Naphthalene, 1,2-dihydro-
- Formula: C10H10
- Molecular weight: 130.1864
- IUPAC Standard InChIKey: KEIFWROAQVVDBN-UHFFFAOYSA-N
- CAS Registry Number: 447-53-0
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Dialin; δ1-Dialin; 1,2-Dialin; 1,2-Dihydronaphthalene; Diolin
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Glushko Thermocenter, Russian Academy of Sciences, Moscow
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
9.106 | 50. | Dorofeeva O.V., 1988 | Recommended values were calculated statistically mechanically using force field approximation for polycyclic aromatic hydrocarbons to estimate the needed vibrational frequencies (see also [ Dorofeeva O.V., 1986]). These functions are reproduced in the reference book [ Frenkel M., 1994]. |
12.47 | 100. | ||
16.86 | 150. | ||
22.15 | 200. | ||
30.958 | 273.15 | ||
34.10 ± 0.48 | 298.15 | ||
34.328 | 300. | ||
46.429 | 400. | ||
56.814 | 500. | ||
65.282 | 600. | ||
72.170 | 700. | ||
77.835 | 800. | ||
82.553 | 900. | ||
86.520 | 1000. | ||
89.878 | 1100. | ||
92.737 | 1200. | ||
95.179 | 1300. | ||
97.280 | 1400. | ||
99.092 | 1500. |
Phase change data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔvapH° | 13.1 ± 0.02 | kcal/mol | IP,EB | Chirico and Steele, 2008 | AC |
ΔvapH° | 12.4 ± 0.1 | kcal/mol | GS | Verevkin, 1999 | Based on data from 274. to 319. K.; AC |
Reduced pressure boiling point
Tboil (K) | Pressure (atm) | Reference | Comment |
---|---|---|---|
362.2 | 0.021 | Aldrich Chemical Company Inc., 1990 | BS |
Enthalpy of vaporization
ΔvapH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
12.8 ± 0.02 | 320. | IP,EB | Chirico and Steele, 2008 | AC |
12.1 ± 0.02 | 360. | IP,EB | Chirico and Steele, 2008 | AC |
11.6 ± 0.02 | 400. | IP,EB | Chirico and Steele, 2008 | AC |
11.0 ± 0.02 | 440. | IP,EB | Chirico and Steele, 2008 | AC |
12.4 ± 0.1 | 296. | GS | Verevkin, 1999 | Based on data from 274. to 319. K.; AC |
Enthalpy of fusion
ΔfusH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
2.517 | 264.4 | AC | Chirico and Steele, 2008 | Authors report two solid/solid phase transitions having negligible enthalpy of transition; AC |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: H2 + C10H10 = C10H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -24.10 ± 0.20 | kcal/mol | Chyd | Williams, 1942 | liquid phase; solvent: Acetic acid; At 302 K |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
View reactions leading to C10H10+ (ion structure unspecified)
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
8.14 | EI | Dass and Gross, 1983 | LBLHLM |
8.0 | EI | Koppel, Schwarz, et al., 1974 | LLK |
References
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Dorofeeva O.V., 1988
Dorofeeva O.V.,
Thermodynamic Properties of Polycyclic Aromatic Hydrocarbons in the Gaseous Phase. Institute for High Temperatures, USSR Academy of Sciences, Preprint No.1-238 (in Russian), Moscow, 1988. [all data]
Dorofeeva O.V., 1986
Dorofeeva O.V.,
On calculation of thermodynamic properties of polycyclic aromatic hydrocarbons,
Thermochim. Acta, 1986, 102, 59-66. [all data]
Frenkel M., 1994
Frenkel M.,
Thermodynamics of Organic Compounds in the Gas State, Vol. I, II, Thermodynamics Research Center, College Station, Texas, 1994, 1994. [all data]
Chirico and Steele, 2008
Chirico, Robert D.; Steele, William V.,
Thermodynamic properties of 1,2-dihydronaphthalene: Glassy crystals and missing entropy,
The Journal of Chemical Thermodynamics, 2008, 40, 5, 806-817, https://doi.org/10.1016/j.jct.2008.01.009
. [all data]
Verevkin, 1999
Verevkin, Sergey P.,
Thermochemical investigation on α-methyl-styrene and parent phenyl substituted alkenes,
Thermochimica Acta, 1999, 326, 1-2, 17-25, https://doi.org/10.1016/S0040-6031(98)00585-1
. [all data]
Aldrich Chemical Company Inc., 1990
Aldrich Chemical Company Inc.,
Catalog Handbook of Fine Chemicals, Aldrich Chemical Company, Inc., Milwaukee WI, 1990, 1. [all data]
Williams, 1942
Williams, R.B.,
Heats of catalytic hydrogenation in solution. I. Apparatus, technique, and the heats of hydrogenation of certain pairs of stereoisomers,
J. Am. Chem. Soc., 1942, 64, 1395-1404. [all data]
Dass and Gross, 1983
Dass, C.; Gross, M.L.,
Electrocyclic ring opening of 1-phenylcyclobutene and 3-phenylcyclobutene radical cations,
J. Am. Chem. Soc., 1983, 105, 5724. [all data]
Koppel, Schwarz, et al., 1974
Koppel, C.; Schwarz, H.; Bohlmann, F.,
Elektronenstossinduzierte fragmentierung von acetylenverbindungen,
Org. Mass Spectrom., 1974, 9, 324. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, References
- Symbols used in this document:
Cp,gas Constant pressure heat capacity of gas Tboil Boiling point ΔfusH Enthalpy of fusion ΔrH° Enthalpy of reaction at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.