. [all data]

Gaines, Kay, et al., 1966
Gaines, A.F.; Kay, J.; Page, F.M., Determination of Electron Affinities. Part 8. - CCl4, CHCl3, and CH2Cl2, Trans. Farad. Soc., 1966, 62, 874, https://doi.org/10.1039/tf9666200874 . [all data]

Kime, Driscoll, et al., 1987
Kime, Y.J.; Driscoll, D.C.; Dowben, P.A., The stability of the carbon tetrahalide ions, J. Chem. Soc. Faraday Trans. 2, 1987, 83, 403. [all data]

Von Niessen, Asbrink, et al., 1982
Von Niessen, W.; Asbrink, L.; Bieri, G., 30.4 nm He(II) Photoelectron spectra of organic molecules. Part VI. Halogeno-compounds (C,H,X: X = Cl, Br, I), J. Electron Spectrosc. Relat. Phenom., 1982, 26, 173. [all data]

Bassett and Lloyd, 1971
Bassett, P.J.; Lloyd, D.R., Photoelectron spectra of halides. Part I. Tetrafluorides and tetrachlorides of group IVB, J. Chem. Soc., 1971, (A), 641. [all data]

Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D., Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation, J. Chem. Phys., 1969, 50, 654. [all data]

Watanabe, 1957
Watanabe, K., Ionization potentials of some molecules, J. Chem. Phys., 1957, 26, 542. [all data]

Baker and Tate, 1938
Baker, R.F.; Tate, J.T., Ionization and dissociation by electron impact in CCl2F2 and in CCl4 vapor, Phys. Rev., 1938, 53, 683. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Dixon, Murrell, et al., 1971
Dixon, R.N.; Murrell, J.N.; Narayan, B., The photoelectron spectra of the halomethanes, Mol. Phys., 1971, 20, 611. [all data]

Burton, Chan, et al., 1994
Burton, G.R.; Chan, W.F.; Cooper, G.; Brion, C.E., Valence- and inner-shell (Cl 2p, 2s; C1s) photoabsorption and photoionization of carbon tetrachloride. Absolute oscillator strengths (5-400 eV) and dipole-induced breakdown pathways, Chem. Phys., 1994, 181, 147. [all data]

Reed and Snedden, 1958
Reed, R.I.; Snedden, W., Studies in electron impact methods. Part 2. The latent heat of sublimation of carbon, J. Chem. Soc. Faraday Trans., 1958, 54, 301. [all data]

Blanchard and LeGoff, 1957
Blanchard, L.P.; LeGoff, P., Mass spectrometric study of the species CS, SO, and CCl2 produced in primary heterogeneous reactions, Can. J. Chem., 1957, 35, 89. [all data]

Shapiro and Lossing, 1968
Shapiro, J.S.; Lossing, F.P., Free radicals by mass spectrometry. XXXVII. The ionization potential and heat of formation of dichlorocarbene, J. Phys. Chem., 1968, 72, 1552. [all data]

Werner, Tsai, et al., 1974
Werner, A.S.; Tsai, B.P.; Baer, T., Photoionization study of the ionization potentials fragmentation paths of the chlorinated methanes carbon tetrabromide, J. Chem. Phys., 1974, 60, 3650. [all data]

Lossing, 1972
Lossing, F.P., Free radicals by mass spectrometry. XLIV. Ionization potentials bond dissociation energies for chloro-and fluoromethyl radicals, Bull. Soc. Chim. Belg., 1972, 81, 125. [all data]

Fox and Curran, 1961
Fox, R.E.; Curran, R.K., Ionization processes in CCl4 and SF6 by electron beams, J. Chem. Phys., 1961, 34, 1595. [all data]

Farmer, Henderson, et al., 1956
Farmer, J.B.; Henderson, I.H.S.; Lossing, F.P.; Marsden, D.G.H., Free radicals by mass spectrometry. IX. Ionization potentials of CF3 and CCl3 radicals and bond dissociation energies in some derivatives, J. Chem. Phys., 1956, 24, 348. [all data]

Shimanouchi, 1972
Shimanouchi, T., Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160. [all data]

Dallos, Sisak, et al., 2000
Dallos, A.; Sisak, A.; Kulcsár, Z.; Kováts, E., Pair-wise interactions by gas chromatography VII. Interaction free enthalpies of solutes with secondary alcohol groups, J. Chromatogr. A, 2000, 904, 2, 211-242, https://doi.org/10.1016/S0021-9673(00)00908-0 . [all data]

Dewulf, Van Langenhove, et al., 1997
Dewulf, J.; Van Langenhove, H.; Everaert, M., Solid-phase microextraction of volatile organic compounds estimation of the sorption equilibrium from the Kováts index, effect of salinity and humic acids and the study of the kinetics by the development of an agitated/static layer model, J. Chromatogr. A, 1997, 761, 1-2, 205-217, https://doi.org/10.1016/S0021-9673(96)00810-2 . [all data]

Reddy, Dutoit, et al., 1992
Reddy, K.S.; Dutoit, J.-Cl.; Kovats, E. sz., Pair-wise interactions by gas chromatography. I. Interaction free enthalpies of solutes with non-associated primary alcohol groups, J. Chromatogr., 1992, 609, 1-2, 229-259, https://doi.org/10.1016/0021-9673(92)80167-S . [all data]

Dutoit, 1991
Dutoit, J., Gas chromatographic retention behaviour of some solutes on structurally similar polar and non-polar stationary phases, J. Chromatogr., 1991, 555, 1-2, 191-204, https://doi.org/10.1016/S0021-9673(01)87179-X . [all data]

Castello and Gerbino, 1988
Castello, G.; Gerbino, T.C., Effect of Temperature on the Gas Chromatographic Separation of Halogenated Compounds on Polar and Non-Polar Stationary Phases, J. Chromatogr., 1988, 437, 33-45, https://doi.org/10.1016/S0021-9673(00)90369-8 . [all data]

Pacáková, Vojtechová, et al., 1988
Pacáková, V.; Vojtechová, H.; Coufal, P., Reaction gas chromatography: study of the photodecomposition of halogenated hydrocarbons, Chromatographia, 1988, 25, 7, 621-626, https://doi.org/10.1007/BF02327659 . [all data]

Tiess, 1984
Tiess, D., Gaschromatographische Retentionsindices von 125 leicht- bis mittelflüchtigen organischen Substanzen toxikologisch-analytischer Relevanz auf SE-30, Wiss. Z. Wilhelm-Pieck-Univ. Rostock Math. Naturwiss. Reihe, 1984, 33, 6-9. [all data]

Winskowski, 1983
Winskowski, J., Gaschromatographische Identifizierung von Stoffen anhand von Indexziffem und unterschiedlichen Detektoren, Chromatographia, 1983, 17, 3, 160-165, https://doi.org/10.1007/BF02271041 . [all data]

Goebel, 1982
Goebel, K.-J., Gaschromatographische Identifizierung Niedrig Siedender Substanzen Mittels Retentionsindices und Rechnerhilfe, J. Chromatogr., 1982, 235, 1, 119-127, https://doi.org/10.1016/S0021-9673(00)95793-5 . [all data]

Riedo, Fritz, et al., 1976
Riedo, F.; Fritz, D.; Tarján, G.; Kováts, E.Sz., A tailor-made C87 hydrocarbon as a possible non-polar standard stationary phase for gas chromatography, J. Chromatogr., 1976, 126, 63-83, https://doi.org/10.1016/S0021-9673(01)84063-2 . [all data]

Vernon, 1971
Vernon, F., An investigation into hydrogen bonding in gas-liquid chromatography, J. Chromatogr., 1971, 63, 249-257, https://doi.org/10.1016/S0021-9673(01)85637-5 . [all data]

Brown, Chapman, et al., 1968
Brown, I.; Chapman, I.L.; Nicholson, G.J., Gas chromatography of polar solutes in electron acceptor stationary phases, Aust. J. Chem., 1968, 21, 5, 1125-1141, https://doi.org/10.1071/CH9681125 . [all data]

Rohrschneider, 1966
Rohrschneider, L., Eine methode zur charakterisierung von gaschromatographischen trennflüssigkeiten, J. Chromatogr., 1966, 22, 6-22, https://doi.org/10.1016/S0021-9673(01)97064-5 . [all data]

von Kováts, 1958
von Kováts, E., 206. Gas-chromatographische Charakterisierung organischer Verbindungen. Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone, Helv. Chim. Acta, 1958, 41, 7, 1915-1932, https://doi.org/10.1002/hlca.19580410703 . [all data]

Shimadzu, 2003
Shimadzu, Gas chromatography analysis of organic solvents using capillary columns (No. 2), 2003, retrieved from http://www.shimadzu.com/apps/form.cfm. [all data]

Helmig, Pollock, et al., 1996
Helmig, D.; Pollock, W.; Greenberg, J.; Zimmerman, P., Gas chromatography mass spectrometry analysis of volatile organic trace gases at Mauna Loa Observatory, Hawaii, J. Geophys. Res., 1996, 101, D9, 14697-14710, https://doi.org/10.1029/96JD00212 . [all data]

Weber, 1986
Weber, L., Utilization of the Sadtler standard RI system in micropollution analyses, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1986, 9, 8, 446-451, https://doi.org/10.1002/jhrc.1240090806 . [all data]

Schreyen, Dirinck, et al., 1976
Schreyen, L.; Dirinck, P.; van Wassenhove, F.; Schamp, N., Analysis of leek volatiles by headspace condensation, J. Agric. Food Chem., 1976, 24, 6, 1147-1152, https://doi.org/10.1021/jf60208a023 . [all data]

Bianchi, Careri, et al., 2007
Bianchi, F.; Careri, M.; Mangia, A.; Musci, M., Retention indices in the analysis of food aroma volatile compounds in temperature-programmed gas chromatography: Database creation and evaluation of precision and robustness, J. Sep. Sci., 2007, 39, 4, 563-572, https://doi.org/10.1002/jssc.200600393 . [all data]

Shimadzu, 2003, 2
Shimadzu, Gas chromatography analysis of organic solvents using capillary columns (No. 3), 2003, retrieved from http://www.shimadzu.com/apps/form.cfm. [all data]

Dufka, Malinsky, et al., 1971
Dufka, O.; Malinsky, J.; Vladyka, J., Sorpcni materialy pro plynovou chromatographii - III, Chemicky promysl., 1971, 21/46, 9, 459-463. [all data]

Anderson, 1968
Anderson, D.G., USe of Kovats retention indices and response factors for the qualitative and quantitative analysis of coating solvents, J. Paint Technol., 1968, 40, 527, 549-557. [all data]

MHA, 9999
MHA, Directorate of ForensicScience., Forensic Toxicology, 9999. [all data]

Isidorov and Jdanova, 2002
Isidorov, V.; Jdanova, M., Volatile organic compounds from leaves litter, Chemosphere, 2002, 48, 9, 975-979, https://doi.org/10.1016/S0045-6535(02)00074-7 . [all data]

Health Safety Executive, 2000
Health Safety Executive, MDHS 96 Volatile organic compounds in air - Laboratory method using pumed solid sorbent tubes, solvent desorption and gas chromatography in Methods for the Determination of Hazardous Substances (MDHS) guidance, Crown, Colegate, Norwich, 2000, 1-24, retrieved from http://www.hse.gov.uk/pubns/mdhs/pdfs/mdhs96.pdf. [all data]

Huang, Liang, et al., 1996
Huang, C.; Liang, H.; Han, S., The analysis of organic compounds in waste water by gas extraction/thermal desorption/gas chromatography-mass spectrometry, Chin. J. Chromatogr., 1996, 14, 6, 421-424. [all data]

Ciccioli, Cecinato, et al., 1992
Ciccioli, P.; Cecinato, A.; Brancaleoni, E.; Frattoni, M.; Liberti, A., Use of carbon adsorption traps combined with high resolution gas chromatography - mass spectrometry for the analysis of polar and non-polar C4-C14 hydrocarbons involved in photochemical smog formation, J. Hi. Res. Chromatogr., 1992, 15, 2, 75-84, https://doi.org/10.1002/jhrc.1240150205 . [all data]

Misharina, Golovnya, et al., 1991
Misharina, T.A.; Golovnya, R.V.; Charnomskii, V.V., Volatile components of boiled shrimp funchalia woodwardi and crab geryon maritae, Zh. Anal. Khim., 1991, 46, 1421-1429. [all data]

Habu, Flath, et al., 1985
Habu, T.; Flath, R.A.; Mon, T.R.; Morton, J.F., Volatile components of Rooibos tea (Aspalathus linearis), J. Agric. Food Chem., 1985, 33, 2, 249-254, https://doi.org/10.1021/jf00062a024 . [all data]

Zenkevich, 2001
Zenkevich, I.G., Comparative Characterization of Conditions for Unambuguous Chromatographic Identification of Organic Compounds, Zh. Anal. Khim., 2001, 56, 9, 915-924. [all data]

Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D., Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]

Sorimachi, Tanabe, et al., 1995
Sorimachi, J.; Tanabe, A.; Mitobe, H.; Kuniaki, K.; Masaaki, S., Programmed temperature retention indices for volatile organic compounds on headspace GC/MS analysis, Niigata-ken Eisei Kogai Kenkyusho Nenpo, 1995, 11, 75-79. [all data]

Zenkevich, Korolenko, et al., 1995
Zenkevich, I.G.; Korolenko, L.I.; Khralenkova, N.B., Desorption with solvent vapor as a method of sample preparation in the sorption preconcentration of organic-compounds from the air of a working area and from industrial-waste gases, J. Appl. Chem. USSR (Engl. Transl.), 1995, 50, 10, 937-944. [all data]

Ciccioli, Cecinato, et al., 1994
Ciccioli, P.; Cecinato, A.; Brancaleoni, E.; Brachetti, A.; Frattoni, M.; Sparapani, R., Composition and Distribution of Polar and Non-Polar VOCs in Urban, Rural, Forest and Remote Areas, Eur Commission EUR, 1994, 549-568. [all data]

Ciccioli, Brancaleoni, et al., 1993
Ciccioli, P.; Brancaleoni, E.; Cecinato, A.; Sparapani, R.; Frattoni, M., Identification and determination of biogenic and anthropogenic volatile organic compounds in forest areas of Northern and Southern Europe and a remote site of the Himalaya region by high-resolution gas chromatography-mass spectrometry, J. Chromatogr., 1993, 643, 1-2, 55-69, https://doi.org/10.1016/0021-9673(93)80541-F . [all data]

Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J., Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning, Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111 . [all data]

Weller and Wolf, 1989
Weller, J.-P.; Wolf, M., Massenspektroskopie und Headspace-GC, Beitr. Gerichtl. Med., 1989, 47, 525-532. [all data]

Waggott and Davies, 1984
Waggott, A.; Davies, I.W., Identification of organic pollutants using linear temperature programmed retention indices (LTPRIs) - Part II, 1984, retrieved from http://dwi.defra.gov.uk/research/completed-research/reports/dwi0383.pdf. [all data]

Ramsey and Flanagan, 1982
Ramsey, J.D.; Flanagan, R.J., Detection and Identification of Volatile Organic Compounds in Blood by Headspace Gas Chromatography as an Aid to the Diagnosis of Solvent Abuse, J. Chromatogr., 1982, 240, 2, 423-444, https://doi.org/10.1016/S0021-9673(00)99622-5 . [all data]

Heydanek and McGorrin, 1981
Heydanek, M.G.; McGorrin, R.J., Gas chromatography-mass spectroscopy investigations on the flavor chemistry of oat groats, J. Agric. Food Chem., 1981, 29, 5, 950-954, https://doi.org/10.1021/jf00107a016 . [all data]

Shimadzu, 2012
Shimadzu, Pharmaceutical Related, Analysis of pharmaceutical residual solvent (observation of separation) (1) - GC, 2012, retrieved from www.shimadzu.ru/applications/Applicationspdf/GC/Pharma/Pharmaceutical residual solvents GC.pdf. [all data]

Shimadzu Corporation, 2003
Shimadzu Corporation, Analysis of pharmaceutical residual solvent (observation of separation), 2003, retrieved from http://www.shimadzu.com.br/analitica/aplicacoes/book/pharm69.pdf. [all data]

Soria, Martinez-Castro, et al., 2008
Soria, A.C.; Martinez-Castro, I.; Sanz, J., Some aspects of dynamic headspace analysis of volatile components in honey, Foog Res. International, 2008, 41, 8, 838-848, https://doi.org/10.1016/j.foodres.2008.07.010 . [all data]

MacLeod and Pieris, 1981
MacLeod, A.J.; Pieris, N.M., Volatile flavor components of beli fruit (Aegle marmelos) and a processed product, J. Agric. Food Chem., 1981, 29, 6, 1262-1264, https://doi.org/10.1021/jf00108a040 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, References