1,3-Pentadiene

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Phase change data

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director

Quantity Value Units Method Reference Comment
Tboil315. ± 1.KAVGN/AAverage of 12 values; Individual data points

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
201.3 to 315.34.066951119.249-40.198Stull, 1947Coefficents calculated by NIST from author's data.

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Phase change data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

2Hydrogen + 1,3-Pentadiene = Pentane

By formula: 2H2 + C5H8 = C5H12

Quantity Value Units Method Reference Comment
Δr-54.11 ± 0.15kcal/molChydDolliver, Gresham, et al., 1937gas phase; At 355 °K

Gas phase ion energetics data

Go To: Top, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi

View reactions leading to C5H8+ (ion structure unspecified)

Ionization energy determinations

IE (eV) Method Reference
8.6EIHarris, McKinnon, et al., 1979

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C5H7+10.52HEIHolmes, 1974 

Mass spectrum (electron ionization)

Go To: Top, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-IW-3455
NIST MS number 233812

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


UV/Visible spectrum

Go To: Top, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Victor Talrose, Alexander N. Yermakov, Alexy A. Usov, Antonina A. Goncharova, Axlexander N. Leskin, Natalia A. Messineva, Natalia V. Trusova, Margarita V. Efimkina

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

UVVis spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Source Perkampus and Braunschweig, 1966
Owner INEP CP RAS, NIST OSRD
Collection (C) 2007 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS
Source reference RAS UV No. 19927
Instrument Zeiss PMQ II
Boiling point 41.8

Gas Chromatography

Go To: Top, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillarySE-30130.521.Bredael, 1982Column length: 100. m; Column diameter: 0.5 mm
CapillarySE-3080.525.Bredael, 1982Column length: 100. m; Column diameter: 0.5 mm

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillarySPB-1526.Larráyoz, Addis, et al., 200130. m/0.32 mm/4. μm, He, 45. C @ 13. min, 5. K/min, 240. C @ 5. min

Van Den Dool and Kratz RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
PackedSE-30515.Peng, Ding, et al., 1988Supelcoport; Chromosorb; Column length: 3.05 m; Program: 40C(5min) => 10C/min => 200C or 250C (60min)

Normal alkane RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillarySE-5450.542.Xieyun, Maoqi, et al., 1996N2; Column length: 40. m; Column diameter: 0.25 mm

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryPONA515.Zhang, Ding, et al., 200950. m/0.20 mm/0.50 μm, Nitrogen, 35. C @ 15. min, 2. K/min, 200. C @ 10. min

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-5515.Rotsatschakul, Visesanguan, et al., 200960. m/0.25 mm/0.25 μm, Helium; Program: 30 0C (2 min) 2 0Cmin -> 60 0C 10 0C/min -> 100 0C 20 0C/min -> 140 0C 10 0C/min -> 200 0C (10 min)
CapillaryDB-1516.Ciccioli, Cecinato, et al., 199460. m/0.32 mm/0.25 μm; Program: not specified

Normal alkane RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-Innowax689.Cajka, Riddellova, et al., 201030. m/0.25 mm/0.25 μm, Helium; Program: 45 0C (1 min) 5 oC/min -> 170 0C 10 0C/min -> 260 0C (1 min)

References

Go To: Top, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Dolliver, Gresham, et al., 1937
Dolliver, M.a.; Gresham, T.L.; Kistiakowsky, G.B.; Vaughan, W.E., Heats of organic reactions. V. Heats of hydrogenation of various hydrocarbons, J. Am. Chem. Soc., 1937, 59, 831-841. [all data]

Harris, McKinnon, et al., 1979
Harris, D.; McKinnon, S.; Boyd, R.K., The origins of the base peak in the electron impact spectrum of limonene, Org. Mass Spectrom., 1979, 14, 265. [all data]

Holmes, 1974
Holmes, J.L., The mass spectra of isomeric hydrocarbons - II: The C5H8 isomers, spiropentane, cyclopentene, 1,3-pentadiene and isoprene; the mechanisms and energetics of their fragmentations, Org. Mass Spectrom., 1974, 8, 247. [all data]

Perkampus and Braunschweig, 1966
Perkampus, H.-H.; Braunschweig, T.H., UV atlas of organic compounds, 1966, 1, A3/1. [all data]

Bredael, 1982
Bredael, P., Retention indices of hydrocarbons on SE-30, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1982, 5, 6, 325-328, https://doi.org/10.1002/jhrc.1240050610 . [all data]

Larráyoz, Addis, et al., 2001
Larráyoz, P.; Addis, M.; Gauch, R.; Bosset, J.O., Comparison of dynamic headspace and simultaneous distillation extraction techniques used for the analysis of the volatile components in three European PDO ewes milk cheeses, Int. Dairy J., 2001, 11, 11-12, 911-926, https://doi.org/10.1016/S0958-6946(01)00144-3 . [all data]

Peng, Ding, et al., 1988
Peng, C.T.; Ding, S.F.; Hua, R.L.; Yang, Z.C., Prediction of Retention Indexes I. Structure-Retention Index Relationship on Apolar Columns, J. Chromatogr., 1988, 436, 137-172, https://doi.org/10.1016/S0021-9673(00)94575-8 . [all data]

Xieyun, Maoqi, et al., 1996
Xieyun, H.; Maoqi, C.; Shiyan, Y., Gas Chromatographic analysis during the process of heptaldehyde production using 1-hexene, Chin. J. Chromatogr., 1996, 14, 4, 291-293. [all data]

Zhang, Ding, et al., 2009
Zhang, X.; Ding, L.; Sun, Z.; Song, L.; Sun, T., Study on quantitative structure-retention relationships for hydrocarbons in FCC gasoline, Chromatographia, 2009, 70, 3/4, 511-518, https://doi.org/10.1365/s10337-009-1174-0 . [all data]

Rotsatschakul, Visesanguan, et al., 2009
Rotsatschakul, P.; Visesanguan, W.; Smitinont, T.; Chaiseri, S., Changes in volatile compounds during fermentation of nham (Thai fermented sausage), Int. Food Res. J., 2009, 16, 391-414. [all data]

Ciccioli, Cecinato, et al., 1994
Ciccioli, P.; Cecinato, A.; Brancaleoni, E.; Brachetti, A.; Frattoni, M.; Sparapani, R., Composition and Distribution of Polar and Non-Polar VOCs in Urban, Rural, Forest and Remote Areas, Eur Commission EUR, 1994, 549-568. [all data]

Cajka, Riddellova, et al., 2010
Cajka, T.; Riddellova, K.; Klimankova, E.; Carna, M.; Pudil, F.; Hajslova, J., Traceability of olive oil based on volatiles pattern and multivariante analysis, Food Chem., 2010, 121, 1, 282-289, https://doi.org/10.1016/j.foodchem.2009.12.011 . [all data]


Notes

Go To: Top, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References