Thiophene, 2-methyl-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Δfgas84.35 ± 0.92kJ/molCcrPennington, Finke, et al., 1956 

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid44.60 ± 0.92kJ/molCcrPennington, Finke, et al., 1956Reanalyzed by Cox and Pilcher, 1970, Original value = 45.44 ± 0.88 kJ/mol; ALS
Quantity Value Units Method Reference Comment
Δcliquid-3472.0 ± 0.75kJ/molCcrPennington, Finke, et al., 1956Reanalyzed by Cox and Pilcher, 1970, Original value = -3471.3 ± 0.75 kJ/mol; ALS
Quantity Value Units Method Reference Comment
liquid218.49J/mol*KN/APennington, Finke, et al., 1956DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
149.83298.15Pennington, Finke, et al., 1956T = 12 to 340 K.; DH

Constant pressure heat capacity of solid

Cp,solid (J/mol*K) Temperature (K) Reference Comment
97.91199.70Carlson and Westrum, 1968glass phase; T = 110 to 200 K. Value is unsmoothed experimental datum.; DH

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

Quantity Value Units Method Reference Comment
Proton affinity (review)859.0kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity826.5kJ/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
8.61CTSAloisi and Pignataro, 1973LLK
8.63 ± 0.05EILinda, Marino, et al., 1971LLK
8.14PEBaker, Betteridge, et al., 1970RDSH
8.59PEColonna, Distefano, et al., 1979Vertical value; LLK

De-protonation reactions

C5H5S- + Hydrogen cation = Thiophene, 2-methyl-

By formula: C5H5S- + H+ = C5H6S

Quantity Value Units Method Reference Comment
Δr1589. ± 13.kJ/molG+TSDePuy, Kass, et al., 1988gas phase; Acid: 2-methylthiophene. Between MeOH, EtOH.; B
Quantity Value Units Method Reference Comment
Δr1561. ± 13.kJ/molIMRBDePuy, Kass, et al., 1988gas phase; Acid: 2-methylthiophene. Between MeOH, EtOH.; B

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Pennington, Finke, et al., 1956
Pennington, R.E.; Finke, H.L.; Hubbard, W.N.; Messerly, J.F.; Frow, F.R.; Hossenlopp, I.A.; Waddington, G., The chemical thermodynamic properties of 2-methylthiophene, J. Am. Chem. Soc., 1956, 78, 2055-2060. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Carlson and Westrum, 1968
Carlson, H.G.; Westrum, E.F., Jr., Thermal study of the glass-type transformation of 2-methylthiophene, J. Chem. Eng. Data, 1968, 13, 273-274. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Aloisi and Pignataro, 1973
Aloisi, G.G.; Pignataro, S., Molecular complexes of substituted thiophens with σ and π acceptors, J. Chem. Soc. Faraday Trans. 1, 1973, 69, 534. [all data]

Linda, Marino, et al., 1971
Linda, P.; Marino, G.; Pignataro, S., A comparison of sensitivities to substituent effects of five- membered heteroaromatic rings in gas phase ionization, J. Chem. Soc. B, 1971, 1585. [all data]

Baker, Betteridge, et al., 1970
Baker, A.D.; Betteridge, D.; Kemp, N.R.; Kirby, R.E., Application of photoelectron spectrometry to pesticide analysis. Photoelectron spectra of fivemembered heterocycles and related molecules, Anal. Chem., 1970, 42, 1064. [all data]

Colonna, Distefano, et al., 1979
Colonna, F.P.; Distefano, G.; Guerra, M.; Jones, D.; Modelli, A., Furyl- and thienyl-mercury derivatives studied by means of ultraviolet photoelectron spectroscopy. Evidence for the participation in bonding of the vacant 6p π orbitals of mercury in bis-2-furyl-bis-2-thienylmercury, J. Chem. Soc. Dalton Trans., 1979, 2037. [all data]

DePuy, Kass, et al., 1988
DePuy, C.H.; Kass, S.R.; Bean, G.P., Formation and Reactions of Heteroaromatic Anions in the Gas Phase, J. Org. Chem., 1988, 53, 19, 4427, https://doi.org/10.1021/jo00254a001 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, References