Benzo[ghi]perylene

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Phase change data

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Tfus553.0KN/ASmith, 1980Uncertainty assigned by TRC = 0.2 K; TRC
Tfus554.2KN/ACasellato, Vecchi, et al., 1973Uncertainty assigned by TRC = 0.4 K; TRC
Quantity Value Units Method Reference Comment
Δvap30.81 ± 0.36kcal/molCGCHanshaw, Nutt, et al., 2008AC
Quantity Value Units Method Reference Comment
Δsub30.0kcal/molVWakayama and Inokuchi, 1967ALS

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
23.0398.GCLei, Chankalal, et al., 2002Based on data from 323. to 473. K.; AC

Enthalpy of sublimation

ΔsubH (kcal/mol) Temperature (K) Method Reference Comment
31.05383.GSNass, Lenoir, et al., 1995Based on data from 313. to 453. K.; AC
30.54404.MEStephenson and Malanowski, 1987Based on data from 389. to 468. K. See also Murray, Pottie, et al., 1974.; AC
32.29465.AStephenson and Malanowski, 1987Based on data from 450. to 510. K.; AC
30.00478.MEWakayama and Inokuchi, 1967, 2Based on data from 454. to 502. K.; AC

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Reference Comment
4.152554.2Acree, 1991AC

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Phase change data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C22H13+ + Benzo[ghi]perylene = (C22H13+ • Benzo[ghi]perylene)

By formula: C22H13+ + C22H12 = (C22H13+ • C22H12)

Quantity Value Units Method Reference Comment
Δr21.4kcal/molPHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated
Quantity Value Units Method Reference Comment
Δr28.cal/mol*KN/AMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
10.6385.PHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated

C22H12+ + Benzo[ghi]perylene = (C22H12+ • Benzo[ghi]perylene)

By formula: C22H12+ + C22H12 = (C22H12+ • C22H12)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr21.6kcal/molPHPMSMeot-Ner (Mautner), 1980gas phase
Quantity Value Units Method Reference Comment
Δr27.cal/mol*KPHPMSMeot-Ner (Mautner), 1980gas phase

Gas phase ion energetics data

Go To: Top, Phase change data, Reaction thermochemistry data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
MM - Michael M. Meot-Ner (Mautner)
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
B - John E. Bartmess

Quantity Value Units Method Reference Comment
IE (evaluated)7.17 ± 0.02eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)209.4kcal/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity202.0kcal/molN/AHunter and Lias, 1998HL

Electron affinity determinations

EA (eV) Method Reference Comment
0.42 ± 0.10CIDCChen and Cooks, 1995B

Proton affinity at 298K

Proton affinity (kcal/mol) Reference Comment
209.8Aue, Guidoni, et al., 2000Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM

Gas basicity at 298K

Gas basicity (review) (kcal/mol) Reference Comment
203.3Aue, Guidoni, et al., 2000Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM

Ionization energy determinations

IE (eV) Method Reference Comment
7.20 ± 0.05EQMautner(Meot-Ner), 1980LLK
7.15PEClar and Schmidt, 1977LLK
7.19 ± 0.01PEBoschi, Murrell, et al., 1972LLK
7.35CTSBriegleb, 1964RDSH
7.13CTSMatsen, 1956RDSH
7.15PEClar and Schmidt, 1977Vertical value; LLK
7.15PEClar and Schmidt, 1976Vertical value; LLK

Ion clustering data

Go To: Top, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

C22H12+ + Benzo[ghi]perylene = (C22H12+ • Benzo[ghi]perylene)

By formula: C22H12+ + C22H12 = (C22H12+ • C22H12)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr21.6kcal/molPHPMSMeot-Ner (Mautner), 1980gas phase
Quantity Value Units Method Reference Comment
Δr27.cal/mol*KPHPMSMeot-Ner (Mautner), 1980gas phase

C22H13+ + Benzo[ghi]perylene = (C22H13+ • Benzo[ghi]perylene)

By formula: C22H13+ + C22H12 = (C22H13+ • C22H12)

Quantity Value Units Method Reference Comment
Δr21.4kcal/molPHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated
Quantity Value Units Method Reference Comment
Δr28.cal/mol*KN/AMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
10.6385.PHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated

References

Go To: Top, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Smith, 1980
Smith, G.W., Phase behavior of some condensed polycyclic aromatics, Mol. Cryst. Liq. Cryst., 1980, 64, 15. [all data]

Casellato, Vecchi, et al., 1973
Casellato, F.; Vecchi, C.; Girell, A., Differential calorimetric study of polycyclic aromatic hydrocarbons, Thermochim. Acta, 1973, 6, 4, 361, https://doi.org/10.1016/0040-6031(73)87003-0 . [all data]

Hanshaw, Nutt, et al., 2008
Hanshaw, William; Nutt, Marjorie; Chickos, James S., Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures of Polyaromatic Hydrocarbons, J. Chem. Eng. Data, 2008, 53, 8, 1903-1913, https://doi.org/10.1021/je800300x . [all data]

Wakayama and Inokuchi, 1967
Wakayama, N.; Inokuchi, H., Heats of sublimation of polycyclic aromatic hydrocarbons and their molecular packings, Bull. Chem. Soc. Jpn., 1967, 40, 2267. [all data]

Lei, Chankalal, et al., 2002
Lei, Ying Duan; Chankalal, Raymond; Chan, Anita; Wania, Frank, Supercooled Liquid Vapor Pressures of the Polycyclic Aromatic Hydrocarbons, J. Chem. Eng. Data, 2002, 47, 4, 801-806, https://doi.org/10.1021/je0155148 . [all data]

Nass, Lenoir, et al., 1995
Nass, Karen; Lenoir, Dieter; Kettrup, Antonius, Calculation of the Thermodynamic Properties of Polycyclic Aromatic Hydrocarbons by an Incremental Procedure, Angew. Chem. Int. Ed. Engl., 1995, 34, 16, 1735-1736, https://doi.org/10.1002/anie.199517351 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Murray, Pottie, et al., 1974
Murray, John James; Pottie, Roswell Francis; Pupp, Christian, The Vapor Pressures and Enthalpies of Sublimation of Five Polycyclic Aromatic Hydrocarbons, Can. J. Chem., 1974, 52, 4, 557-563, https://doi.org/10.1139/v74-087 . [all data]

Wakayama and Inokuchi, 1967, 2
Wakayama, Nobuko; Inokuchi, Hiroo, Heats of Sublimation of Polycyclic Aromatic Hydrocarbons and Their Molecular Packings, Bull. Chem. Soc. Jpn., 1967, 40, 10, 2267-2271, https://doi.org/10.1246/bcsj.40.2267 . [all data]

Acree, 1991
Acree, William E., Thermodynamic properties of organic compounds: enthalpy of fusion and melting point temperature compilation, Thermochimica Acta, 1991, 189, 1, 37-56, https://doi.org/10.1016/0040-6031(91)87098-H . [all data]

Meot-Ner (Mautner), 1980
Meot-Ner (Mautner), M., Dimer Cations of Polycyclic Aromatics: Experimental Bonding Energies and Resonance Stabilization, J. Phys. Chem., 1980, 84, 21, 2724, https://doi.org/10.1021/j100458a012 . [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Chen and Cooks, 1995
Chen, G.D.; Cooks, R.G., Electron affinities of polycyclic aromatic hydrocarbons determined by the kinetic method, J. Mass Spectrom., 1995, 30, 8, 1167, https://doi.org/10.1002/jms.1190300814 . [all data]

Aue, Guidoni, et al., 2000
Aue, D.H.; Guidoni, M.; Betowski, L.D., Ab initio calculated gas-phase basicities of polynuclear aromatic hydrocarbons, Int. J. Mass Spectrom., 2000, 201, 283. [all data]

Mautner(Meot-Ner), 1980
Mautner(Meot-Ner), M., Ion thermochemistry of low volatility compounds in the gas phase. 3. Polycyclic aromatics: Ionization energies, proton, and hydrogen affinities. Extrapolations to graphite, J. Phys. Chem., 1980, 84, 2716. [all data]

Clar and Schmidt, 1977
Clar, E.; Schmidt, W., Correlations between photoelectron and ultraviolet absorption spectra of polycyclic hydrocarbons. The perylene, coronene and bisanthene series, Tetrahedron, 1977, 33, 2093. [all data]

Boschi, Murrell, et al., 1972
Boschi, R.; Murrell, J.N.; Schmidt, W., Photoelectron spectra of polycyclic aromatic hydrocarbons, Faraday Discuss. Chem. Soc., 1972, 54, 116. [all data]

Briegleb, 1964
Briegleb, G., Electron affinity of organic molecules, Angew. Chem. Intern. Ed., 1964, 3, 617. [all data]

Matsen, 1956
Matsen, F.A., Electron affinities, methyl affinities, and ionization energies of condensed ring aromatic hydrocarbons, J. Chem. Phys., 1956, 24, 602. [all data]

Clar and Schmidt, 1976
Clar, E.; Schmidt, W., Correlations between photoelectron and phosphorescence spectra of polycyclic hydrocarbons, Tetrahedron, 1976, 32, 2563. [all data]


Notes

Go To: Top, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References