Fluoranthene
- Formula: C16H10
- Molecular weight: 202.2506
- IUPAC Standard InChIKey: GVEPBJHOBDJJJI-UHFFFAOYSA-N
- CAS Registry Number: 206-44-0
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Species with the same structure:
- Other names: Benzene, 1,2-(1,8-naphthalenediyl)-; Benzo[jk]fluorene; Idryl; 1,2-(1,8-Naphthylene)benzene; Benzene, 1,2-(1,8-naphthylene)-; 1,2-Benzacenaphthene; 1,2-(1,8-Naphthalenediyl)benzene; Rcra waste number U120; 1,2-(1,8-Naphthalene)benzene; Fluoranthrene; NSC 6803
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 69.65 ± 0.96 | kcal/mol | Review | Roux, Temprado, et al., 2008 | There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB |
ΔfH°gas | 69.26 | kcal/mol | N/A | Westrum and Wong, 1967 | Value computed using ΔfHsolid° value of 189.8±0.4 kj/mol from Westrum and Wong, 1967 and ΔsubH° value of 100.0 kj/mol from Boyd, Christensen, et al., 1965.; DRB |
ΔfH°gas | 69.78 ± 0.52 | kcal/mol | Ccb | Boyd, Christensen, et al., 1965 | Reanalyzed by Cox and Pilcher, 1970, Original value = 70.4 ± 1.8 kcal/mol; ALS |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
10.04 | 50. | Dorofeeva O.V., 1989 | These values are based on the experimental assignment of vibrational spectra. The S(300 K) and Cp(300 K) values calculated by MM3 method [ Pope C.J., 1995] are 10 and 4 J/mol*K, respectively, larger than selected ones. Recommended values are also reproduced in the reference book [ Frenkel M., 1994].; GT |
15.71 | 100. | ||
22.90 | 150. | ||
31.171 | 200. | ||
44.192 | 273.15 | ||
48.66 ± 0.48 | 298.15 | ||
48.984 | 300. | ||
65.674 | 400. | ||
79.579 | 500. | ||
90.674 | 600. | ||
99.512 | 700. | ||
106.64 | 800. | ||
112.48 | 900. | ||
117.32 | 1000. | ||
121.37 | 1100. | ||
124.79 | 1200. | ||
127.69 | 1300. | ||
130.17 | 1400. | ||
132.30 | 1500. |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
MM - Michael M. Meot-Ner (Mautner)
LL - Sharon G. Lias and Joel F. Liebman
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
B - John E. Bartmess
View reactions leading to C16H10+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 7.9 ± 0.1 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 198.0 | kcal/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 191.4 | kcal/mol | N/A | Hunter and Lias, 1998 | HL |
Electron affinity determinations
EA (eV) | Method | Reference | Comment |
---|---|---|---|
0.629995 | ECD | Michl, 1969 | B |
Proton affinity at 298K
Proton affinity (kcal/mol) | Reference | Comment |
---|---|---|
197.6 | Aue, Guidoni, et al., 2000 | Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM |
Gas basicity at 298K
Gas basicity (review) (kcal/mol) | Reference | Comment |
---|---|---|
191.1 | Aue, Guidoni, et al., 2000 | Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
7.9 ± 0.1 | TRPI | Ling and Lifshitz, 1995 | LL |
7.95 ± 0.04 | PE | Boschi, Clar, et al., 1974 | LLK |
7.80 ± 0.01 | PI | Dewar, Haselbach, et al., 1970 | RDSH |
7.72 | CTS | Slifkin and Allison, 1967 | RDSH |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
C16H8+ | 11.50 ± 0.12 | 2H | DER | Ling and Lifshitz, 1995 | LL |
C16H8+ | 11.24 ± 0.25 | H2 | DER | Ling and Lifshitz, 1995 | LL |
C16H9+ | 12.38 ± 0.14 | H | DER | Ling and Lifshitz, 1995 | LL |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Gas Phase Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
View spectrum image in SVG format.
Download spectrum in JCAMP-DX format.
Owner | NIST Standard Reference Data Program Collection (C) 2018 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | NIST Mass Spectrometry Data Center |
State | gas |
Instrument | HP-GC/MS/IRD |
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, IR Spectrum, UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | Japan AIST/NIMC Database- Spectrum MS-NW- 126 |
NIST MS number | 228362 |
UV/Visible spectrum
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Victor Talrose, Eugeny B. Stern, Antonina A. Goncharova, Natalia A. Messineva, Natalia V. Trusova, Margarita V. Efimkina
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
View spectrum image in SVG format.
Download spectrum in JCAMP-DX format.
Source | Streitwieser and Suzuki, 1961 |
---|---|
Owner | INEP CP RAS, NIST OSRD Collection (C) 2007 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
Origin | INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS |
Source reference | RAS UV No. 382 |
Instrument | n.i.g. |
Melting point | 107.8 |
Boiling point | 384 |
References
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Roux, Temprado, et al., 2008
Roux, M.V.; Temprado, M.; Chickos, J.S.; Nagano, Y.,
Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons,
J. Phys. Chem. Ref. Data, 2008, 37, 4, 1855-1996. [all data]
Westrum and Wong, 1967
Westrum, E.F., Jr.; Wong, S.,
Strain energies and thermal properties of globular and polynuclear aromatic molecules,
AEC Rept. Coo-1149-92, Contract AT(11-1)-1149, 1967, 1-7. [all data]
Boyd, Christensen, et al., 1965
Boyd, R.H.; Christensen, R.L.; Pua, R.,
The heats of combustion of acenaphthene, acenaphthylene, and fluoranthene. Strain and delocalization in bridged naphthalenes,
J. Am. Chem. Soc., 1965, 87, 3554-3559. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Dorofeeva O.V., 1989
Dorofeeva O.V.,
Thermodynamic Properties of Gaseous Polycyclic Aromatic Hydrocarbons Containing Five-Membered Rings. Institute for High Temperatures, USSR Academy of Sciences, Preprint No.1-263 (in Russian), Moscow, 1989. [all data]
Pope C.J., 1995
Pope C.J.,
Thermochemical properties of curved PAH and fullerenes: a group additivity method compared with MM3(92) and MOPAC predictions,
J. Phys. Chem., 1995, 99, 4306-4316. [all data]
Frenkel M., 1994
Frenkel M.,
Thermodynamics of Organic Compounds in the Gas State, Vol. I, II, Thermodynamics Research Center, College Station, Texas, 1994, 1994. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Michl, 1969
Michl, J.,
Electronic Spectrum of Fluoranthene,
J. Molec. Spectros., 1969, 30, 1-3, 66, https://doi.org/10.1016/0022-2852(69)90236-7
. [all data]
Aue, Guidoni, et al., 2000
Aue, D.H.; Guidoni, M.; Betowski, L.D.,
Ab initio calculated gas-phase basicities of polynuclear aromatic hydrocarbons,
Int. J. Mass Spectrom., 2000, 201, 283. [all data]
Ling and Lifshitz, 1995
Ling, Y.; Lifshitz, C.,
Time-dependent mass spectra and breakdown graphs. 19. Fluoranthene,
J. Phys. Chem., 1995, 99, 11074. [all data]
Boschi, Clar, et al., 1974
Boschi, R.; Clar, E.; Schmidt, W.,
Photoelectron spectra of polynuclear aromatics. III. The effect of nonplanarity in sterically overcrowded aromatic hydrocarbons,
J. Chem. Phys., 1974, 60, 4406. [all data]
Dewar, Haselbach, et al., 1970
Dewar, M.J.S.; Haselbach, E.; Worley, S.D.,
Calculated and observed ionization potentials of unsaturated polycyclic hydrocarbons; calculated heats of formation by several semiempirical s.c.f. m.o. methods,
Proc. Roy. Soc. (London), 1970, A315, 431. [all data]
Slifkin and Allison, 1967
Slifkin, M.A.; Allison, A.C.,
Measurement of ionization potentials from contact charge transfer spectra,
Nature, 1967, 215, 949. [all data]
Streitwieser and Suzuki, 1961
Streitwieser, A., Jr.; Suzuki, S.,
An HMO treatment of the reduction of aromatic hydrocarbons with alkali metals; reduction of fluoranthene,
Tetrahedron, 1961, 16, 153-168. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References
- Symbols used in this document:
AE Appearance energy Cp,gas Constant pressure heat capacity of gas EA Electron affinity IE (evaluated) Recommended ionization energy ΔfH°gas Enthalpy of formation of gas at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.