Formaldehyde

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-27.701kcal/molReviewChase, 1998Data last reviewed in March, 1961
Δfgas-25.95 ± 0.11kcal/molCmFletcher and Pilcher, 1970ALS
Quantity Value Units Method Reference Comment
Δcgas-136.42 ± 0.10kcal/molCmFletcher and Pilcher, 1970Corresponding Δfgas = -25.95 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcgas-134.1kcal/molCcbWartenberg and Lerner-Steinberg, 1925Gas phase; Corresponding Δfgas = -28.3 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
gas,1 bar52.330cal/mol*KReviewChase, 1998Data last reviewed in March, 1961

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
7.94950.Thermodynamics Research Center, 1997p=1 bar. Recommended entropies and heat capacities are in good agreement with other statistically calculated values [ Thompson, 1941, Pillai M.G.K., 1961, Gurvich, Veyts, et al., 1989]. Please also see Chao J., 1980, Chao J., 1986.; GT
7.949100.
7.954150.
8.007200.
8.293273.15
8.458 ± 0.005298.15
8.470300.
9.379400.
10.45500.
11.52600.
12.50700.
13.37800.
14.14900.
14.811000.
15.381100.
15.881200.
16.311300.
16.681400.
17.011500.
17.641750.
18.092000.
18.422250.
18.672500.
18.862750.
19.023000.

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (cal/mol*K)
    H° = standard enthalpy (kcal/mol)
    S° = standard entropy (cal/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 1200.1200. to 6000.
A 1.24134117.05370
B 22.283101.475740
C -10.72050-0.284677
D 1.8839100.019016
E 0.131734-3.725902
F -28.52751-40.78219
G 48.3906162.69551
H -27.70010-27.70010
ReferenceChase, 1998Chase, 1998
Comment Data last reviewed in March, 1961 Data last reviewed in March, 1961

Phase change data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos

Quantity Value Units Method Reference Comment
Tboil253.85KN/ASpence and Wild, 1935Uncertainty assigned by TRC = 0.2 K; TRC
Quantity Value Units Method Reference Comment
Tfus181.KN/AAnonymous, 1958Uncertainty assigned by TRC = 4. K; TRC
Tfus181.KN/AHarries, 1901Uncertainty assigned by TRC = 6. K; TRC
Quantity Value Units Method Reference Comment
Ttriple155.1KN/ASpence and Wild, 1935Uncertainty assigned by TRC = 0.3 K; TRC

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
5.81236.AStephenson and Malanowski, 1987Based on data from 184. to 251. K.; AC
5.78236.N/ASpence and Wild, 1935, 2Based on data from 173. to 251. K. See also Stephenson and Malanowski, 1987.; AC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
163.76 to 250.864.27605959.43-29.758Spence and Wild, 1935, 3Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Reference Comment
1.80155.Vasil'ev and Lebedev, 1998AC

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

CH2OH+ + Formaldehyde = (CH2OH+ • Formaldehyde)

By formula: CH3O+ + CH2O = (CH3O+ • CH2O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr27.7kcal/molICRLarson and McMahon, 1982gas phase; switching reaction(H3O+)H2O, Entropy change calculated or estimated; Cunningham, Payzant, et al., 1972, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Δr29.5kcal/molFAFehsenfeld, Dotan, et al., 1978gas phase; From thermochemical cycle,switching reaction(H3O+)H2O; Lias, Liebman, et al., 1984, Meot-Ner (Mautner), 1992; M
Δr27.7kcal/molICRLarson, Clair, et al., 1982gas phase; From thermochemical cycle,switching reaction(H2O/H2CO), Entropy change calculated or estimated; Cunningham, Payzant, et al., 1972, Lias, Liebman, et al., 1984; M
Quantity Value Units Method Reference Comment
Δr26.5cal/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction(H3O+)H2O, Entropy change calculated or estimated; Cunningham, Payzant, et al., 1972, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Δr27.5cal/mol*KFAFehsenfeld, Dotan, et al., 1978gas phase; From thermochemical cycle,switching reaction(H3O+)H2O; Lias, Liebman, et al., 1984, Meot-Ner (Mautner), 1992; M
Δr26.5cal/mol*KN/ALarson, Clair, et al., 1982gas phase; From thermochemical cycle,switching reaction(H2O/H2CO), Entropy change calculated or estimated; Cunningham, Payzant, et al., 1972, Lias, Liebman, et al., 1984; M
Quantity Value Units Method Reference Comment
Δr19.8kcal/molICRLarson and McMahon, 1982gas phase; switching reaction(H3O+)H2O, Entropy change calculated or estimated; Cunningham, Payzant, et al., 1972, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Δr19.8kcal/molICRLarson, Clair, et al., 1982gas phase; From thermochemical cycle,switching reaction(H2O/H2CO), Entropy change calculated or estimated; Cunningham, Payzant, et al., 1972, Lias, Liebman, et al., 1984; M

Lithium ion (1+) + Formaldehyde = (Lithium ion (1+) • Formaldehyde)

By formula: Li+ + CH2O = (Li+ • CH2O)

Quantity Value Units Method Reference Comment
Δr36.0kcal/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M
Δr36.kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M
Quantity Value Units Method Reference Comment
Δr26.cal/mol*KN/AWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M
Quantity Value Units Method Reference Comment
Δr28.2kcal/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M

(CH3O- • 4294967295Formaldehyde) + Formaldehyde = CH3O-

By formula: (CH3O- • 4294967295CH2O) + CH2O = CH3O-

Quantity Value Units Method Reference Comment
Δr39.90 ± 0.51kcal/molN/ANee, Osterwalder, et al., 2006gas phase; B
Δr40.8 ± 1.1kcal/molTherOsborn, Leahy, et al., 1998gas phase; B
Δr41.8 ± 2.2kcal/molTherBartmess, Scott, et al., 1979gas phase; The acidity is 1.2 kcal/mol stronger than that from the D-EA cycle, due to the multi-compound fit for the acidity scale.; value altered from reference due to change in acidity scale; B

CHO- + Hydrogen cation = Formaldehyde

By formula: CHO- + H+ = CH2O

Quantity Value Units Method Reference Comment
Δr394.52 ± 0.23kcal/molD-EAMurray, Miller, et al., 1986gas phase; B
Quantity Value Units Method Reference Comment
Δr386.65 ± 0.40kcal/molH-TSMurray, Miller, et al., 1986gas phase; B
Δr394.0 ± 4.5kcal/molIMRBKarpas and Klein, 1975gas phase; B

CH2N+ + Formaldehyde = (CH2N+ • Formaldehyde)

By formula: CH2N+ + CH2O = (CH2N+ • CH2O)

Bond type: Hydrogen bonds of the type NH+-O between organics

Quantity Value Units Method Reference Comment
Δr21.8kcal/molFATanaka, Mackay, et al., 1978gas phase; switching reaction(HCNH+)HCN; Meot-Ner (Mautner), 1978; M

(dimethylamino)methanol = Dimethylamine + Formaldehyde

By formula: C3H9NO = C2H7N + CH2O

Quantity Value Units Method Reference Comment
Δr30.2 ± 0.2kcal/molCmRogers and Rapiejko, 1974liquid phase; Heat of formation derived by 77PED/RYL; ALS

Methylal + Water = Formaldehyde + 2Methyl Alcohol

By formula: C3H8O2 + H2O = CH2O + 2CH4O

Quantity Value Units Method Reference Comment
Δr18.45 ± 0.12kcal/molCmBirley and Skinner, 1970liquid phase; Heat of hydrolysis; ALS

Formaldehyde + Urea, N,N-dimethyl- = Urea, 3-(hydroxymethyl)-1,1-dimethyl-

By formula: CH2O + C3H8N2O = C4H10N2O2

Quantity Value Units Method Reference Comment
Δr-4.8 ± 0.2kcal/molKinPerepelkova, Igranova, et al., 1981liquid phase; solvent: Phosphate buffer; ALS

2Dimethylamine + Formaldehyde = Methanediamine, N,N,N',N'-tetramethyl- + Water

By formula: 2C2H7N + CH2O = C5H14N2 + H2O

Quantity Value Units Method Reference Comment
Δr-45.6 ± 0.6kcal/molCmRogers and Rapiejko, 1974gas phase; ALS

(Iron ion (1+) • 2Formaldehyde) + Formaldehyde = (Iron ion (1+) • 3Formaldehyde)

By formula: (Fe+ • 2CH2O) + CH2O = (Fe+ • 3CH2O)

Quantity Value Units Method Reference Comment
Δr18.2 ± 1.0kcal/molCIDTRodgers and Armentrout, 2000RCD

(Iron ion (1+) • 3Formaldehyde) + Formaldehyde = (Iron ion (1+) • 4Formaldehyde)

By formula: (Fe+ • 3CH2O) + CH2O = (Fe+ • 4CH2O)

Quantity Value Units Method Reference Comment
Δr12.0 ± 1.7kcal/molCIDTRodgers and Armentrout, 2000RCD

(Iron ion (1+) • Formaldehyde) + Formaldehyde = (Iron ion (1+) • 2Formaldehyde)

By formula: (Fe+ • CH2O) + CH2O = (Fe+ • 2CH2O)

Quantity Value Units Method Reference Comment
Δr39.2 ± 1.0kcal/molCIDTRodgers and Armentrout, 2000RCD

Dimethylamine + Formaldehyde = (dimethylamino)methanol

By formula: C2H7N + CH2O = C3H9NO

Quantity Value Units Method Reference Comment
Δr-30.2 ± 0.2kcal/molCmRogers and Rapiejko, 1974gas phase; ALS

Hydrogen + Carbon monoxide = Formaldehyde

By formula: H2 + CO = CH2O

Quantity Value Units Method Reference Comment
Δr-2.90kcal/molEqkNewton and Dodge, 1933gas phase; ALS

Iron ion (1+) + Formaldehyde = (Iron ion (1+) • Formaldehyde)

By formula: Fe+ + CH2O = (Fe+ • CH2O)

Quantity Value Units Method Reference Comment
Δr33.0 ± 1.7kcal/molCIDTRodgers and Armentrout, 2000RCD

Aluminum ion (1+) + Formaldehyde = (Aluminum ion (1+) • Formaldehyde)

By formula: Al+ + CH2O = (Al+ • CH2O)

Quantity Value Units Method Reference Comment
Δr27.5 ± 2.4kcal/molEqGBouchard, Brenner, et al., 1997RCD

1,3,5-Trioxane = 3Formaldehyde

By formula: C3H6O3 = 3CH2O

Quantity Value Units Method Reference Comment
Δr46.37 ± 0.60kcal/molEqkBusfield and Merigold, 1969solid phase; ALS

3Formaldehyde = 1,3,5-Trioxane

By formula: 3CH2O = C3H6O3

Quantity Value Units Method Reference Comment
Δr-33.27 ± 0.50kcal/molEqkBusfield and Merigold, 1969gas phase; ALS

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
MM - Michael M. Meot-Ner (Mautner)
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to CH2O+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)10.88 ± 0.01eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)170.4kcal/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity163.3kcal/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Δf(+) ion225.1kcal/molN/AN/A 
Quantity Value Units Method Reference Comment
ΔfH(+) ion,0K226.1kcal/molN/AN/A 

Proton affinity at 298K

Proton affinity (kcal/mol) Reference Comment
170.1 ± 0.50Bouchoux and Leblanc, 2000T = 300K; MM

Gas basicity at 298K

Gas basicity (review) (kcal/mol) Reference Comment
162.9 ± 0.2Bouchoux and Leblanc, 2000T = 300K; MM

Ionization energy determinations

IE (eV) Method Reference Comment
10.88CIOhno, Okamura, et al., 1995LL
10.8887 ± 0.0030PENiu, Shirley, et al., 1993LL
10.86PITraeger, 1985LBLHLM
10.88PEKimura, Katsumata, et al., 1981LLK
10.9PEVon Niessen, Bieri, et al., 1980LLK
10.885 ± 0.005PEHernandez, Masclet, et al., 1977LLK
10.874 ± 0.002SDrury-Lessard and Moule, 1977LLK
10.868 ± 0.005PIGuyon, Chupka, et al., 1976LLK
10.88 ± 0.02PIWarneck, 1971LLK
10.87 ± 0.01PIMentall, Gentieu, et al., 1971LLK
10.88 ± 0.02PIMatthews and Warneck, 1969RDSH
10.884PEBaker, Baker, et al., 1968RDSH
10.86 ± 0.02EIKanomata, 1961RDSH
10.90 ± 0.03PIVilesov, 1960RDSH
10.87 ± 0.01PIWatanabe, 1957RDSH
10.88 ± 0.01SPrice, 1935RDSH
10.1PERao, 1975Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
CHO+11.97HPITraeger, 1985LBLHLM
CHO+13.94 ± 0.40HEIWankenne, Caprace, et al., 1984LBLHLM
CHO+11.92 ± 0.01HPIGuyon, Chupka, et al., 1976LLK
CHO+11.89 ± 0.03HPIWarneck, 1971LLK
CHO+11.95 ± 0.06HPIMatthews and Warneck, 1969RDSH
CO+14.10 ± 0.08H2PIGuyon, Chupka, et al., 1976LLK
CO+18.7 ± 0.2?EIBrand and Reed, 1957RDSH
H+17.41 ± 0.07CHOPIWarneck, 1971LLK
H2+15.42 ± 0.06COPIWarneck, 1971LLK

De-protonation reactions

CHO- + Hydrogen cation = Formaldehyde

By formula: CHO- + H+ = CH2O

Quantity Value Units Method Reference Comment
Δr394.52 ± 0.23kcal/molD-EAMurray, Miller, et al., 1986gas phase; B
Quantity Value Units Method Reference Comment
Δr386.65 ± 0.40kcal/molH-TSMurray, Miller, et al., 1986gas phase; B
Δr394.0 ± 4.5kcal/molIMRBKarpas and Klein, 1975gas phase; B

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compiled by: Coblentz Society, Inc.


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin H.M.B.BALLSCHMIETER NAT. FOOD RES. INST., PRETORIA, S AFRIC
NIST MS number 37883

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Vibrational and/or electronic energy levels

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Takehiko Shimanouchi

Symmetry:   C     Symmetry Number σ = 2


 Sym.   No   Approximate   Selected Freq.  Infrared   Raman   Comments 
 Species   type of mode   Value   Rating   Value  Phase  Value  Phase

a1 1 CH2 s-str 2783  A 2782.5 S gas 2781.6 S liq.
a1 2 CO str 1746  A 1746.1 VS gas 1742.3 W liq.
a1 3 CH2 scis 1500  A 1500.1 S gas 1499.7 M liq.
b1 4 CH2 a-str 2843  A 2843.1 VS gas 2866 W liq.
b1 5 CH2 rock 1249  A 1249.1 S gas
b2 6 CH2 wag 1167  A 1167.3 S gas

Source: Shimanouchi, 1972

Notes

VSVery strong
SStrong
MMedium
WWeak
A0~1 cm-1 uncertainty

Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedPorapack Q200.284.Goebel, 1982N2
PackedSE-30150.229.Haken, Nguyen, et al., 1979Celatom AW silanized; Column length: 3.7 m
PackedApiezon L160.249.Bogoslovsky, Anvaer, et al., 1978Celite 545

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryOV-101273.Zenkevich, 200525. m/0.20 mm/0.10 μm, N2/He, 6. K/min; Tstart: 50. C; Tend: 250. C

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillarySPB-1247.Flanagan, Streete, et al., 199760. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C
CapillarySPB-1247.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C

References

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Fletcher and Pilcher, 1970
Fletcher, R.A.; Pilcher, G., Measurements of heats of combustion by flame calorimetry, Trans. Faraday Soc., 1970, 66, 794-799. [all data]

Wartenberg and Lerner-Steinberg, 1925
Wartenberg, H.; Lerner-Steinberg, Heat of formation of formaldehyde, Z. Angew. Chem., 1925, 38, 591-592. [all data]

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Thompson, 1941
Thompson, H.W., Thermodynamic functions and equilibria of formaldehyde, deuteroformaldehyde, phosgene and thiophosgene, Trans. Faraday Soc., 1941, 37, 251-260. [all data]

Pillai M.G.K., 1961
Pillai M.G.K., Potential energy constants, rotational distortion constants, and calculated thermodynamic properties for some planar XYZ2 molecules, J. Mol. Spectrosc., 1961, 6, 465-471. [all data]

Gurvich, Veyts, et al., 1989
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B., Thermodynamic Properties of Individual Substances, 4th ed.; Vols. 1 and 2, Hemisphere, New York, 1989. [all data]

Chao J., 1980
Chao J., Perfect gas thermodynamic properties of methanal, ethanal and their deuterated species, Thermochim. Acta, 1980, 41, 41-54. [all data]

Chao J., 1986
Chao J., Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties, J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]

Spence and Wild, 1935
Spence, R.; Wild, W., The Vapor Pressure Curve of Formaldehyde and Some Related Data, J. Chem. Soc., 1935, 1935, 506-9. [all data]

Anonymous, 1958
Anonymous, R., , Am. Pet. Inst. Res. Proj. 45, Ohio State Univ., 1958. [all data]

Harries, 1901
Harries, C.D., Chem. Ber., 1901, 34, 635. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Spence and Wild, 1935, 2
Spence, Robert; Wild, William, 114. The vapour-pressure curve of formaldehyde, and some related data, J. Chem. Soc., 1935, 506, https://doi.org/10.1039/jr9350000506 . [all data]

Spence and Wild, 1935, 3
Spence, R.; Wild, W., The Vapour-Pressure Curve of Formaldehyde, and Some Related Data, J. Chem. Soc., 1935, 138, 506-509, https://doi.org/10.1039/jr9350000506 . [all data]

Vasil'ev and Lebedev, 1998
Vasil'ev, V.G.; Lebedev, B.V., Thermodynamic Properties of Aliphatic Aldehydes and Polyaldehydes: Effect of Composition and Structure, Polym. Sci., Ser. A, 1998, 40, 5, 464. [all data]

Larson and McMahon, 1982
Larson, J.W.; McMahon, T.B., Formation, Thermochemistry, and Relative Stabilities of Proton - Bound dimers of Oxygen n - Donor Bases from Ion Cyclotron Resonance Solvent - Exchange Equilibria Measurements, J. Am. Chem. Soc., 1982, 104, 23, 6255, https://doi.org/10.1021/ja00387a016 . [all data]

Cunningham, Payzant, et al., 1972
Cunningham, A.J.; Payzant, J.D.; Kebarle, P., A Kinetic Study of the Proton Hydrate H+(H2O)n Equilibria in the Gas Phase, J. Am. Chem. Soc., 1972, 94, 22, 7627, https://doi.org/10.1021/ja00777a003 . [all data]

Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D., Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules, J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]

Keesee and Castleman, 1986
Keesee, R.G.; Castleman, A.W., Jr., Thermochemical data on Ggs-phase ion-molecule association and clustering reactions, J. Phys. Chem. Ref. Data, 1986, 15, 1011. [all data]

Fehsenfeld, Dotan, et al., 1978
Fehsenfeld, F.C.; Dotan, I.; Albritton, D.L.; Howard, C.J.; Ferguson, E.E., Stratospheric Positive Ion Chemistry of Formaldehyde and Methanol, J. Geophys. Res., 1978, 83, C3, 1333, https://doi.org/10.1029/JC083iC03p01333 . [all data]

Meot-Ner (Mautner), 1992
Meot-Ner (Mautner), M., Intermolecular Forces in Organic Clusters, J. Am. Chem. Soc., 1992, 114, 9, 3312, https://doi.org/10.1021/ja00035a024 . [all data]

Larson, Clair, et al., 1982
Larson, J.W.; Clair, R.L.; McMahon, T.B., Bimolecular Production of Proton Bound Dimers in the Gas Phase. A Low Pressure Ion Cyclotron Resonance Technique for Examination of Solvent Exchange Equilibria and Determination of Single Molecule Solvation Energetics, Can. J. Chem., 1982, 60, 4, 542, https://doi.org/10.1139/v82-079 . [all data]

Woodin and Beauchamp, 1978
Woodin, R.L.; Beauchamp, J.L., Bonding of Li+ to Lewis Bases in the Gas Phase. Reversals in Methyl Substituent Effects for Different Reference Acids, J. Am. Chem. Soc., 1978, 100, 2, 501, https://doi.org/10.1021/ja00470a024 . [all data]

Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P., Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n, J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013 . [all data]

Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L., Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases, J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050 . [all data]

Nee, Osterwalder, et al., 2006
Nee, M.J.; Osterwalder, A.; Zhou, J.; Neumark, D.M., Slow electron velocity-map imaging photoelectron spectra of the methoxide anion, J. Chem. Phys., 2006, 125, 1, 014306, https://doi.org/10.1063/1.2212411 . [all data]

Osborn, Leahy, et al., 1998
Osborn, D.L.; Leahy, D.J.; Kim, E.H.; deBeer, E.; Neumark, D.M., Photoelectron spectroscopy of CH3O- and CD3O-, Chem. Phys. Lett., 1998, 292, 4-6, 651-655, https://doi.org/10.1016/S0009-2614(98)00717-9 . [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Murray, Miller, et al., 1986
Murray, K.K.; Miller, T.M.; Leopold, D.G.; Lineberger, W.C., Laser photoelectron spectroscopy of the Formylf anion, J. Chem. Phys., 1986, 84, 2520. [all data]

Karpas and Klein, 1975
Karpas, Z.; Klein, F.S., Negative ion-molecule reactions in a mixture of ammonia-formaldehyde - an ICR mass spectrometry study, Int. J. Mass Spectrom. Ion Phys., 1975, 18, 65. [all data]

Tanaka, Mackay, et al., 1978
Tanaka, K.; Mackay, G.I.; Bohme, D.K., Rate and Equilibrium Constant Measurements for Gas-Phase Proton-Transfer Reactions Involving H2O, H2S, HCN, and H2CO, Can. J. Chem., 1978, 56, 2, 193, https://doi.org/10.1139/v78-031 . [all data]

Meot-Ner (Mautner), 1978
Meot-Ner (Mautner), M., Solvation of the Proton by HCN and CH3CN. Condensation of HCN with Ions in the Gas Phase., J. Am. Chem. Soc., 1978, 100, 15, 4694, https://doi.org/10.1021/ja00483a012 . [all data]

Rogers and Rapiejko, 1974
Rogers, F.E.; Rapiejko, R.J., Thermochemistry of carbonyl addition reactions. II. Enthalpy of addition of dimethylamine to formaldehyde, J. Phys. Chem., 1974, 78, 599-603. [all data]

Birley and Skinner, 1970
Birley, G.I.; Skinner, H.A., Enthalpies of hydrolysis of dimethoxymethane and 1,1-dimethoxyethane, Trans. Faraday Soc., 1970, 66, 791-793. [all data]

Perepelkova, Igranova, et al., 1981
Perepelkova, T.I.; Igranova, E.G.; Moiseev, V.D.; Demchenko, L.Ya.; Zhuravleva, I.I., Calorimetric study of the methylolation of 1,1-dimethylurea, Khim. Promst. Ser. Proizvod. Pererab. Plastmass Sint. Smol, 1981, 15-18. [all data]

Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B., Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation, Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X . [all data]

Newton and Dodge, 1933
Newton, R.H.; Dodge, B.F., The equilibrium between carbon monoxide, hydrogen, formaldehyde and methanol. I. The reactions CO + H2 = HCOH and H2 + HCOH = CH3OH, J. Am. Chem. Soc., 1933, 55, 4747-4759. [all data]

Bouchard, Brenner, et al., 1997
Bouchard, F.; Brenner, V.; Carra, C.; Hepburn, J.W.; Koyanagi, G.K.; McMahon, T.B.; Ohanessian, G.; Peschke, M., Energetics and Structure of Complexes of Al+ with Small Organic Molecules in the Gas Phase, J. Phys. Chem. A, 1997, 101, 33, 5885, https://doi.org/10.1021/jp9703465 . [all data]

Busfield and Merigold, 1969
Busfield, W.K.; Merigold, D., The gas-phase equilibrium between trioxan and formaldehyde: The standard enthalpy and entropy of the trimerisation of formaldehyde, J. Chem. Soc. A, 1969, 19, 2975-2977. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Bouchoux and Leblanc, 2000
Bouchoux, G.; Leblanc, D., Gas-phase basicity of formaldehyde by the thermokinetic method, European J. Mass Spectrom., 2000, 6, 443. [all data]

Ohno, Okamura, et al., 1995
Ohno, K.; Okamura, K.; Yamakado, H.; Hoshino, S.; Takami, T.; Yamauchi, M., Penning ionization of HCHO, CH2CH2, and CH2CHCHO by collision with He*(2 3S) metastable atoms, J. Phys. Chem., 1995, 99, 14247. [all data]

Niu, Shirley, et al., 1993
Niu, B.; Shirley, D.A.; Bai, Y., High resolution photoelectron spectroscopy and femtosecond intramolecular dynamics of H2CO+ and D2CO+, J. Chem. Phys., 1993, 98, 4377. [all data]

Traeger, 1985
Traeger, J.C., Heat of formation for the formyl cation by photoionization mass spectrometry, Int. J. Mass Spectrom. Ion Processes, 1985, 66, 271. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Von Niessen, Bieri, et al., 1980
Von Niessen, W.; Bieri, G.; Asbrink, L., 30.4 nm He(II) photoelectron spectra of organic molecules. Part III. Oxo-compounds (C,H,O), J. Electron Spectrosc. Relat. Phenom., 1980, 21, 175. [all data]

Hernandez, Masclet, et al., 1977
Hernandez, R.; Masclet, P.; Mouvier, G., Spectroscopie de photoelectrons d'aldehydes et de cetones aliphatiques, J. Electron Spectrosc. Relat. Phenom., 1977, 10, 333. [all data]

Drury-Lessard and Moule, 1977
Drury-Lessard, C.R.; Moule, D.C., The higher Rydberg states of formaldehyde, Chem. Phys. Lett., 1977, 47, 300. [all data]

Guyon, Chupka, et al., 1976
Guyon, P.M.; Chupka, W.A.; Berkowitz, J., Photoionization mass spectrometric study of formaldehyde H2CO, HDCO, and D2CO, J. Chem. Phys., 1976, 65, 1419. [all data]

Warneck, 1971
Warneck, P., Photoionisation von methanol und formaldehyd, Z. Naturforsch. A:, 1971, 26, 2047. [all data]

Mentall, Gentieu, et al., 1971
Mentall, J.E.; Gentieu, E.P.; Krauss, M.; Neumann, D., Photoionization and absorption spectrum of formaldehyde in the vacuum ultraviolet, J. Chem. Phys., 1971, 55, 5471. [all data]

Matthews and Warneck, 1969
Matthews, C.S.; Warneck, P., Heats of formation of CHO+ and C3H3+ by photoionization, J. Chem. Phys. 5, 1969, 1, 854. [all data]

Baker, Baker, et al., 1968
Baker, A.D.; Baker, C.; Brundle, C.R.; Turner, D.W., The electronic structures of methane, ethane, ethylene and formaldehyde studied by high-resolution molecular photoelectron spectroscopy, Intern. J. Mass Spectrom. Ion Phys., 1968, 1, 285. [all data]

Kanomata, 1961
Kanomata, I., Mass-spectrometric study on ionization and dissociation of formaldehyde, acetaldehyde, acetone and ethyl methyl ketone by electron impact, Bull. Chem. Soc. Japan, 1961, 34, 1864. [all data]

Vilesov, 1960
Vilesov, F.I., The photoionization of vapors of compounds whose molecules contain carbonyl groups, Dokl. Phys. Chem., 1960, 132, 521, In original 1332. [all data]

Watanabe, 1957
Watanabe, K., Ionization potentials of some molecules, J. Chem. Phys., 1957, 26, 542. [all data]

Price, 1935
Price, W.C., The far ultraviolet absorption spectra of formaldehyde and the alkyl derivatives of H, O and H2S, J. Chem. Phys., 1935, 3, 256. [all data]

Rao, 1975
Rao, C.N.R., Lone-pair ionization bands of chromophores in the photoelectron spectra of organic molecules, Indian J. Chem., 1975, 13, 950. [all data]

Wankenne, Caprace, et al., 1984
Wankenne, H.; Caprace, G.; Momigny, J., Unimolecular decay of metastable ions in formaldehyde, Int. J. Mass Spectrom. Ion Processes, 1984, 57, 149. [all data]

Brand and Reed, 1957
Brand, J.C.D.; Reed, R.I., The electronic spectrum of formaldehyde. Part II. Mechanisms of dissociation of formaldehyde and the formaldehyde molecular ion, J. Chem. Soc., 1957, 2386. [all data]

Shimanouchi, 1972
Shimanouchi, T., Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160. [all data]

Goebel, 1982
Goebel, K.-J., Gaschromatographische Identifizierung Niedrig Siedender Substanzen Mittels Retentionsindices und Rechnerhilfe, J. Chromatogr., 1982, 235, 1, 119-127, https://doi.org/10.1016/S0021-9673(00)95793-5 . [all data]

Haken, Nguyen, et al., 1979
Haken, J.K.; Nguyen, A.; Wainwright, M.S., Application of linear extrathermodynamic relationships to alcohols, aldehydes, ketones, amd ethoxy alcohols, J. Chromatogr., 1979, 179, 1, 75-85, https://doi.org/10.1016/S0021-9673(00)80658-5 . [all data]

Bogoslovsky, Anvaer, et al., 1978
Bogoslovsky, Yu.N.; Anvaer, B.I.; Vigdergauz, M.S., Chromatographic constants in gas chromatography (in Russian), Standards Publ. House, Moscow, 1978, 192. [all data]

Zenkevich, 2005
Zenkevich, I.G., Experimentally measured retention indices., 2005. [all data]

Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D., Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]

Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J., Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning, Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, References