Cyanogen
- Formula: C2N2
- Molecular weight: 52.0348
- IUPAC Standard InChIKey: JMANVNJQNLATNU-UHFFFAOYSA-N
- CAS Registry Number: 460-19-5
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Ethanedinitrile; Cyanogen (C2N2); Carbon nitride (C2N2); Dicyanogen; Nitriloacetonitrile; Oxalic acid dinitrile; Oxalonitrile; NCCN; Dicyan; Cyanogen gas; Carbon nitride; Cyanogene; Oxalic nitrile; Prussite; Rcra waste number P031; UN 1026; (CN)2; Oxalyl cyanide
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Reaction thermochemistry data
Go To: Top, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: H4N+ + C2N2 = (H4N+ • C2N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 43.5 | kJ/mol | PHPMS | Speller and Meot-Ner (Mautner), 1985 | gas phase; Entropy change calculated or estimated, DG<, ΔrH<; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 96. | J/mol*K | N/A | Speller and Meot-Ner (Mautner), 1985 | gas phase; Entropy change calculated or estimated, DG<, ΔrH<; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
13. | 315. | PHPMS | Speller and Meot-Ner (Mautner), 1985 | gas phase; Entropy change calculated or estimated, DG<, ΔrH<; M |
By formula: C2N2 + C2F6 = 2C2F3N
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 44.10 ± 0.59 | kJ/mol | Eqk | Walker, Sinke, et al., 1970 | gas phase; ALS |
Henry's Law data
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference | Comment |
---|---|---|---|---|
0.19 | Q | N/A | missing citation give several references for the Henry's law constants but don't assign them to specific species. Value at T = 293. K. |
Gas phase ion energetics data
Go To: Top, Reaction thermochemistry data, Henry's Law data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
MM - Michael M. Meot-Ner (Mautner)
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 13.37 ± 0.01 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 674.7 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 645.8 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Gas basicity at 298K
Gas basicity (review) (kJ/mol) | Reference | Comment |
---|---|---|
622.8 | Milligan, Fairley, et al., 1998 | T = 300K; ΔG =-RTln(kf/kr) from ratio of rate coefficients; MM |
621.7 | Milligan, Fairley, et al., 1998 | T = 300K; ΔG =-RTln(kf/kr) from ratio of rate coefficients; MM |
<642. | Milligan, Fairley, et al., 1998 | Irreversible PT from C2N2 to C2H5+; MM |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
13.5 ± 0.3 | EI | Smith, 1983 | LBLHLM |
13.36 ± 0.01 | PI | Baker and Turner, 1968 | RDSH |
13.374 ± 0.008 | PI | Dibeler and Liston, 1967 | RDSH |
13.5 | EI | Dorsch and Kallman, 1930 | RDSH |
13.51 | PE | Asbrink, Von Niessen, et al., 1980 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
C+ | 22.5 | C+N2 | EI | Dorsch and Kallman, 1930 | RDSH |
CN+ | 20.9 ± 0.3 | CN | EI | Smith, 1983 | LBLHLM |
CN+ | 20.4 | CN | EI | Haney and Franklin, 1968 | RDSH |
CN+ | 20.42 ± 0.02 | CN | PI | Dibeler and Liston, 1967 | RDSH |
CN+ | 18. | CN | EI | Dorsch and Kallman, 1930 | RDSH |
C2+ | 18.0 ± 0.3 | N2 | EI | Smith, 1983 | LBLHLM |
C2+ | 17.46 ± 0.02 | N2 | PI | Dibeler and Liston, 1967 | RDSH |
C2+ | 17. | N2 | EI | Dorsch and Kallman, 1930 | RDSH |
C2N+ | 18.84 ± 0.05 | N | EI | Harland and McIntosh, 1985 | LBLHLM |
C2N+ | 19.5 ± 0.3 | N | EI | Smith, 1983 | LBLHLM |
C2N+ | 19.5 ± 0.1 | N | EI | Dibeler, Reese, et al., 1961 | RDSH |
Mass spectrum (electron ionization)
Go To: Top, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | A.A.Kutin, Moscow, Russia |
NIST MS number | 273361 |
References
Go To: Top, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Speller and Meot-Ner (Mautner), 1985
Speller, C.V.; Meot-Ner (Mautner), M.,
The Ionic Hydrogen Bond and Ion Solvation. 3. Bonds Involving Cyanides. Correlations with Proton Affinites,
J. Phys. Chem., 1985, 81, 24, 5217, https://doi.org/10.1021/j100270a020
. [all data]
Walker, Sinke, et al., 1970
Walker, L.C.; Sinke, G.C.; Perettie, D.J.; Janz, G.J.,
Enthalpy of formation of trifluoroacetonitrile,
J. Am. Chem. Soc., 1970, 92, 4525-4526. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Milligan, Fairley, et al., 1998
Milligan, D.B.; Fairley, D.A.; Meot-Ner (Mautner), M.; McEwan, M.J.,
Proton affinity of cyanogen and association reactions of C2N2H+ and C2N2CH3+,
Int. J. Mass Spectrom., 1998, 180, 285. [all data]
Smith, 1983
Smith, O.I.,
Cross sections for formation of parent and fragment ions by electron impact from C2N2,
Int. J. Mass Spectrom. Ion Processes, 1983, 54, 55. [all data]
Baker and Turner, 1968
Baker, C.; Turner, D.W.,
High resolution molecular photoelectron spectroscopy. III.Acetylenes and azaacetylenes,
Proc. Roy. Soc. (London), 1968, A308, 19. [all data]
Dibeler and Liston, 1967
Dibeler, V.H.; Liston, S.K.,
Mass-spectrometric study of photoionization. VIII.Dicyanogen and the cyanogen halides,
J. Chem. Phys., 1967, 47, 4548. [all data]
Dorsch and Kallman, 1930
Dorsch, K.E.; Kallman, H.,
Uber die Ionisierung von Dicyan durch langsame Elektronen,
Z. Phys., 1930, 60, 376. [all data]
Asbrink, Von Niessen, et al., 1980
Asbrink, L.; Von Niessen, W.; Bieri, G.,
30.4-nm He(II) photoelectron spectra of organic molecules,
J. Electron Spectrosc. Relat. Phenom., 1980, 21, 93. [all data]
Haney and Franklin, 1968
Haney, M.A.; Franklin, J.L.,
Correlation of excess energies of electron-impact dissociations with the translational energies of the products,
J.Chem. Phys., 1968, 48, 4093. [all data]
Harland and McIntosh, 1985
Harland, P.W.; McIntosh, B.J.,
Enthalpies of formation for the isomeric ions HxCCN+ and HxCNC+ (x = 0-3) by monochromatic electron impact on C2N2, CH3CN and CH3NC.,
Int. J. Mass Spectrom. Ion Processes, 1985, 67, 29. [all data]
Dibeler, Reese, et al., 1961
Dibeler, V.H.; Reese, R.M.; Franklin, J.L.,
Mass spectrometric study of cyanogen and cyanoacetylenes,
J. Am. Chem. Soc., 1961, 83, 1813. [all data]
Notes
Go To: Top, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), References
- Symbols used in this document:
AE Appearance energy IE (evaluated) Recommended ionization energy T Temperature d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.