Triphenylene
- Formula: C18H12
- Molecular weight: 228.2879
- IUPAC Standard InChIKey: SLGBZMMZGDRARJ-UHFFFAOYSA-N
- CAS Registry Number: 217-59-4
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Benzo[l]phenanthrene; Isochrysene; 1,2,3,4-Dibenznaphthalene; 9,10-Benzophenanthrene; 9,10-Benzphenanthrene
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 270.1 ± 4.4 | kJ/mol | Review | Roux, Temprado, et al., 2008 | There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
48.55 | 50. | Dorofeeva O.V., 1988 | Recommended values were calculated statistically mechanically using force field approximation for polycyclic aromatic hydrocarbons to estimate the needed vibrational frequencies (see also [ Dorofeeva O.V., 1986, Moiseeva N.F., 1989]). These functions are reproduced in the reference book [ Frenkel M., 1994].; GT |
79.65 | 100. | ||
114.46 | 150. | ||
153.60 | 200. | ||
215.30 | 273.15 | ||
236.5 ± 2.0 | 298.15 | ||
238.10 | 300. | ||
317.76 | 400. | ||
384.32 | 500. | ||
437.57 | 600. | ||
480.13 | 700. | ||
514.58 | 800. | ||
542.86 | 900. | ||
566.37 | 1000. | ||
586.10 | 1100. | ||
602.77 | 1200. | ||
616.95 | 1300. | ||
629.08 | 1400. | ||
639.51 | 1500. |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°solid | 150. ± 2.9 | kJ/mol | Review | Roux, Temprado, et al., 2008 | There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB |
ΔfH°solid | 151.8 ± 1.5 | kJ/mol | Ccb | Douslin, Scott, et al., 1976 | crystal phase; see Good, 1978; ALS |
ΔfH°solid | 141.0 ± 0.46 | kJ/mol | Ccr | Westrum and Wong, 1967 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°solid | -8950.0 ± 1.2 | kJ/mol | Ccb | Douslin, Scott, et al., 1976 | crystal phase; see Good, 1978; Corresponding ΔfHºsolid = 151.9 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°solid | -8939.24 ± 0.46 | kJ/mol | Ccr | Westrum and Wong, 1967 | Corresponding ΔfHºsolid = 141.1 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°solid | -8945.4 ± 2.2 | kJ/mol | Ccb | Magnus, Hartmann, et al., 1951 | Reanalyzed by Cox and Pilcher, 1970, Original value = -8945.9 ± 2.2 kJ/mol; Corresponding ΔfHºsolid = 147.3 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°solid,1 bar | 254.68 | J/mol*K | N/A | Wong and Westrum, 1971 | DH |
Constant pressure heat capacity of solid
Cp,solid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
259.20 | 298.15 | Wong and Westrum, 1971 | T = 5 to 514 K.; DH |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 711.2 | K | N/A | Aldrich Chemical Company Inc., 1990 | BS |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 473.6 | K | N/A | Casellato, Vecchi, et al., 1973 | Uncertainty assigned by TRC = 0.4 K; TRC |
Tfus | 474. | K | N/A | Sangster and Irvine, 1956 | Uncertainty assigned by TRC = 3. K; TRC |
Tfus | 468. | K | N/A | Blum-Bergmann, 1938 | Uncertainty assigned by TRC = 3. K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 471.01 | K | N/A | Wong and Westrum, 1971, 2 | Uncertainty assigned by TRC = 0.01 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 106.1 ± 3.9 | kJ/mol | CGC | Hanshaw, Nutt, et al., 2008 | AC |
Quantity | Value | Units | Method | Reference | Comment |
ΔsubH° | 120.1 ± 3.3 | kJ/mol | Review | Roux, Temprado, et al., 2008 | There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB |
ΔsubH° | 127. ± 4. | kJ/mol | V | Kruif, 1980 | ALS |
ΔsubH° | 127. ± 4. | kJ/mol | TE,ME | Kruif, 1980 | Based on data from 381. to 406. K.; AC |
ΔsubH° | 107. | kJ/mol | V | Wakayama and Inokuchi, 1967 | ALS |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
88.5 | 398. | GC | Lei, Chankalal, et al., 2002 | Based on data from 323. to 473. K.; AC |
67.7 | 550. | N/A | Dykyj, Svoboda, et al., 1999 | Based on data from 535. to 768. K.; AC |
Enthalpy of sublimation
ΔsubH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
114.5 | 383. | GS | Nass, Lenoir, et al., 1995 | Based on data from 313. to 453. K.; AC |
107.6 | 378. | N/A | Stephenson and Malanowski, 1987 | Based on data from 363. to 468. K.; AC |
107.1 | 425. | ME | Wakayama and Inokuchi, 1967, 2 | AC |
118. ± 4. | 368. | N/A | Hoyer and Peperle, 1958 | Based on data from 338. to 398. K. See also Cox and Pilcher, 1970, 2.; AC |
118.0 ± 4.2 | 338. | V | Hoyer and Peperle, 1958, 2 | Reanalyzed by Pedley, Naylor, et al., 1986, Original value = 115. kJ/mol; ALS |
110. | 293. | V | Magnus, Hartmann, et al., 1951 | ALS |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
24.190 | 471.06 | N/A | Sabbah and El Watik, 1992 | DH |
24.744 | 471.01 | N/A | Wong and Westrum, 1971 | DH |
23.0 | 471.2 | DSC | Kestens, Auclair, et al., 2010 | AC |
24.74 | 471. | N/A | Domalski and Hearing, 1996 | AC |
Entropy of fusion
ΔfusS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
52.53 | 471.01 | Wong and Westrum, 1971 | DH |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
MM - Michael M. Meot-Ner (Mautner)
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
B - John E. Bartmess
View reactions leading to C18H12+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 7.87 ± 0.02 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 819.2 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 791.2 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Electron affinity determinations
EA (eV) | Method | Reference | Comment |
---|---|---|---|
0.2850 ± 0.0080 | ECD | Becker and Chen, 1966 | B |
0.13998 | ECD | Wentworth and Becker, 1962 | B |
Proton affinity at 298K
Proton affinity (kJ/mol) | Reference | Comment |
---|---|---|
818.0 | Aue, Guidoni, et al., 2000 | Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM |
Gas basicity at 298K
Gas basicity (review) (kJ/mol) | Reference | Comment |
---|---|---|
792.9 | Aue, Guidoni, et al., 2000 | Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
8.0 ± 0.2 | EI | Shushan and Boyd, 1980 | LLK |
7.84 ± 0.05 | EQ | Mautner(Meot-Ner), 1980 | LLK |
7.89 ± 0.04 | PE | Boschi, Clar, et al., 1974 | LLK |
7.84 ± 0.01 | PE | Dewar and Goodman, 1972 | LLK |
8.2 ± 0.3 | EI | Wacks, 1964 | RDSH |
8.17 | CTS | Briegleb, 1964 | RDSH |
8.08 | CTS | Kinoshita, 1962 | RDSH |
8.1 | CTS | Briegleb, Czekalla, et al., 1961 | RDSH |
8.09 | CTS | Birks and Stifkin, 1961 | RDSH |
7.95 | CTS | Briegleb and Czekalla, 1959 | RDSH |
8.13 | CTS | Matsen, 1956 | RDSH |
7.88 ± 0.02 | PE | Schmidt, 1977 | Vertical value; LLK |
7.88 | PE | Clar and Schmidt, 1976 | Vertical value; LLK |
7.86 | PE | Brogli and Heilbronner, 1972 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
C16H10+ | 16.3 ± 0.3 | C2H2 | EI | Shushan and Boyd, 1980 | LLK |
C18H11+ | 15.4 ± 0.3 | H | EI | Shushan and Boyd, 1980 | LLK |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Gas Phase Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
View spectrum image in SVG format.
Download spectrum in JCAMP-DX format.
Owner | NIST Standard Reference Data Program Collection (C) 2018 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | NIST Mass Spectrometry Data Center |
State | gas |
Instrument | HP-GC/MS/IRD |
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, IR Spectrum, UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | Japan AIST/NIMC Database- Spectrum MS-NW- 122 |
NIST MS number | 228263 |
UV/Visible spectrum
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Victor Talrose, Eugeny B. Stern, Antonina A. Goncharova, Natalia A. Messineva, Natalia V. Trusova, Margarita V. Efimkina
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
View spectrum image in SVG format.
Download spectrum in JCAMP-DX format.
Source | missing citation |
---|---|
Owner | INEP CP RAS, NIST OSRD Collection (C) 2007 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
Origin | INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS |
Source reference | RAS UV No. 9066 |
Instrument | Zeiss PMQ II |
Melting point | 199 |
Boiling point | 425 |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Roux, Temprado, et al., 2008
Roux, M.V.; Temprado, M.; Chickos, J.S.; Nagano, Y.,
Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons,
J. Phys. Chem. Ref. Data, 2008, 37, 4, 1855-1996. [all data]
Dorofeeva O.V., 1988
Dorofeeva O.V.,
Thermodynamic Properties of Polycyclic Aromatic Hydrocarbons in the Gaseous Phase. Institute for High Temperatures, USSR Academy of Sciences, Preprint No.1-238 (in Russian), Moscow, 1988. [all data]
Dorofeeva O.V., 1986
Dorofeeva O.V.,
On calculation of thermodynamic properties of polycyclic aromatic hydrocarbons,
Thermochim. Acta, 1986, 102, 59-66. [all data]
Moiseeva N.F., 1989
Moiseeva N.F.,
Development of Benson group additivity method for estimation of ideal gas thermodynamic properties of polycyclic aromatic hydrocarbons,
Thermochim. Acta, 1989, 153, 77-85. [all data]
Frenkel M., 1994
Frenkel M.,
Thermodynamics of Organic Compounds in the Gas State, Vol. I, II, Thermodynamics Research Center, College Station, Texas, 1994, 1994. [all data]
Douslin, Scott, et al., 1976
Douslin, D.R.; Scott, D.W.; Good, W.D.; Osborn, A.G.,
Thermodynamic properties of organic compounds and thermodynamic properties of fluids,
Gov. Rep. Announce. Index U.S., 1976, 76, 97. [all data]
Good, 1978
Good, W.D.,
The enthalpies of formation of some bridged-ring polynuclear aromatic hydrocarbons,
J. Chem. Thermodyn., 1978, 10, 553-558. [all data]
Westrum and Wong, 1967
Westrum, E.F., Jr.; Wong, S.,
Strain energies and thermal properties of globular and polynuclear aromatic molecules,
AEC Rept. Coo-1149-92, Contract AT(11-1)-1149, 1967, 1-7. [all data]
Magnus, Hartmann, et al., 1951
Magnus, A.; Hartmann, H.; Becker, F.,
Verbrennungswarmen und resonanzenergien von mehrkernigen aromatischen kohlenwasserstoffen,
Z. Phys. Chem., 1951, 197, 75-91. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Wong and Westrum, 1971
Wong, W-K.; Westrum, E.F., Jr.,
Thermodynamics of polynuclear aromatic molecules. I. Heat capacities and enthalpies of fusion of pyrene, flouranthene, and triphenylene,
J. Chem. Thermodynam., 1971, 3, 105-124. [all data]
Aldrich Chemical Company Inc., 1990
Aldrich Chemical Company Inc.,
Catalog Handbook of Fine Chemicals, Aldrich Chemical Company, Inc., Milwaukee WI, 1990, 1. [all data]
Casellato, Vecchi, et al., 1973
Casellato, F.; Vecchi, C.; Girell, A.,
Differential calorimetric study of polycyclic aromatic hydrocarbons,
Thermochim. Acta, 1973, 6, 4, 361, https://doi.org/10.1016/0040-6031(73)87003-0
. [all data]
Sangster and Irvine, 1956
Sangster, R.C.; Irvine, J.W.,
Study of Organic Scintillators,
J. Chem. Phys., 1956, 24, 670. [all data]
Blum-Bergmann, 1938
Blum-Bergmann, O.,
J. Am. Chem. Soc., 1938, 60, 1999. [all data]
Wong and Westrum, 1971, 2
Wong, W.-K.; Westrum, E.F.,
Thermodynamics of Polynuclear Aromatic Molecules. 1. Heat Capacities and Enthalpies of Fusion of Pyrene, Fluoranthene, and Triphenylene,
J. Chem. Thermodyn., 1971, 3, 105-24. [all data]
Hanshaw, Nutt, et al., 2008
Hanshaw, William; Nutt, Marjorie; Chickos, James S.,
Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures of Polyaromatic Hydrocarbons,
J. Chem. Eng. Data, 2008, 53, 8, 1903-1913, https://doi.org/10.1021/je800300x
. [all data]
Kruif, 1980
Kruif, C.G.,
Enthalpies of sublimation and vapour pressures of 11 polycyclic hydrocarbons,
J. Chem. Thermodyn., 1980, 12, 243-248. [all data]
Wakayama and Inokuchi, 1967
Wakayama, N.; Inokuchi, H.,
Heats of sublimation of polycyclic aromatic hydrocarbons and their molecular packings,
Bull. Chem. Soc. Jpn., 1967, 40, 2267. [all data]
Lei, Chankalal, et al., 2002
Lei, Ying Duan; Chankalal, Raymond; Chan, Anita; Wania, Frank,
Supercooled Liquid Vapor Pressures of the Polycyclic Aromatic Hydrocarbons,
J. Chem. Eng. Data, 2002, 47, 4, 801-806, https://doi.org/10.1021/je0155148
. [all data]
Dykyj, Svoboda, et al., 1999
Dykyj, J.; Svoboda, J.; Wilhoit, R.C.; Frenkel, M.L.; Hall, K.R.,
Vapor Pressure of Chemicals: Part A. Vapor Pressure and Antoine Constants for Hydrocarbons and Sulfur, Selenium, Tellurium and Hydrogen Containing Organic Compounds, Springer, Berlin, 1999, 373. [all data]
Nass, Lenoir, et al., 1995
Nass, Karen; Lenoir, Dieter; Kettrup, Antonius,
Calculation of the Thermodynamic Properties of Polycyclic Aromatic Hydrocarbons by an Incremental Procedure,
Angew. Chem. Int. Ed. Engl., 1995, 34, 16, 1735-1736, https://doi.org/10.1002/anie.199517351
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Wakayama and Inokuchi, 1967, 2
Wakayama, Nobuko; Inokuchi, Hiroo,
Heats of Sublimation of Polycyclic Aromatic Hydrocarbons and Their Molecular Packings,
Bull. Chem. Soc. Jpn., 1967, 40, 10, 2267-2271, https://doi.org/10.1246/bcsj.40.2267
. [all data]
Hoyer and Peperle, 1958
Hoyer, H.; Peperle, W.,
Z. Elektrochem., 1958, 62, 61. [all data]
Cox and Pilcher, 1970, 2
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press Inc., London, 1970, 643. [all data]
Hoyer and Peperle, 1958, 2
Hoyer, H.; Peperle, W.,
Dampfdrunkmessungen an organischen substanzen und ihre sublimationswarmen,
Z. Electrochem., 1958, 62, 61-66. [all data]
Pedley, Naylor, et al., 1986
Pedley, J.B.; Naylor, R.D.; Kirby, S.P.,
Thermochemical Data of Organic Compounds, Chapman and Hall, New York, 1986, 1-792. [all data]
Sabbah and El Watik, 1992
Sabbah, R.; El Watik, L.,
New reference materials for the calibration (temperature and energy) of differential thermal analysers and scanning calorimeters,
J. Therm. Anal., 1992, 38(4), 855-863. [all data]
Kestens, Auclair, et al., 2010
Kestens, Vikram; Auclair, Guy; Drozdzewska, Katarzyna; Held, Andrea; Roebben, Gert; Linsinger, Thomas,
Thermodynamic property values of selected polycyclic aromatic hydrocarbons measured by differential scanning calorimetry,
J Therm Anal Calorim, 2010, 99, 1, 245-261, https://doi.org/10.1007/s10973-009-0440-6
. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Becker and Chen, 1966
Becker, R.S.; Chen, E.,
Extension of Electron Affinities and Ionization Potentials of Aromatic Hydrocarbons,
J. Chem. Phys., 1966, 45, 7, 2403, https://doi.org/10.1063/1.1727954
. [all data]
Wentworth and Becker, 1962
Wentworth, W.E.; Becker, R.S.,
Potential Method for the Determination of Electron Affinities of Molecules: Application to Some Aromatic Hydrocarbons.,
J. Am. Chem. Soc., 1962, 84, 22, 4263, https://doi.org/10.1021/ja00881a014
. [all data]
Aue, Guidoni, et al., 2000
Aue, D.H.; Guidoni, M.; Betowski, L.D.,
Ab initio calculated gas-phase basicities of polynuclear aromatic hydrocarbons,
Int. J. Mass Spectrom., 2000, 201, 283. [all data]
Shushan and Boyd, 1980
Shushan, B.; Boyd, R.K.,
Unimolecular and collision induced fragmentations of molecular ions of polycyclic aromatic hydrocarbons,
Org. Mass Spectrom., 1980, 15, 445. [all data]
Mautner(Meot-Ner), 1980
Mautner(Meot-Ner), M.,
Ion thermochemistry of low volatility compounds in the gas phase. 3. Polycyclic aromatics: Ionization energies, proton, and hydrogen affinities. Extrapolations to graphite,
J. Phys. Chem., 1980, 84, 2716. [all data]
Boschi, Clar, et al., 1974
Boschi, R.; Clar, E.; Schmidt, W.,
Photoelectron spectra of polynuclear aromatics. III. The effect of nonplanarity in sterically overcrowded aromatic hydrocarbons,
J. Chem. Phys., 1974, 60, 4406. [all data]
Dewar and Goodman, 1972
Dewar, M.J.S.; Goodman, D.W.,
Photoelectron spectra of molecules. Part 5.--Polycyclic aromatic hydrocarbons,
J. Chem. Soc. Faraday Trans. 2, 1972, 68, 1784. [all data]
Wacks, 1964
Wacks, M.E.,
Electron-impact studies of aromatic hydrocarbons. II. Naphthacene, naphthaphene, chrysene, triphenylene, and pyrene,
J. Chem. Phys., 1964, 41, 1661. [all data]
Briegleb, 1964
Briegleb, G.,
Electron affinity of organic molecules,
Angew. Chem. Intern. Ed., 1964, 3, 617. [all data]
Kinoshita, 1962
Kinoshita, M.,
The absorption spectra of the molecular complexes of aromatic compounds with p-bromanil,
Bull. Chem. Soc. Japan, 1962, 35, 1609. [all data]
Briegleb, Czekalla, et al., 1961
Briegleb, G.; Czekalla, J.; Reuss, G.,
Mesomeriemomente und Elektronenuberfuhrungsbanden von Elektronen-donator-akzeptor-komplexen des Chloranils und Tetracyanathylens mit aromatischen Kohlenwasserstoffen,
Z. Phys. Chem. (Neue Folge), 1961, 30, 333. [all data]
Birks and Stifkin, 1961
Birks, J.B.; Stifkin, M.A.,
π-Electronic excitation and ionization energies of condensed ring aromatic hydrocarbons,
Nature, 1961, 191, 761. [all data]
Briegleb and Czekalla, 1959
Briegleb, G.; Czekalla, J.,
Die Bestimmung von lonisierungsenergien aus den Spektren von Elektronenubergangskomplexen,
Z.Elektrochem., 1959, 63, 6. [all data]
Matsen, 1956
Matsen, F.A.,
Electron affinities, methyl affinities, and ionization energies of condensed ring aromatic hydrocarbons,
J. Chem. Phys., 1956, 24, 602. [all data]
Schmidt, 1977
Schmidt, W.,
Photoelectron spectra of polynuclear aromatics. V. Correlations with ultraviolet absorption spectra in the catacondensed series,
J. Chem. Phys., 1977, 66, 828. [all data]
Clar and Schmidt, 1976
Clar, E.; Schmidt, W.,
Correlations between photoelectron and phosphorescence spectra of polycyclic hydrocarbons,
Tetrahedron, 1976, 32, 2563. [all data]
Brogli and Heilbronner, 1972
Brogli, F.; Heilbronner, E.,
The photoelectron spectra of benzenoid hydrocarbons C18H12,
Angew. Chem. Int. Ed. Engl., 1972, 11, 538. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References
- Symbols used in this document:
AE Appearance energy Cp,gas Constant pressure heat capacity of gas Cp,solid Constant pressure heat capacity of solid EA Electron affinity IE (evaluated) Recommended ionization energy S°solid,1 bar Entropy of solid at standard conditions (1 bar) Tboil Boiling point Tfus Fusion (melting) point Ttriple Triple point temperature ΔcH°solid Enthalpy of combustion of solid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°solid Enthalpy of formation of solid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔsubH Enthalpy of sublimation ΔsubH° Enthalpy of sublimation at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.