Benzene, 1-fluoro-4-methyl-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase ion energetics data

Go To: Top, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C7H7F+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)8.79 ± 0.01eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)763.8kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity736.1kJ/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
8.794 ± 0.008EQLias and Ausloos, 1978LLK
8.79 ± 0.01PIWatanabe, Nakayama, et al., 1962RDSH

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C7H6F+11.9 ± 0.1HEITait, Shannon, et al., 1962RDSH

De-protonation reactions

C7H6F- + Hydrogen cation = Benzene, 1-fluoro-4-methyl-

By formula: C7H6F- + H+ = C7H7F

Quantity Value Units Method Reference Comment
Δr1588. ± 8.8kJ/molG+TSCaldwell and Bartmessgas phase; value altered from reference due to change in acidity scale; B
Quantity Value Units Method Reference Comment
Δr1558. ± 8.4kJ/molIMRECaldwell and Bartmessgas phase; value altered from reference due to change in acidity scale; B

Mass spectrum (electron ionization)

Go To: Top, Gas phase ion energetics data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW-3004
NIST MS number 230714

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Gas Chromatography

Go To: Top, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedSqualane100.756.Vernon and Edwards, 1975N2, DCMS-treated Celite; Column length: 1. m

Kovats' RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
PackedApiezon M777.7Jalali-Heravi and Garkani-Nejad, 1993Chromosorb W; Column length: 2. m; Program: not specified

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryPetrocol DH770.4Censullo, Jones, et al., 200350. m/0.25 mm/0.5 μm, He, 35. C @ 10. min, 3. K/min, 200. C @ 10. min

Normal alkane RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryOV-10199.6787.Tsvetkov, Nesterova, et al., 1987 

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryOV-101775.Zenkevich, 200525. m/0.20 mm/0.10 μm, N2/He, 6. K/min; Tstart: 50. C; Tend: 250. C

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryMethyl Silicone775.Zenkevich, 1995Program: not specified

References

Go To: Top, Gas phase ion energetics data, Mass spectrum (electron ionization), Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Lias and Ausloos, 1978
Lias, S.G.; Ausloos, P.J., eIonization energies of organic compounds by equilibrium measurements, J. Am. Chem. Soc., 1978, 100, 6027. [all data]

Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J., Ionization potentials of some molecules, J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]

Tait, Shannon, et al., 1962
Tait, J.M.S.; Shannon, T.W.; Harrison, A.G., The structure of substituted C7 ions from benzyl derivatives at the appearance potential threshold, J. Am. Chem. Soc., 1962, 84, 4. [all data]

Caldwell and Bartmess
Caldwell, G.; Bartmess, J.E., , Unpublished results. [all data]

Vernon and Edwards, 1975
Vernon, F.; Edwards, G.T., Gas-liquid chromatography on fluorinated stationary phases. I. Hydrocarbons and fluorocarbons, J. Chromatogr., 1975, 110, 1, 73-80, https://doi.org/10.1016/S0021-9673(00)91212-3 . [all data]

Jalali-Heravi and Garkani-Nejad, 1993
Jalali-Heravi, M.; Garkani-Nejad, Z., Prediction of gas chromatographic retention indices of some benzene derivatives, J. Chromatogr., 1993, 648, 2, 389-393, https://doi.org/10.1016/0021-9673(93)80421-4 . [all data]

Censullo, Jones, et al., 2003
Censullo, A.C.; Jones, D.R.; Wills, M.T., Speciation of the volatile organic compounds (VOCs) in solventborne aerosol coatings by solid phase microextraction-gas chromatography, J. Coat. Technol., 2003, 75, 936, 47-53, https://doi.org/10.1007/BF02697922 . [all data]

Tsvetkov, Nesterova, et al., 1987
Tsvetkov, V.S.; Nesterova, T.N.; Pimerzin, A.A.; Rohznov, A.M., Dependence of retention indices of alkyl fluorobenzenes on temperature and structure of sorbates, Abstr. IX All-Union Conference on Gas Chromatography, Kuibyshev State University, Kuibyshev, 1987, 308. [all data]

Zenkevich, 2005
Zenkevich, I.G., Experimentally measured retention indices., 2005. [all data]

Zenkevich, 1995
Zenkevich, I.G., Calculation of Gas-Chromatographic Retention Indices from Physico-Chemical Constants of Organic Compounds, Z. Anal. Chem., 1995, 50, 10, 1048-1056. [all data]


Notes

Go To: Top, Gas phase ion energetics data, Mass spectrum (electron ionization), Gas Chromatography, References