4-Aminopyridine
- Formula: C5H6N2
- Molecular weight: 94.1145
- IUPAC Standard InChIKey: NUKYPUAOHBNCPY-UHFFFAOYSA-N
- CAS Registry Number: 504-24-5
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Fampridine; 4-Pyridinamine; Pyridine, 4-amino-; γ-Aminopyridine; p-Aminopyridine; Phillips 1861; VMI 10-3; 4-Pyridylamine; Amino-4 pyridine; Avitrol; Avitrol 200; Compound 1861; Pimadin (free base); Prc 1237; 4-AP; Rcra waste number P008; NSC 15041; Frampridine
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Phase change data, Gas phase ion energetics data, Ion clustering data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 129.9 ± 1.4 | kJ/mol | Ccb | Bickerton, Pilcher, et al., 1984 |
Phase change data
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 546.2 | K | N/A | Weast and Grasselli, 1989 | BS |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 431.98 | K | N/A | Donnelly, Drewes, et al., 1990 | Uncertainty assigned by TRC = 0.2 K; TRC |
Tfus | 431. | K | N/A | Buckingham and Donaghy, 1982 | BS |
Tfus | 432.15 | K | N/A | Cumper, Ginman, et al., 1963 | Uncertainty assigned by TRC = 0.5 K; TRC |
Tfus | 432.65 | K | N/A | Leis and Curran, 1945 | Uncertainty assigned by TRC = 1. K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔsubH° | 87.1 ± 0.4 | kJ/mol | C | Sabbah and da Silva Eusébio, 1998 | AC |
ΔsubH° | 88.1 ± 1.1 | kJ/mol | C | Bickerton, Pilcher, et al., 1984 | ALS |
ΔsubH° | 88.1 | kJ/mol | N/A | Bickerton, Pilcher, et al., 1984 | DRB |
ΔsubH° | 88.1 ± 1.1 | kJ/mol | C | Bickerton, Pilcher, et al., 1984 | AC |
Reduced pressure boiling point
Tboil (K) | Pressure (bar) | Reference | Comment |
---|---|---|---|
453. | 0.016 | Buckingham and Donaghy, 1982 | BS |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
20.07 | 429.9 | DSC | Donnelly, Drewes, et al., 1990, 2 | AC |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Phase change data, Ion clustering data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Proton affinity (review) | 979.7 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 947.8 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
8.8 ± 0.1 | EI | Stefanovic and Grutzmacher, 1974 | LLK |
9.27 ± 0.05 | EI | Gronneberg and Undheim, 1973 | LLK |
8.4 | CTS | Daisey and Sonnessa, 1972 | LLK |
8.97 ± 0.05 | EI | Basila and Clancy, 1963 | RDSH |
8.77 | PE | Ramsey and Walker, 1974 | Vertical value; LLK |
8.76 | PE | Kobayashi and Nagakura, 1974 | Vertical value; LLK |
De-protonation reactions
C5H5N2- + =
By formula: C5H5N2- + H+ = C5H6N2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1494. ± 9.2 | kJ/mol | G+TS | Taft and Bordwell, 1988 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1464. ± 8.4 | kJ/mol | IMRE | Taft and Bordwell, 1988 | gas phase; B |
Ion clustering data
Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Robert C. Dunbar
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.
Clustering reactions
By formula: K+ + C5H6N2 = (K+ • C5H6N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 109. ± 3. | kJ/mol | CIDT | Rodgers, 2001 |
By formula: Li+ + C5H6N2 = (Li+ • C5H6N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 217. ± 21. | kJ/mol | CIDT | Rodgers, 2001 |
By formula: Na+ + C5H6N2 = (Na+ • C5H6N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 146. ± 4.6 | kJ/mol | CIDT | Rodgers, 2001 |
References
Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Bickerton, Pilcher, et al., 1984
Bickerton, J.; Pilcher, G.; Al-Takhin, G.,
Enthalpies of combustion of the three aminopyridines and the three cyanopyridines,
J. Chem. Thermodyn., 1984, 16, 373-378. [all data]
Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]
Donnelly, Drewes, et al., 1990
Donnelly, J.R.; Drewes, L.A.; Johnson, R.L.; Munslow, W.D.; Knapp, K.K.; Sovocool, G.W.,
Purity and heat of fusion data for environmental standards as determined by differential scanning calorimetry,
Thermochim. Acta, 1990, 167, 2, 155, https://doi.org/10.1016/0040-6031(90)80476-F
. [all data]
Buckingham and Donaghy, 1982
Buckingham, J.; Donaghy, S.M.,
Dictionary of Organic Compounds: Fifth Edition, Chapman and Hall, New York, 1982, 1. [all data]
Cumper, Ginman, et al., 1963
Cumper, C.W.N.; Ginman, R.F.A.; Redford, D.G.; Vogel, A.I.,
Physical Properties and Chemical Constitution. Part XXXVIII. The Electric Dipole Moments of Aminopyridines and Aminoquinolines.,
J. Chem. Soc., 1963, 1963, 1731. [all data]
Leis and Curran, 1945
Leis, D.G.; Curran, B.C.,
Electric moments of some gamma-substituted pyridines,
J. Am. Chem. Soc., 1945, 67, 79. [all data]
Sabbah and da Silva Eusébio, 1998
Sabbah, Raphaël; da Silva Eusébio, Maria Ermelinda,
Energétique des liaisons inter- et intramoléculaires dans les trois isomères de l'aminopyridine,
Revue canadienne de chimie, 1998, 76, 1, 18-24, https://doi.org/10.1139/cjc-76-1-18
. [all data]
Donnelly, Drewes, et al., 1990, 2
Donnelly, J.R.; Drewes, L.A.; Johnson, R.L.; Munslow, W.D.; Knapp, K.K.; Sovocool, G.W.,
Purity and heat of fusion data for environmental standards as determined by differential scanning calorimetry,
Thermochimica Acta, 1990, 167, 2, 155-187, https://doi.org/10.1016/0040-6031(90)80476-F
. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Stefanovic and Grutzmacher, 1974
Stefanovic, D.; Grutzmacher, H.F.,
The ionisation potential of some substituted pyridines,
Org. Mass Spectrom., 1974, 9, 1052. [all data]
Gronneberg and Undheim, 1973
Gronneberg, T.; Undheim, K.,
Mass spectrometry of onium compounds - XV. ionization potentials of amino pyridines,
Tetrahedron Lett., 1973, 3193. [all data]
Daisey and Sonnessa, 1972
Daisey, J.M.; Sonnessa, A.J.,
A study of the thermodynamic and spectral properties of molecular complexes of iodine with several aminopyridines,
J. Phys. Chem., 1972, 76, 1895. [all data]
Basila and Clancy, 1963
Basila, M.R.; Clancy, D.J.,
The ionization potentials of monosubstituted pyridines by electron impact,
J. Phys. Chem., 1963, 67, 1551. [all data]
Ramsey and Walker, 1974
Ramsey, B.G.; Walker, F.A.,
A linear relationship between substituted pyridine lone pair vertical ionization potentials and pKa,
J. Am. Chem. Soc., 1974, 96, 3314. [all data]
Kobayashi and Nagakura, 1974
Kobayashi, T.; Nagakura, S.,
Photoelectron spectra of aminopyridines and cyanopyridines,
J. Electron Spectrosc. Relat. Phenom., 1974, 4, 207. [all data]
Taft and Bordwell, 1988
Taft, R.W.; Bordwell, F.G.,
Structural and Solvent Effects Evaluated from Acidities Measured in Dimethyl Sulfoxide and in the Gas Phase,
Acc. Chem. Res., 1988, 21, 12, 463, https://doi.org/10.1021/ar00156a005
. [all data]
Rodgers, 2001
Rodgers, M.T.,
Substituent Effects in the Binding of Alkali Metal Ions to Pyridines, Studied by Threshold Collision-Induced Dissociation and ab Initio Theory: The Aminopyridines,
J. Phys. Chem. A, 2001, 105, 35, 8145, https://doi.org/10.1021/jp011555z
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, References
- Symbols used in this document:
Tboil Boiling point Tfus Fusion (melting) point ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfusH Enthalpy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔsubH° Enthalpy of sublimation at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.