Cesium ion (1+)
- Formula: Cs+
- Molecular weight: 132.9049033
- IUPAC Standard InChIKey: NCMHKCKGHRPLCM-UHFFFAOYSA-N
- CAS Registry Number: 18459-37-5
- Chemical structure:
This structure is also available as a 2d Mol file - Other names: Cesium cation
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Options:
Gas phase thermochemistry data
Go To: Top, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
S°gas,1 bar | 169.84 | J/mol*K | Review | Chase, 1998 | Data last reviewed in December, 1983 |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: (Cs+ • 2H2O) + H2O = (Cs+ • 3H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 41. | kJ/mol | DT | McKnight and Sawina, 1972 | gas phase; Entropy change is questionable; M |
ΔrH° | 46.9 | kJ/mol | HPMS | Dzidic and Kebarle, 1970 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 69.5 | J/mol*K | DT | McKnight and Sawina, 1972 | gas phase; Entropy change is questionable; M |
ΔrS° | 99.2 | J/mol*K | HPMS | Dzidic and Kebarle, 1970 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 20. | kJ/mol | HPMS | Banic and Iribarne, 1985 | gas phase; From thermochemical cycle,switching reaction, electric fields; M |
By formula: (Cs+ • H2O) + H2O = (Cs+ • 2H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 47.3 | kJ/mol | DT | McKnight and Sawina, 1972 | gas phase; Entropy change is questionable; M |
ΔrH° | 52.3 | kJ/mol | HPMS | Dzidic and Kebarle, 1970 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 69.5 | J/mol*K | DT | McKnight and Sawina, 1972 | gas phase; Entropy change is questionable; M |
ΔrS° | 92.9 | J/mol*K | HPMS | Dzidic and Kebarle, 1970 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 25. | kJ/mol | HPMS | Banic and Iribarne, 1985 | gas phase; electric fields; M |
By formula: Cs+ + Ar = (Cs+ • Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.16 | kJ/mol | IMob | Gatland, 1984 | gas phase; M |
ΔrH° | 6.11 | kJ/mol | SCATTERING | Gislason, 1984 | gas phase; M |
ΔrH° | 8.20 | kJ/mol | IMob | Viehland, 1984 | gas phase; M |
ΔrH° | 9.54 | kJ/mol | IMob | Takebe, 1983 | gas phase; M |
ΔrH° | 9.6 | kJ/mol | IMob | Takebe, 1983 | gas phase; values from this reference are consistently too high; M |
By formula: Cs+ + Xe = (Cs+ • Xe)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 10.5 | kJ/mol | IMob | Gatland, 1984 | gas phase; M |
ΔrH° | 11.5 | kJ/mol | SCATTERING | Gislason, 1984 | gas phase; M |
ΔrH° | 11.0 | kJ/mol | IMob | Viehland, 1984 | gas phase; M |
ΔrH° | 10.2 | kJ/mol | IMob | Mason and Sharp, 1958 | gas phase; M |
ΔrH° | 14.9 | kJ/mol | IMob | Takebe, 1983 | gas phase; values from this source are too high; M |
By formula: Cs+ + Kr = (Cs+ • Kr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.7 | kJ/mol | IMob | Gatland, 1984 | gas phase; M |
ΔrH° | 9.75 | kJ/mol | SCATTERING | Gislason, 1984 | gas phase; M |
ΔrH° | 11.4 | kJ/mol | IMob | Viehland, 1984 | gas phase; M |
ΔrH° | 13. | kJ/mol | IMob | Takebe, 1983 | gas phase; M |
ΔrH° | 12.8 | kJ/mol | IMob | Takebe, 1983 | gas phase; values form this reference are too high; M |
By formula: Cs+ + H2O = (Cs+ • H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 49.8 | kJ/mol | DT | McKnight and Sawina, 1972 | gas phase; Entropy change is questionable; M |
ΔrH° | 57.3 | kJ/mol | HPMS | Dzidic and Kebarle, 1970 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 59.8 | J/mol*K | DT | McKnight and Sawina, 1972 | gas phase; Entropy change is questionable; M |
ΔrS° | 81.2 | J/mol*K | HPMS | Dzidic and Kebarle, 1970 | gas phase; M |
By formula: Cs+ + O2S = (Cs+ • O2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 45.2 | kJ/mol | DT | McKnight and Sawina, 1972 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 79.1 | J/mol*K | DT | McKnight and Sawina, 1972 | gas phase; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
22. | 300. | HPMS | Banic and Iribarne, 1985 | gas phase; electric fields; M |
By formula: Cs+ + CO2 = (Cs+ • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 26. | kJ/mol | DT | McKnight and Sawina, 1972 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 59.8 | J/mol*K | DT | McKnight and Sawina, 1972 | gas phase; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
10. | 301. | HPMS | Banic and Iribarne, 1985 | gas phase; electric fields; M |
By formula: Cs+ + Ne = (Cs+ • Ne)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 2.3 | kJ/mol | SCATTERING | Gislason, 1984 | gas phase; M |
ΔrH° | 2.7 | kJ/mol | IMob | Takebe, 1983 | gas phase; values from this reference are too high; M |
By formula: (Cs+ • 3H2O) + H2O = (Cs+ • 4H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 44.4 | kJ/mol | HPMS | Dzidic and Kebarle, 1970 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 106. | J/mol*K | HPMS | Dzidic and Kebarle, 1970 | gas phase; M |
By formula: (Cs+ • 2C2H3N) + C2H3N = (Cs+ • 3C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 59.8 | kJ/mol | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
By formula: (Cs+ • 3C2H3N) + C2H3N = (Cs+ • 4C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 50.6 | kJ/mol | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 113. | J/mol*K | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
By formula: (Cs+ • 4C2H3N) + C2H3N = (Cs+ • 5C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 45.6 | kJ/mol | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 138. | J/mol*K | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
By formula: (Cs+ • C2H3N) + C2H3N = (Cs+ • 2C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 69.9 | kJ/mol | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 90.4 | J/mol*K | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
By formula: Cs+ + C2H3N = (Cs+ • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 80.3 | kJ/mol | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 77.8 | J/mol*K | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
By formula: Cs+ + He = (Cs+ • He)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1.5 | kJ/mol | SCATTERING | Gislason, 1984 | gas phase; M |
ΔrH° | 1.3 | kJ/mol | IMob | Mason and Sharp, 1958 | gas phase; M |
By formula: (Cs+ • H2O • O2S) + H2O = (Cs+ • 2H2O • O2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 22. | kJ/mol | HPMS | Banic and Iribarne, 1985 | gas phase; electeric fields; M |
By formula: (Cs+ • 2H2O) + O2S = (Cs+ • O2S • 2H2O)
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
15. | 300. | HPMS | Banic and Iribarne, 1985 | gas phase; electric fields; M |
By formula: (Cs+ • H2O) + O2S = (Cs+ • O2S • H2O)
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
18. | 300. | HPMS | Banic and Iribarne, 1985 | gas phase; electric fields; M |
By formula: (Cs+ • H2O) + CO2 = (Cs+ • CO2 • H2O)
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
5.0 | 301. | HPMS | Banic and Iribarne, 1985 | gas phase; electric fields; M |
By formula: (Cs+ • C7H8) + C7H8 = (Cs+ • 2C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 61.5 ± 4.2 | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: (Cs+ • C6H6O) + C6H6O = (Cs+ • 2C6H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 61. ± 3. | kJ/mol | CIDT | Amunugama and Rodgers, 2002, 2 | RCD |
By formula: (Cs+ • C6H5F) + C6H5F = (Cs+ • 2C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 44.8 ± 4.6 | kJ/mol | CIDT | Amunugama and Rodgers, 2002, 3 | RCD |
By formula: (Cs+ • 2C2H6O) + C2H6O = (Cs+ • 3C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 40. ± 9.2 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
By formula: (Cs+ • C7H8O) + C7H8O = (Cs+ • 2C7H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 62. ± 4. | kJ/mol | CIDT | Amunugama and Rodgers, 2003 | RCD |
By formula: (Cs+ • C4H10O2) + C4H10O2 = (Cs+ • 2C4H10O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 54.0 ± 7.1 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
By formula: (Cs+ • C2H6O) + C2H6O = (Cs+ • 2C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 46.9 ± 5.9 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
By formula: (Cs+ • C6H6) + C6H6 = (Cs+ • 2C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 58.6 ± 7.9 | kJ/mol | CIDT | Amicangelo and Armentrout, 2000 | RCD |
By formula: Cs+ + C12H24O6 = (Cs+ • C12H24O6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 168. ± 9.2 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
By formula: Cs+ + C10H20O5 = (Cs+ • C10H20O5)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 100. ± 5.9 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
By formula: Cs+ + C7H8 = (Cs+ • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 64.0 ± 4.6 | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: Cs+ + C6H6O = (Cs+ • C6H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 66. ± 3. | kJ/mol | CIDT | Amunugama and Rodgers, 2002, 2 | RCD |
By formula: Cs+ + C6H5F = (Cs+ • C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 50.2 ± 5.0 | kJ/mol | CIDT | Amunugama and Rodgers, 2002, 3 | RCD |
By formula: Cs+ + C7H8O = (Cs+ • C7H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 66.5 ± 5.0 | kJ/mol | CIDT | Amunugama and Rodgers, 2003 | RCD |
By formula: Cs+ + C4H10O2 = (Cs+ • C4H10O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 56.9 ± 5.0 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
By formula: Cs+ + C2H6O = (Cs+ • C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 56.9 ± 5.0 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
By formula: Cs+ + C8H16O4 = (Cs+ • C8H16O4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 84.9 ± 9.2 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
By formula: Cs+ + C6H6 = (Cs+ • C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 64.4 ± 5.0 | kJ/mol | CIDT | Amicangelo and Armentrout, 2000 | RCD |
References
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Chase, 1998
Chase, M.W., Jr.,
NIST-JANAF Themochemical Tables, Fourth Edition,
J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]
McKnight and Sawina, 1972
McKnight, L.G.; Sawina, J.M.,
Drift Velocities and Interactions of Cs+ Ions with Atmospheric Gases,
J. Chem. Phys., 1972, 57, 12, 5156, https://doi.org/10.1063/1.1678205
. [all data]
Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P.,
Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n,
J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013
. [all data]
Banic and Iribarne, 1985
Banic, C.M.; Iribarne, J.V.,
Equilibrium Constants for Clustering of Neutral Molecules about Gaseous Ions,
J. Chem. Phys., 1985, 83, 12, 6432, https://doi.org/10.1063/1.449543
. [all data]
Gatland, 1984
Gatland, I.R.,
Swarms of Ions and Electrons in Gases, W. Lindinger, T. D. Mark and F. Howorka, eds. (Springer, New York, 1984, 1984, 44. [all data]
Gislason, 1984
Gislason, E.A.,
Quoted in I. R. Gatland in Swarms of Ions and Electrons in Gases, W. Lindinger, T. D. Mark and F. Howorka, eds. (Springer, New York, 1984, 1984, 44. [all data]
Viehland, 1984
Viehland, L.A.,
Interaction Potentials for Li+ - Rare - Gas Systems,
Chem. Phys., 1984, 78, 2, 279, https://doi.org/10.1016/0301-0104(83)85114-3
. [all data]
Takebe, 1983
Takebe, M.,
The Generalized Mobility Curve for Alkali Ions in Rare Gases: Clustering Reactions and Mobility Curves,
J. Chem. Phys., 1983, 78, 12, 7223, https://doi.org/10.1063/1.444763
. [all data]
Mason and Sharp, 1958
Mason, E.A.; Sharp, H.W.,
Mobility of gaseous lons in weak electric fields,
Ann. Phys., 1958, 4, 3, 233, https://doi.org/10.1016/0003-4916(58)90049-6
. [all data]
Davidson and Kebarle, 1976
Davidson, W.R.; Kebarle, P.,
Ionic Solvation by Aprotic Solvents. Gas Phase Solvation of the Alkali Ions by Acetonitrile,
J. Am. Chem. Soc., 1976, 98, 20, 6125, https://doi.org/10.1021/ja00436a010
. [all data]
Amunugama and Rodgers, 2002
Amunugama, R.; Rodgers, M.T.,
Influence of substituents on cation-pi interactions. 1. Absolute binding energies of alkali metal cation-toluene complexes determined by threshold collision-induced dissociation and theoretical studies,
J. Phys. Chem. A, 2002, 106, 22, 5529, https://doi.org/10.1021/jp014307b
. [all data]
Amunugama and Rodgers, 2002, 2
Amunugama, R.; Rodgers, M.T.,
The influence of substituents on cation-pi interactions. 4. Absolute binding energies of alkali metal cation - Phenol complexes determined by threshold collision-induced dissociation and theoretical studies,
J. Phys. Chem. A, 2002, 106, 42, 9718, https://doi.org/10.1021/jp0211584
. [all data]
Amunugama and Rodgers, 2002, 3
Amunugama, R.; Rodgers, M.T.,
Influence of substituents on cation-pi interactions. 2. Absolute binding energies of alkali metal cation-fluorobenzene complexes determined by threshold collision-induced dissociation and theoretical studies,
J. Phys. Chem. A, 2002, 106, 39, 9092, https://doi.org/10.1021/jp020459a
. [all data]
Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B.,
Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation,
Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X
. [all data]
Amunugama and Rodgers, 2003
Amunugama, R.; Rodgers, M.T.,
Influence of substituents on cation-pi interactions - 5. Absolute binding energies of alkali metal cation-anisole complexes determined by threshold collision-induced dissociation and theoretical studies,
Int. J. Mass Spectrom., 2003, 222, 1-3, 431, https://doi.org/10.1016/S1387-3806(02)00945-4
. [all data]
Amicangelo and Armentrout, 2000
Amicangelo, J.C.; Armentrout, P.B.,
Absolute Binding Energies of Alkali-Metal Cation Complexes with Benzene Determined by Threshold Collision-Induced Dissociation Experiments and Ab Initio Theory,
J. Phys. Chem. A, 2000, 104, 48, 11420, https://doi.org/10.1021/jp002652f
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References
- Symbols used in this document:
S°gas,1 bar Entropy of gas at standard conditions (1 bar) T Temperature ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.