Triphenylmethane

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas66.0 ± 1.2kcal/molReviewRoux, Temprado, et al., 2008There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB
Quantity Value Units Method Reference Comment
gas129.cal/mol*KN/AMarcus Y., 1986This value calculated from published spectroscopic and structural data is in close agreement with estimations by a method of increments (549-568 J/mol*K [85MAR/LOE, Dorofeeva O.V., 1997]). Value obtained from calorimetric data (722.7 J/mol*K [85MAR/LOE]) authors do not regard as reliable.; GT

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Ion clustering data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
MS - José A. Martinho Simões

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C19H15- + Hydrogen cation = Triphenylmethane

By formula: C19H15- + H+ = C19H16

Quantity Value Units Method Reference Comment
Δr358.7 ± 2.2kcal/molG+TSTaft and Bordwell, 1988gas phase; B
Δr360.8 ± 2.5kcal/molG+TSBartmessgas phase; value altered from reference due to change in acidity scale; B
Quantity Value Units Method Reference Comment
Δr350.7 ± 2.0kcal/molIMRETaft and Bordwell, 1988gas phase; B
Δr352.8 ± 2.3kcal/molIMREBartmessgas phase; value altered from reference due to change in acidity scale; B

Hydrogen + Benzene, 1,1',1'',1''',1'''',1'''''-(1,2-ethanediylidyne)hexakis- = 2Triphenylmethane

By formula: H2 + C38H30 = 2C19H16

Quantity Value Units Method Reference Comment
Δr-40.5 ± 0.6kcal/molChydBent and Cuthbertson, 1936liquid phase; ALS
Δr-34.8kcal/molChydBent and Cuthbertson, 1936liquid phase; solvent: Ethylacetate; ALS

Chlorine anion + Triphenylmethane = (Chlorine anion • Triphenylmethane)

By formula: Cl- + C19H16 = (Cl- • C19H16)

Quantity Value Units Method Reference Comment
Δr4.10kcal/molTDEqFrench, Ikuta, et al., 1982gas phase; B

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
4.1300.PHPMSFrench, Ikuta, et al., 1982gas phase; M

C19H15BrMg (solution) + Hydrogen bromide (g) = Triphenylmethane (solution) + Br2Mg (solution)

By formula: C19H15BrMg (solution) + HBr (g) = C19H16 (solution) + Br2Mg (solution)

Quantity Value Units Method Reference Comment
Δr-55.21 ± 0.53kcal/molRSCHolm, 1981solvent: Diethyl ether; MS

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Ion clustering data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi

Ionization energy determinations

IE (eV) Method Reference Comment
8.34 ± 0.03PIRodionov, Potapov, et al., 1973LLK
8.34 ± 0.04PIPotapov, Kardash, et al., 1972LLK
8.40 ± 0.05PEDistefano, Pignataro, et al., 1976Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C13H11+10.9C6H5PIRodionov, Potapov, et al., 1973LLK

De-protonation reactions

C19H15- + Hydrogen cation = Triphenylmethane

By formula: C19H15- + H+ = C19H16

Quantity Value Units Method Reference Comment
Δr358.7 ± 2.2kcal/molG+TSTaft and Bordwell, 1988gas phase; B
Δr360.8 ± 2.5kcal/molG+TSBartmessgas phase; value altered from reference due to change in acidity scale; B
Quantity Value Units Method Reference Comment
Δr350.7 ± 2.0kcal/molIMRETaft and Bordwell, 1988gas phase; B
Δr352.8 ± 2.3kcal/molIMREBartmessgas phase; value altered from reference due to change in acidity scale; B

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Chlorine anion + Triphenylmethane = (Chlorine anion • Triphenylmethane)

By formula: Cl- + C19H16 = (Cl- • C19H16)

Quantity Value Units Method Reference Comment
Δr4.10kcal/molTDEqFrench, Ikuta, et al., 1982gas phase; B

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
4.1300.PHPMSFrench, Ikuta, et al., 1982gas phase; M

Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedSE-30200.1978.Shlyakhov, Anvaer, et al., 1975 

Van Den Dool and Kratz RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
PackedSE-301982.Peng, Ding, et al., 1988Supelcoport; Chromosorb; Column length: 3.05 m; Program: 40C(5min) => 10C/min => 200C or 250C (60min)

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-5 MS1997.Xie, Sun, et al., 200830. m/0.25 mm/0.25 μm, Helium; Program: 40 0C (2 min) 4 0C/min -> 220 0C 20 0C/min -> 280 0C

Lee's RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryBPX-5327.8Schwarzbauer, Franke, et al., 199950. m/0.25 mm/0.25 μm, He, 50. C @ 3. min, 3. K/min; Tend: 300. C

References

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Roux, Temprado, et al., 2008
Roux, M.V.; Temprado, M.; Chickos, J.S.; Nagano, Y., Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons, J. Phys. Chem. Ref. Data, 2008, 37, 4, 1855-1996. [all data]

Marcus Y., 1986
Marcus Y., Entropies of tetrahedral M-phenyl species, J. Chem. Soc., Faraday Trans. 1, 1986, 82, 993-1006. [all data]

Dorofeeva O.V., 1997
Dorofeeva O.V., Unpublished results. Thermocenter of Russian Academy of Science, Moscow, 1997. [all data]

Taft and Bordwell, 1988
Taft, R.W.; Bordwell, F.G., Structural and Solvent Effects Evaluated from Acidities Measured in Dimethyl Sulfoxide and in the Gas Phase, Acc. Chem. Res., 1988, 21, 12, 463, https://doi.org/10.1021/ar00156a005 . [all data]

Bartmess
Bartmess, J.E., The Gas Phase Thermochemistry of Ph3C-, Ph3C., and Ph3C+, 32nd Ann. Conf. on Mass Spectrom. Allied Topics, San Antonio TX 27 May-1 June 1984. Abstracts p. 472. [all data]

Bent and Cuthbertson, 1936
Bent, H.E.; Cuthbertson, G.R., Single bond energies. II. The C-C bond in hexaphenylethane, J. Am. Chem. Soc., 1936, 58, 170-173. [all data]

French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P., Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-, Can. J. Chem., 1982, 60, 1907. [all data]

Holm, 1981
Holm, T., J. Chem. Soc., Perkin Trans. II, 1981, 464.. [all data]

Rodionov, Potapov, et al., 1973
Rodionov, A.N.; Potapov, V.K.; Rogozhin, K.L., Photoionization of certain aromatic heteroorganic compounds, High Energy Chem., 1973, 7, 249, In original 278. [all data]

Potapov, Kardash, et al., 1972
Potapov, V.K.; Kardash, I.E.; Sorokin, V.V.; Sokolov, S.A.; Evlasheva, T.I., Photoionization of heteroaromatic compounds, Khim. Vys. Energ., 1972, 6, 392. [all data]

Distefano, Pignataro, et al., 1976
Distefano, G.; Pignataro, S.; Szepes, L.; Borossay, J., Photoelectron spectroscopy study of the triphenyl derivatives of the group IV elements, J. Organomet. Chem., 1976, 104, 173. [all data]

Shlyakhov, Anvaer, et al., 1975
Shlyakhov, A.F.; Anvaer, B.I.; Zolotareva, O.V.; Romina, N.N.; Novikova, N.V.; Koreshkova, R.I., On the possibility of group indentification of hydrocarbons by gas chromatography from temperature coefficients of retention indices, Zh. Anal. Khim., 1975, 30, 788-792. [all data]

Peng, Ding, et al., 1988
Peng, C.T.; Ding, S.F.; Hua, R.L.; Yang, Z.C., Prediction of Retention Indexes I. Structure-Retention Index Relationship on Apolar Columns, J. Chromatogr., 1988, 436, 137-172, https://doi.org/10.1016/S0021-9673(00)94575-8 . [all data]

Xie, Sun, et al., 2008
Xie, J.; Sun, B.; Zheng, F.; Wang, S., Volatile flavor constituents in roasted pork of mini-pig, Food Chem., 2008, 109, 3, 506-514, https://doi.org/10.1016/j.foodchem.2007.12.074 . [all data]

Schwarzbauer, Franke, et al., 1999
Schwarzbauer, J.; Franke, S.; Francke, W., Chlorinated di- and triphenylmethanes in sediments of the Mulde and Elbe rivers. Part IV of organic compounds as contaminants of the Elbe river and its tributaries, Fresenius J. Anal. Chem., 1999, 365, 6, 529-536, https://doi.org/10.1007/s002160051517 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Gas Chromatography, References