1,3-Cyclopentadiene
- Formula: C5H6
- Molecular weight: 66.1011
- IUPAC Standard InChIKey: ZSWFCLXCOIISFI-UHFFFAOYSA-N
- CAS Registry Number: 542-92-7
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Cyclopentadiene; Pentole; Pyropentylene; R-Pentine
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Gas phase ion energetics data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 139. | kJ/mol | Chyd | Roth, Adamczak, et al., 1991 | ALS |
ΔfH°gas | 133.4 | kJ/mol | Eqk | Furuyama, Golden, et al., 1970 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°gas | -2960. ± 30. | kJ/mol | Ccb | Wassermann, 1935 | Corresponding ΔfHºgas = 130. kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°gas | 274.47 | J/mol*K | N/A | Furuyama S., 1970 | This a second law entropy value was obtained from study of gas-phase equilibrium. The value of S(298.2 K)=270.3(4.2) J/mol*K was obtained from other equilibrium study [ Grant C.J., 1969].; GT |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
33.29 | 50. | Dorofeeva O.V., 1986 | Recommended S(T) values differ from other statistically calculated values [ Turnbull A.G., 1967, Furuyama S., 1970] up to 2.6 J/mol*K. Discrepancies in Cp(T) values amount to 1.3-4.3 J/mol*K. There is an excellent agreement between selected values of S(T) and Cp(T) and those obtained by ab initio calculation [ Karni M., 1991].; GT |
35.04 | 100. | ||
40.32 | 150. | ||
49.53 | 200. | ||
68.30 | 273.15 | ||
75.4 ± 2.0 | 298.15 | ||
75.89 | 300. | ||
103.30 | 400. | ||
126.45 | 500. | ||
145.03 | 600. | ||
160.04 | 700. | ||
172.41 | 800. | ||
182.77 | 900. | ||
191.55 | 1000. | ||
199.04 | 1100. | ||
205.47 | 1200. | ||
211.00 | 1300. | ||
215.77 | 1400. | ||
219.92 | 1500. |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
MM - Michael M. Meot-Ner (Mautner)
LL - Sharon G. Lias and Joel F. Liebman
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
View reactions leading to C5H6+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 8.57 ± 0.01 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 821.6 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 798.4 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Proton affinity at 298K
Proton affinity (kJ/mol) | Reference | Comment |
---|---|---|
828.0 | Aue, Guidoni, et al., 2000 | Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM |
Gas basicity at 298K
Gas basicity (review) (kJ/mol) | Reference | Comment |
---|---|---|
798.3 | Aue, Guidoni, et al., 2000 | Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
8.44 | PE | Kiselev, Sakhabutdinov, et al., 1992 | LL |
8.58 ± 0.02 | PE | Bieri, Burger, et al., 1977 | LLK |
8.56 ± 0.01 | EI | Holmes and McGillivray, 1971 | LLK |
8.57 ± 0.01 | PI | Derrick, Asbrink, et al., 1971 | LLK |
8.57 ± 0.01 | PI | Demeo and El-Sayed, 1970 | RDSH |
9.0 | EI | Hedaya, Kent, et al., 1968 | RDSH |
8.55 | PI | Dewar and Worley, 1968 | RDSH |
8.53 | PE | Kiselev, Sakhabutdinov, et al., 1992 | Vertical value; LL |
8.61 | PE | Bock and Kaim, 1980 | Vertical value; LLK |
8.6 | PE | Cradock, Ebsworth, et al., 1975 | Vertical value; LLK |
8.56 | PE | Cradock, Findlay, et al., 1974 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
C5H5+ | 12.62 | H | EI | Occolowitz and White, 1968 | RDSH |
C5H5+ | 12.9 | H | EI | Harrison, Haynes, et al., 1965 | RDSH |
C5H5+ | 11.9 ± 0.5 | H | EI | Dorman, 1965 | RDSH |
C5H5+ | 12.6 | H | EI | Harrison, Honnen, et al., 1960 | RDSH |
De-protonation reactions
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1481. ± 9.2 | kJ/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrH° | 1485. ± 12. | kJ/mol | G+TS | Cumming and Kebarle, 1978 | gas phase; B |
ΔrH° | 1495. ± 8.4 | kJ/mol | D-EA | Engelking and Lineberger, 1977 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1455. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrG° | 1459. ± 8.4 | kJ/mol | IMRE | Cumming and Kebarle, 1978 | gas phase; B |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Coblentz Society, Inc.
Condensed Phase Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Notice: Except where noted, spectra from this collection were measured on dispersive instruments, often in carefully selected solvents, and hence may differ in detail from measurements on FTIR instruments or in other chemical environments. More information on the manner in which spectra in this collection were collected can be found here.
Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.
Additional Data
View scan of original (hardcopy) spectrum.
View image of digitized spectrum (can be printed in landscape orientation).
View spectrum image in SVG format.
Download spectrum in JCAMP-DX format.
Owner | COBLENTZ SOCIETY Collection (C) 2018 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | WYANDOTTE CHEMICALS CORP., WYANDOTTE, MICHIGAN, USA |
Source reference | COBLENTZ NO. 2691 |
Date | Not specified, most likely prior to 1970 |
Name(s) | 1,3-cyclopentadiene |
State | LIQUID |
Instrument | Not specified, most likely a prism, grating, or hybrid spectrometer. |
Path length | 0.003 CM |
Resolution | 4 |
Sampling procedure | TRANSMISSION |
Data processing | DIGITIZED BY NIST FROM HARD COPY |
Boiling point | 41 C |
References
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, IR Spectrum, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Roth, Adamczak, et al., 1991
Roth, W.R.; Adamczak, O.; Breuckmann, R.; Lennartz, H.-W.; Boese, R.,
Die Berechnung von Resonanzenergien; das MM2ERW-Kraftfeld,
Chem. Ber., 1991, 124, 2499-2521. [all data]
Furuyama, Golden, et al., 1970
Furuyama, S.; Golden, D.M.; Benson, S.W.,
Thermochemistry of cyclopentene and cyclopentadiene from studies of gas-phase equilibria,
J. Chem. Thermodyn., 1970, 2, 161-169. [all data]
Wassermann, 1935
Wassermann, A.,
The mechanism of additions to double bonds. Part I. Thermochemistry and kinetics of a diene synthesis,
J. Chem. Soc., 1935, 828-838. [all data]
Furuyama S., 1970
Furuyama S.,
Thermochemistry of cyclopentene and cyclopentadiene from studies of gas-phase equilibria,
J. Chem. Thermodyn., 1970, 2, 161-169. [all data]
Grant C.J., 1969
Grant C.J.,
Reversibility in the gas-phase decomposition of cyclopentene. The entropy of cyclopentadiene,
J. Chem. Soc. Chem. Comm., 1969, 667-668. [all data]
Dorofeeva O.V., 1986
Dorofeeva O.V.,
Thermodynamic properties of twenty-one monocyclic hydrocarbons,
J. Phys. Chem. Ref. Data, 1986, 15, 437-464. [all data]
Turnbull A.G., 1967
Turnbull A.G.,
Thermochemistry of biscyclopentadienyl metal compounds,
Austral. J. Chem., 1967, 20, 2059-2067. [all data]
Karni M., 1991
Karni M.,
Ab initio calculations and ideal gas thermodynamic functions of cyclopentadiene and cyclopentadiene derivatives,
J. Phys. Chem. Ref. Data, 1991, 20, 665-683. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Aue, Guidoni, et al., 2000
Aue, D.H.; Guidoni, M.; Betowski, L.D.,
Ab initio calculated gas-phase basicities of polynuclear aromatic hydrocarbons,
Int. J. Mass Spectrom., 2000, 201, 283. [all data]
Kiselev, Sakhabutdinov, et al., 1992
Kiselev, V.D.; Sakhabutdinov, A.G.; Shakirov, I.M.; Zverev, V.V.; Konovalov, A.I.,
Bis reactants in Diels-Alder reactions. VII. Preparation and properties of polyadducts of reactions of bis(polymethylcyclopentadienes) and bis(maleimides),
Zh. Org. Khim., 1992, 28, 2244. [all data]
Bieri, Burger, et al., 1977
Bieri, G.; Burger, F.; Heilbronner, E.; Maier, J.P.,
Valence ionization enrgies of hydrocarbons,
Helv. Chim. Acta, 1977, 60, 2213. [all data]
Holmes and McGillivray, 1971
Holmes, J.L.; McGillivray, D.,
The mass spectra of isomeric hydrocarbons-I: Norbornene and nortricyclene; The mechanisms and energetics of their fragmentations,
Org. Mass Spectrom., 1971, 5, 1349. [all data]
Derrick, Asbrink, et al., 1971
Derrick, P.J.; Asbrink, L.; Edqvist, O.; Jonsson, B.-O.; Lindholm, E.,
Rydberg series in small molecules. XIII. Photoelectron spectroscopy and electronic structure of cyclopentadiene,
Intern. J. Mass Spectrom. Ion Phys., 1971, 6, 203. [all data]
Demeo and El-Sayed, 1970
Demeo, D.A.; El-Sayed, M.A.,
Ionization potential and structure of olefins,
J. Chem. Phys., 1970, 52, 2622. [all data]
Hedaya, Kent, et al., 1968
Hedaya, E.; Kent, M.E.; McNeil, D.W.; Lossing, F.P.; McAllister, T.,
The thermal rearrangement of phenylnitrene to cyanocyclopentadiene,
Tetrahedron Lett., 1968, 30, 3415. [all data]
Dewar and Worley, 1968
Dewar, M.J.S.; Worley, S.D.,
Ionization potential of cis-1,3-butadiene,
J. Chem. Phys., 1968, 49, 2454. [all data]
Bock and Kaim, 1980
Bock, H.; Kaim, W.,
Radical ions. 37. Ionization and one-electron oxidation of electron-rich silylalkyl olefins,
J. Am. Chem. Soc., 1980, 102, 4429. [all data]
Cradock, Ebsworth, et al., 1975
Cradock, S.; Ebsworth, E.A.V.; Moretto, H.; Rankin, D.W.H.,
Photoelectron spectra and fluxional behaviour in some σ-cyclopentadienes,
J. Chem. Soc. Dalton Trans., 1975, 390. [all data]
Cradock, Findlay, et al., 1974
Cradock, S.; Findlay, R.H.; Palmer, M.H.,
Bonding in methyl- and silyl-cyclopentadiene compounds: a study by photoelectron spectroscopy ab initio molecular-orbital calculations,
J. Chem. Soc. Dalton Trans., 1974, 1650. [all data]
Occolowitz and White, 1968
Occolowitz, J.L.; White, G.L.,
Energetic considerations in the assignment of some fragment ion structures,
Australian J. Chem., 1968, 21, 997. [all data]
Harrison, Haynes, et al., 1965
Harrison, A.G.; Haynes, P.; McLean, S.; Meyer, F.,
The mass spectra of methyl-substituted cyclopentadienes,
J. Am. Chem. Soc., 1965, 87, 5099. [all data]
Dorman, 1965
Dorman, F.H.,
Second differential ionization-efficiency curves for fragment ions by electron impact,
J. Chem. Phys., 1965, 43, 3507. [all data]
Harrison, Honnen, et al., 1960
Harrison, A.G.; Honnen, L.R.; Dauben, H.J., Jr.; Lossing, F.P.,
Free radicals by mass spectrometry. XX. Ionization potentials of cyclopentadienyl and cycloheptatrienyl radicals,
J. Am. Chem. Soc., 1960, 82, 5593. [all data]
Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr.,
The gas phase acidity scale from methanol to phenol,
J. Am. Chem. Soc., 1979, 101, 6047. [all data]
Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P.,
Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A),
Can. J. Chem., 1978, 56, 1. [all data]
Engelking and Lineberger, 1977
Engelking, P.C.; Lineberger, W.C.,
Laser photoelectron spectrometry of C5H5-: A determination of the electron affinity and Jahn-Teller coupling in cyclopentadienyl,
J. Chem. Phys., 1977, 67, 1412. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, IR Spectrum, References
- Symbols used in this document:
AE Appearance energy Cp,gas Constant pressure heat capacity of gas IE (evaluated) Recommended ionization energy S°gas Entropy of gas at standard conditions ΔcH°gas Enthalpy of combustion of gas at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.