Acridine

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Δfgas65.46 ± 0.55kcal/molCcrSteele, Chirico, et al., 1989 

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Hydrogen + Acridine = Acridine, 9,10-dihydro-

By formula: H2 + C13H9N = C13H11N

Quantity Value Units Method Reference Comment
Δr18.0kcal/molCmJackman and Packham, 1957liquid phase; solvent: bis-2-Ethoxyethyl ether

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
B - John E. Bartmess

View reactions leading to C13H9N+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)7.8eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)232.5kcal/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity224.8kcal/molN/AHunter and Lias, 1998HL

Electron affinity determinations

EA (eV) Method Reference Comment
0.896 ± 0.010LPESKokubo, Ando, et al., 2004B
0.91 ± 0.10IMREDillow and Kebarle, 1989ΔGea(423 K) = -20.3 kcal/mol; ΔSea =-1.5, taken as that of anthracene, from Kebarle and Chowdhury, 1987.9-aza-anthrancene; B

Ionization energy determinations

IE (eV) Method Reference Comment
7.39CTSSlifkin and Allison, 1967RDSH
8.0 ± 0.1CTSFarrell and Newton, 1966RDSH
8.04CTSKinoshita, 1962RDSH
7.8PITerenin, 1961RDSH
8.13 ± 0.02PEMaier, Muller, et al., 1975Vertical value; LLK
7.85PEJongsma, Vermeer, et al., 1975Vertical value; LLK
7.88 ± 0.02PEHush, Cheung, et al., 1975Vertical value; LLK

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Gas Phase Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

IR spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Owner NIST Standard Reference Data Program
Collection (C) 2018 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin NIST Mass Spectrometry Data Center
State gas
Instrument HP-GC/MS/IRD

This IR spectrum is from the NIST/EPA Gas-Phase Infrared Database .


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin NIST Mass Spectrometry Data Center, 1990.
NIST MS number 113372

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


UV/Visible spectrum

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Victor Talrose, Eugeny B. Stern, Antonina A. Goncharova, Natalia A. Messineva, Natalia V. Trusova, Margarita V. Efimkina

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

UVVis spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Source Zanker and Schmid, 1957
Owner INEP CP RAS, NIST OSRD
Collection (C) 2007 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS
Source reference RAS UV No. 1228
Instrument Zeiss PMQ II
Melting point 106 (form a); 110 (form b)
Boiling point 345.5

References

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Steele, Chirico, et al., 1989
Steele, W.V.; Chirico, R.D.; Hossenlopp, I.A.; Nguyen, A.; Smith, N.K.; Gammon, B.E., The thermodynamic properties of the five benzoquinolines, J. Chem. Thermodyn., 1989, 21, 81-107. [all data]

Jackman and Packham, 1957
Jackman, L.M.; Packham, D.I., The experimental resonance energy of acridine, Proc. Chem. Soc., London, 1957, 349-350. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Kokubo, Ando, et al., 2004
Kokubo, S.; Ando, N.; Koyasu, K.; Mitsui, M.; Nakajima, A., Negative ion photoelectron spectroscopy of acridine molecular anion and its monohydrate, J. Chem. Phys., 2004, 121, 22, 11112-11117, https://doi.org/10.1063/1.1818132 . [all data]

Dillow and Kebarle, 1989
Dillow, G.W.; Kebarle, P., Electron Affinities of aza-substituted polycyclic aromatic hydrocarbons, Can. J. Chem., 1989, 67, 10, 1628, https://doi.org/10.1139/v89-249 . [all data]

Kebarle and Chowdhury, 1987
Kebarle, P.; Chowdhury, S., Electron affinities and electron transfer reactions, Chem. Rev., 1987, 87, 513. [all data]

Slifkin and Allison, 1967
Slifkin, M.A.; Allison, A.C., Measurement of ionization potentials from contact charge transfer spectra, Nature, 1967, 215, 949. [all data]

Farrell and Newton, 1966
Farrell, P.G.; Newton, J., Ionization potentials of primary aromatic amines and aza-hydrocarbons, Tetrahedron Lett., 1966, 5517. [all data]

Kinoshita, 1962
Kinoshita, M., The absorption spectra of the molecular complexes of aromatic compounds with p-bromanil, Bull. Chem. Soc. Japan, 1962, 35, 1609. [all data]

Terenin, 1961
Terenin, A., Charge transfer in organic solids, induced by light, Proc. Chem. Soc., London, 1961, 321. [all data]

Maier, Muller, et al., 1975
Maier, J.P.; Muller, J.-F.; Kubota, T.; Yamakawa, M., 183. Ionisation energies and the electronic structures of the N-oxides of azanaphthalenes and azaanthracenes, Helv. Chim. Acta, 1975, 58, 1641. [all data]

Jongsma, Vermeer, et al., 1975
Jongsma, C.; Vermeer, H.; Bickelhaupt, F.; Schafer, W.; Schweig, A., 10-methyl-9-phosphaanthracene, Tetrahedron, 1975, 31, 2931. [all data]

Hush, Cheung, et al., 1975
Hush, N.S.; Cheung, A.S.; Hilton, P.R., Binding energies of π- and "lone pair"-levels in mono- and diaza-phenanthrenes and anthracenes: an He(I) photoelectron spectroscopic study, J. Electron Spectrosc. Relat. Phenom., 1975, 7, 385. [all data]

Zanker and Schmid, 1957
Zanker, V.; Schmid, W., Die tieftemperaturspektren der basen und kationen des pyridins, chinolins, acridins, 2.3-benzacridins und vorhersage der bandenlagen fur das 2.3;6.7-dibenzacridin, Chem. Ber., 1957, 90, 2253-2265. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References